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Abstract

:

A new class of martensitic stainless steel, namely 06Cr15Ni4CuMo, with applications in marine engineering, was processed by using selective laser melting (SLM). A body-centered cubic martensitic microstructure was observed, and the microstructure was compared with wrought 410 martensitic stainless steel. The SLM-processed sample showed a hardness of 465 ± 10 HV0.5, which was nearly 115 HV0.5 less than the wrought counterpart. Similarly, the SLM-processed sample showed improved YS and UTS, compared with the wrought sample. However, reduced ductility was observed in the SLM-processed sample due to the presence of high dislocation density in these samples. In addition, 71% volume high-angle grain boundaries were observed, corroborating the high strength of the material. The corrosion behavior was investigated in seawater, and the corrosion resistance was found to be 0.025 mmpy for the SLM-processed 06Cr15Ni4CuMo steel and 0.030 mmpy for wrought 410 alloys, showing better corrosion resistance in the SLM-processed material.
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1. Introduction


To meet the high demands in the marine industries for the manufacturing of good-quality parts with reasonable cost and reduced lead times, additive manufacturing (AM) technology is used in many applications, including in the shipbuilding industry [1,2]. Steels are the most used alloy systems in marine industries [3,4]. Even though traditional manufacturing techniques such as casting, machining, powder metallurgy, and welding have been used to produce different types of stainless-steel grades [5,6,7], AM-based technologies have their applications. AM has been adapted for fabricating components with ultra-complex shapes and is limited in number based on customization [8,9,10,11]. AM involves layer-by-layer material deposition to build net-shape complex objects without extensive tooling/die [12]. The potential recycling of the feedstock leads to materials saving [13], making it a green technology. Different AM processes such as electron beam melting (EBM), fused deposition modeling (FDM), wire arc additive manufacturing (WAAM), etc., have been developed in the last decade, also including selective laser melting (SLM)/laser powder bed fusion process (LPBF) [14,15,16].



SLM/LPBF offers the possibility to fabricate a wide variety of materials directly from metal powder (such as Al-based alloys [17,18,19,20,21], Ti-based alloys [22,23,24,25], Ni-based [26,27,28,29], Co-based [30,31], Cu-based [32,33,34,35], Ag-based [36], cermets [37,38,39,40,41], bulk metallic glasses [42,43,44], high-entropy alloys [45,46,47,48], quasicrystalline materials [49,50], etc.) with improved properties, and the process has been widely adopted in the industrial sectors [35,51,52]. During the SLM process, the local melting of powders occurs due to the defined laser irradiation resulting in a shallow and narrow melt pool [53]. The shallow and narrow melt pool results in a refined microstructure due to the high cooling rates (104 to 106 K/s) offered during solidification [33,42,54]. In addition, the solidification rate and the morphology of the microstructure depend on the position/location of the melt pool, and the cooling rate along the melt pool is not constant [33]. Such solidification conditions existing in the melt pool will lead to anisotropy in the microstructure as a function of length scales [55,56]. As a result, the mechanical behavior of SLM alloys tends to be significantly different from that of their traditionally manufactured counterparts [24,36,57]. It is also very important to note that process parameters during the SLM process play vital roles in dictating the microstructure and, in turn, its properties. The energy imparted to the material is a function of laser power, laser scan speed, hatch distance, and layer thickness [58,59,60]. In addition, the use of the laser in a continuous or pulsed form also affects the fabrication process [41]. Recently, laser modulation has been introduced, based on which people can precisely modulate the laser parameters within a single pulse to finely define their microstructure [37,38]. In addition, powder-bed preheating, preheating through laser, laser prescanning, laser remelting, etc., can significantly influence the fabrication of parts [39,40,41,61,62,63].



SLM-processed materials exhibit better corrosion resistance, and their corrosion behavior depends on the crystal planes and grain size [64,65,66,67]. Recently, 06Cr15Ni4CuMo marine-grade steel has been developed for marine applications such as compressors, ice breakers, heavy-duty propeller blades, etc. [68,69,70]. Limited research has been conducted on the fabrication of 06Cr15Ni4CuMo steel using AM. Only Ruslan et al. [71] reported the fabrication of 06Cr15Ni4CuMo steel via direct laser deposition (DLD), where the authors analyzed the mechanical properties of the 06Cr15Ni4CuMo steel after heat treatment. Since there are not many reports that deal with a novel material such as 06Cr15Ni4CuMo steel processed via LPBF/SLM process, and limited literature is available on their microstructure and properties, the present work aimed to explore the microstructure of 06Cr15Ni4CuMo steel fabricated via SLM and to study their properties in as-prepared conditions for marine applications. Detailed microstructural characterization was carried out including grain orientation and texture with electron backscatter diffraction (EBSD) and orientation imaging microscopy (OIM) techniques. In addition, potentiodynamic polarization tests were performed at room temperature in seawater to investigate their corrosion behavior.




2. Materials and Methods


SLM-processed 06Cr15Ni4CuMo and wrought 410 alloys were chosen for this study. The 06Cr15Ni4CuMo powder originates from SeferaM LLC, Chelyabinsk, Russia, and is made according to the Russian standards, namely the GOST 977-88 standard [72]. The morphology of the powder (spherical morphology), the existing phases (martensitic phase), and the EDS (JEOL Ltd., Tokyo, Japan) compositional analysis of the powder are shown in Figure 1. SLM samples (size: diameter—Φ10 mm and length—25 mm) were fabricated with a layer thickness of 25 µm on a selective laser melting device (Realizer SLM 50, Borchen, Germany ), using a gas-atomized powder with 33 µm particle size at 96 W laser power, a hatch distance of 120 µm, exposure time of 25 µs, and a point distance of 25 µm (scanning speed: 1000 mm/s). The hatch direction between the layers was maintained the same. The entire process was carried out under a nitrogen atmosphere to avoid possible oxidation during the SLM process. Samples according to ASTM E8 (non-standard) dimensions were used for this study. The chemical composition was evaluated using optical emission spectroscopy (OES) with Spectro (POES, Model No. PMI Master Smart, Serial No. 5770096, Hitachi, Uedem, Germany). The OES chemical composition results are tabulated in Table 1. The density of the samples was measured at ambient conditions using the Archimedes method (ASTM B962). Structural characterization was performed using an X-ray diffraction unit (Rigaku Ultima IV, Rigaku, Neu-Isenburg, Germany) with Cu–Kα radiation (1.546 Å) operated at 30 mA and 40 kV. All the diffractograms were recorded in the 2Ɵ range: 20° to 140° with a step size of 0.05°at a scanning rate of 1°/min. The lattice strain, average crystallite size, and dislocation density were calculated from the X-ray diffractograms [61,62,63]. Samples were metallographically polished to obtain a scratch-free surface. The specimens were then chemically etched using 33 mL HCl + 33 mL ethanol + 33 mL water + 1.5 g CuCl2, for 30 s. Scanning electron microscopy (FESEM, Gemini300, ZEISS, Peine, Germany) was applied to observe the microstructural features and corrosion surface.



The specimen was characterized for its grain morphology and orientation by means of an electron back-scattered diffraction (EBSD) technique using an FEI Nova Nano SEM450 instrument (FEI, Stuttgart, Germany) equipped with a TSL OIM data processing software (V8, EDAX, NewYork, NY, USA) system operated at an accelerated voltage of 20 kV, with a step size of 0.5 µm, after electropolishing in a solution of perchloric acid and ethanol (2:8 vol/vol) at a DC voltage of 16 V for 15 s. Vickers microhardness measurements (Hv) were conducted using a Shimadzu digital microhardness tester (Scimadzu, Duisburg, Germany) with a load of 0.5 and a dwell time of 10 s. The microhardness values reported in this manuscript are average values of six test results. Tensile tests were performed on the ASTM E8 miniature samples (along the building direction) using a Tinius Olsen, H25KL testing machine (Tinius Olsen, Surrey, UK) with a strain rate of 5 × 10−3/s. An ACM Gill AC potentiostat was used to conduct the potentiodynamic polarization test at room temperature with a three-electrode electrochemical system in seawater with a scan rate of 100 mV/min on an exposed area of 0.5 cm2 (which was polished according to standards).




3. Results


3.1. Chemical Composition and Density


The chemical compositions of the SLM-processed 06Cr15Ni4CuMo and wrought 410 steel are listed in Table 1. The chemical analysis of these samples showed that the material contained a high amount of Cr (13.98%), leading to a density of 7.6 g/cm3, which is typical for martensitic steel. The relative density of the SLM-processed 06Cr15Ni4CuMo sample was found to be around 98.5%. On the other hand, the wrought 410 steel had 12.10% Cr, which was nearly 1.88% less than that in the 06Cr15Ni4CuMo steel. However, the compositions were very similar, leading to a single-phased martensitic structure; hence, wrought 410 steel can be taken as a counterpart of SLM-processed 06Cr15Ni4CuMo steel.




3.2. Phase Analysis


The XRD pattern of the sample is shown in Figure 2a. Both the patterns, the SLM as-prepared 06Cr15Ni4CuMo and wrought 410 steel, exhibited the same diffraction peaks corresponding to the martensite phase (α’). Moreover, the patterns suggested that both the samples had only one phase (martensite), and peaks corresponding to any other phase were absent. The lattice strain and crystallite size calculated by the Williamson–Hall peak technique from the X-ray diffraction profile analysis (XRDLPA) are furnished in Table 2. As seen, the crystallite size was found to be 16.55 nm, and the lattice strain was observed to be 0.2065 for the SLM-processed 06Cr15Ni4CuMo martensitic steel. The dislocation density was calculated to be around 5 × 1014/m2, which is one order of magnitude higher than most cast steel products [73,74,75]. On the other hand, the wrought 410 steel showed an increased crystallite size of 36.55 nm and an increased lattice strain of 0.2031 due to the cold working process involved. Even after such a cold working process, the dislocation density for the 410 steel (9 × 1013 m/m3) was less than that of the SLM material. This suggests that the extreme cooling rates observed during SLM will have distinct influences on the crystallite size and internal defects of the material. Nevertheless, the internal strain values in the SLM-processed 06Cr15Ni4CuMo and wrought 410 steel were found to be similar. The EDS analysis of the SLM sample in Figure 2b shows no significant difference in the composition of the parts, compared with the EDS composition of the powder furnished in Figure 1d. The EDS results suggested that no foreign particles/phases/contamination were diffused into the parts during the SLM fabrication process.




3.3. Microstructure


The SEM micrographs of both SLM-processed 06Cr15Ni4CuMo and wrought 410 steel are shown in Figure 3. The SLM-processed 06Cr15Ni4CuMo steel exhibited a single-phase martensitic structure, typical for the SLM process. The rapid quenching of the molten metal, due to localized laser melting during SLM, led to the formation of parallel martensitic laths bundling within a grain. However, no retained austenite was found from the microstructure, corroborating the XRD results. On the other hand, the wrought 410 steel microstructure showed a completely different microstructural morphology. It comprised martensite and some amount of ferrite. The presence of ferrite was absent in the XRD patterns, suggesting that it is present below the deductible limits of the XRD process. Furthermore, 410 steel is a cold-rolled steel product formed under an annealed condition to relieve the internal stresses generated during cold rolling and, hence, showed a distinctly different microstructural morphology from that of the SLM sample.



The inverse pole figure maps shown in Figure 4a represent the grain orientation with reference to the crystal lattice for SLM-processed 06Cr15Ni4CuMo, suggesting the presence of a fine-grained microstructure (670 ± 6 nm) with clear grain boundaries (Figure 4e). The grains were preferentially orientated along the (111) direction, suggesting the presence of texture, which can be seen by the blue color dominance in the orientation map. The pole figures shown in Figure 4c confirmed the development of (111) fiber texture, with peak intensities no less than 1.68 times the multiples of uniform density (MUD). The grain boundary map with color gradation obtained with EBSD analysis shown in Figure 4b suggested the presence of a large volume fraction of high-angle grain boundaries and less than 20% volume fraction of low-angle grain boundaries (Figure 4d).




3.4. Mechanical Properties


The mechanical properties of the sample were determined by hardness and room temperature tensile tests. The hardness of the 06Cr15Ni4CuMo steel sample was observed to be 465 ± 10 HV0.5, and for wrought 410 stainless steel, the Vickers microhardness was found to be 340 ± 9 HV0.5. It can be observed that the SLM-processed 06Cr15Ni4CuMo steel had increased hardness, compared with the wrought counterpart [71], like most SLM-processed samples showing improved properties [30,52,76]. The room-temperature tensile properties of the SLM-processed 06Cr15Ni4CuMo steel showed a yield strength (YS) of 688 MPa, ultimate tensile strength (UTS) of 1137 MPa, and ductility of 28%. The wrought equivalent alloy showed a YS of 230 ± 10 MPa, with 558 ± 20 MPa UTS and 62 ± 5% ductility (as shown in Figure 5). The results demonstrated that the high cooling rates observed during the SLM process led to fine microstructures (fine martensitic laths) and, hence, improved strength, at least twice that of the wrought counterpart. The results are like the results of most SLM-processed materials, namely the fine/unique SLM microstructures lead to improved properties compared with their counterparts produced by conventional methods [57,77,78,79,80,81].



In addition, DED-processed 06Cr15Ni4CuMo steel showed a hardness value of 340 HV as opposed to the superior hardness of the SLM-processed material (465 HV). However, unlike the hardness results, the tensile properties did not vary significantly between samples produced with DED and SLM [71]. When processed with DED, the 06Cr15Ni4CuMo steel showed a YS of 792 MPa and a UTS of 1088 MPa with 8% ductility, compared with the SLM counterpart, which offered improved UTS (1137 MPa) and ductility (28%) and a marginally reduced YS (688 MPa) [71]. The fracture surface of the SLM-processed sample showed the presence of dimples, corroborating ductility. In addition, pores were observed in these samples (Figure 5b,c), which hampered their ductility and strength. The presence of such defects in the SLM-processed samples led to premature failure in these samples.



In the case of the SLM-processed material, the strength of the alloy increased because of the following factors: (1) a refined microstructure (crystallite size—16.55 nm); (2) the presence of a single martensitic phase; (3) an increased volume of dislocation density (5 × 1014 m/m3), which was one or two orders of magnitude higher than the values observed for the wrought specimens; and (4) solid solution strengthening [4,14,30,32,82,83,84]. It is also for the very same reason that the increase in the volume of dislocations (dislocation density) leaves little room for the additional generation of dislocation and dislocation movement during mechanical loading. Since the dislocation movement was severely obstructed, and the generation of new dislocations was restricted, the material had little ductility. It may also be argued in a way that the activation volume for this type of SLM-processed material is >100 × 103, thus leading to bulk forest hardening and little plasticity [85,86,87]. In addition, these additively manufacturing materials tend to fail prematurely due to the presence of both internal and external defects, which also hampers their deformability [36]. Hence, the SLM-processed material showed improved strength at the expense of its plasticity.




3.5. Corrosion Studies


The Tafel curve depicted in Figure 6 was used to assess the corrosion behavior of the SLM-processed 06Cr15Ni4CuMo and wrought 410 steel samples. Several parameters, namely corrosion potential (Ecorr), corrosion current (Icorr), and pitting potential (Epit), were recorded with the help of corrosion analysis software integrated into the ACM Gill AC electrochemical unit. Corrosion comparative studies between 06Cr15Ni4CuMo AM alloy and wrought 410 martensitic stainless steel are tabulated in Table 3. Faraday’s law in terms of penetration rate was applied to calculate the corrosion rate and found to be 0.025 mmpy for the SLM-processed 06Cr15Ni4CuMo and 0.030 mmpy for the wrought 410 martensitic stainless steel. The corrosion surface analyzed via SEM showed the presence of localized corrosion pits (Figure 6).



Localized corrosion attack on the metal surface due to breaking of the passive film and the corrosion pits found were initiated on the sample surface at ~147 V. The largest pit with 75 µm diameter and 409 µm2 area was observed for the SLM-processed 06Cr15Ni4CuMo. For the wrought 410 steel, corrosion pits were formed at around 48 V, the pit size was measured to be 95 µm, and its equivalent area was found to be 2015 µm2. The SLM-processed 06Cr15Ni4CuMo sample exhibited better corrosion resistance than the wrought 410 steel due to higher Ecorr and lower Icorr values [88].





4. Discussion


The chemical compositions of both 06Cr15Ni4CuMn and 410 steel revealed a relatively single-phase martensitic microstructure. The morphology of the microstructure observed in these two samples was different due to the differences in their processing conditions. The corrosion behavior in both these materials was rather similar, leading to a localized corrosion attack on the metal surface due to the breaking of the passive film and the observed corrosion pits, which were initiated on the sample’s surface at ~147 V and ~48 V, respectively, for SLM-processed 06Cr15Ni4CuMn and wrought 410 steel. The largest pit with 75 µm diameter and 409 µm2 area was observed for the SLM-processed 06Cr15Ni4CuMo steel, and for wrought 410 steel corrosion, a pit diameter of 95 µm with its equivalent area of 2015 µm2 was observed. The SLM-processed 06Cr15Ni4CuMo sample exhibited better corrosion resistance than the wrought 410 steel due to higher Ecorr and lower Icorr values [88]. Generally, the presence of Cr in steel imparts corrosion resistance by forming a stable oxide layer, and in these two samples, the Cr content was ~13% for SLM-processed 06Cr15Ni4CuMo and ~12% for wrought 410 martensitic stainless steel, suggesting good corrosion resistance. In addition, the addition of Ni and Mo improved its resistance to attack by NaCl solution. Additionally, a comparison of the chemical composition related to this material can be made with an analog of CA6NM martensitic stainless steel by Ruslan et al. [71].



The lath martensite formed is of body-centered cubic phase (BCC) unlike the body-centered tetragonal (BCT) phase observed for the conventional lath martensite. This is due to its lower carbon content and lack of lattice distortion. The SLM process, which is associated with repeated heating and cooling cycles due to frequent reheating and remelting of subsequent layers [89], leads to a certain degree of internal strain but not adequate lattice distortion to form BCT martensite. The mechanical properties are strongly dependent on the microstructure, and the SLM sample undergoes in situ tempering due to repeated heating and cooling cycles. During the process, the first layer is solidified, and when the second layer is formed, due to conduction, the previous layer is heated, resulting in tempering. Similarly, the second layer is also tempered when the third layer is formed, and this process continues [90,91]. The observed α’ microstructure is like the one reported by Mirakboli et al. [70], in which the low carbon martensite was obtained during SLM, and the XRD pattern strengthens the argument of the likely formation of low-carbon martensite during the laser melting of martensitic stainless steel [92].



Any grain boundaries having a misorientation angle between 2° and 15° are known as low-angle grain boundaries (LAGBs). Low-angle grain boundaries result in the formation of martensitic laths, which separate dislocation forests and low-density dislocations. They act as stopping points for dislocation movements, and they become sessile at these points. Any misorientation angles greater than 15° are known as high-angle grain boundaries (HAGBs), denoted in green and blue lines, respectively, on the map. A volume of 71% HAGB and only less than 20% LAGB were observed (Figure 4). The HAGB distributed the plastic strain evenly through the material, resulting in superior strength. Additionally, in high-angle misorientation, the number of active slip systems decreased, resulting in the slower movement of dislocations and reduction in plastic deformation, and finally increased strength [93]. The texture of the fabricated samples depends on the temperature, temperature gradient (G), and the cooling rate (R) observed during the SLM process [94]. Fine martensitic crystals were formed due to higher cooling rates, and the obtained crystallographic structures were oriented in the (110) <111> direction, which is in line with the observations of Khodabakshi et al. [95], in a study in which the crystallographic planes of 410 stainless steel were oriented in similar directions. The martensite formed due to a higher cooling rate corroborated the higher hardness observed for the SLM-fabricated steel sample. Along with higher cooling rates, the concentration of alloying elements such as Cr, Ni, and Mo increases the hardenability, and this also contributes to higher hardness values [96]. Higher YS and UTS values were observed because of the presence of lath martensite in the microstructure and due to the presence of a larger amount (71%) of HAGB. The higher the volume of HAGB, the more the grain boundary areas, which, in turn, impede the dislocation movement, finally resulting in an increase in the strength of the material [97].



The thermodynamic tendency of forming a passivation layer was higher for the 410 steel samples, as ECorr shifted toward a more cathodic (−267.34 mV) potential than that of the SLM sample (−254.22 mV). The rate of corrosion was also higher in wrought 410 stainless steel than in the SLM-fabricated 06Cr15Ni4CuMn sample, which can be explained by the Ecorr value. In general, pitting potential is the point at which pitting corrosion starts and below which the pits will not initiate. The SLM sample exhibited 3 times higher pitting potential than the 410 stainless steel sample, indicating higher resistance to pitting corrosion in the SLM sample than in the 410 steel counterparts. This could be attributed to the stable passive layer formed on its surface. Heavy alloying elements such as Cr, Ni, Cu, and Mo in SLM alloys may form complex passive oxide layers, which, in turn, protect the bulk material. Moreover, the SLM process, because of its melting route, may enable the formation of a more complex oxide passive layer on the material’s surface than on the wrought 410 stainless steel. Until the stable passive layer protects the bulk material, pitting resistance can be maintained, and it is conveyed by passivation potential, below which the metal/alloy retains its passivity. Above the passivation potential, pits do not propagate, thus providing pitting resistance by protecting the bulk material [98,99]. As observed in Figure 7, the size of the pits was higher for 410 steel, and this is due to having lower pitting corrosion resistance than the SLM-processed 06Cr15Ni4CuMo alloy. Pitting resistance depends on the Cr% and the alloy with elements such as Ni and Mo. Since 06Cr15Ni4CuMo has higher alloy content than wrought 410 martensitic stainless steel, it has higher pitting resistance [100,101].




5. Conclusions


In this study, the 06Cr15Ni4CuMo alloy was successfully processed using SLM. The 06Cr15Ni4CuMo alloy showed a presence of BCC martensite microstructure. For comparison, wrought 410 martensitic stainless steel was employed, which also showed a BCC martensitic structure, similar to the 06Cr15Ni4CuMo alloy. Due to the high cooling rates observed during the SLM process, the SLM-processed 06Cr15Ni4CuMo showed improved hardness, YS, and UTS over the wrought 410 steel but at the expense of ductility. The potentiodynamic polarization curves confirmed better corrosion resistance in the SLM-processed martensitic stainless steel than in the wrought 410 martensitic stainless steel. Corrosion rates were observed to be 0.025 mmpy and 0.030 mmpy for the SLM-processed 06Cr15Ni4CuMo and wrought 410 martensitic stainless steel, respectively. The tendency for pitting was higher in the wrought 410 martensitic stainless steel than in the SLM-processed stainless steel. These results suggest that the 06Cr15Ni4CuMo alloy fabricated via SLM can be successfully employed for parts in marine applications.
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Figure 1. (a,b) Scanning electron microscopy images of the 06Cr15Ni4CuMo powder, (c) structural characterization by X-ray diffraction, and (d) energy-dispersive spectroscopy analysis showing the chemical composition of the powder. 
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Figure 2. (a) X-ray diffraction patterns of SLM-processed 06Cr15Ni4CuMo and wrought 410 steel and (b) energy-dispersive spectroscopy data of the SLM-processed 06Cr15Ni4CuMo material. 






Figure 2. (a) X-ray diffraction patterns of SLM-processed 06Cr15Ni4CuMo and wrought 410 steel and (b) energy-dispersive spectroscopy data of the SLM-processed 06Cr15Ni4CuMo material.



[image: Metals 12 01303 g002]







[image: Metals 12 01303 g003 550] 





Figure 3. Scanning electron images of (a) SLM as-prepared 06Cr15Ni4CuMo steel and (b) wrought 410 martensitic stainless steel in annealed condition. 
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Figure 4. The electron back-scattered diffraction (EBSD) analysis of the SLM-processed 06Cr15Ni4CuMo martensitic steel: (a) inverse pole figure (IPF) map; (b) grain boundary map; (c) pole figures; (d) misorientation angle plot; (e) grain size distribution plot. 
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Figure 5. (a) True stress–strain curves for the SLM-fabricated 06Cr15Ni4CuMo and wrought 410 martensitic steel samples; (b,c) fracture surface observed in the SLM-fabricated 06Cr15Ni4CuMo sample. 
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Figure 6. Potentiodynamic polarization curves for the SLM-fabricated 06Cr15Ni4CuMo and wrought 410 martensitic steel samples. 
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Figure 7. The scanning electron microscopy images of the (a) SLM-processed 06Cr15Ni4CuMo (b) wrought 410 stainless steel show the presence of localized corrosion pits. 
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Table 1. Chemical composition (wt.%) of SLM-processed 06Cr15Ni4CuMo and 410 steel.
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	Alloy
	C
	Si
	Mn
	Cr
	Mo
	Ni
	Cu
	Fe





	06Cr15Ni4CuMo
	0.03
	0.30
	0.87
	13.98
	0.36
	3.97
	0.80
	Balance



	410 steel
	0.06
	0.61
	0.24
	12.10
	0.24
	0.15
	0.05
	Balance
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Table 2. Table showing the crystallite size, dislocation density, and lattice strain calculated from the X-ray diffraction line profile analysis for both SLM-processed 06Cr15Ni4CuMo and wrought 410 alloys.
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	Values
	06Cr15Ni4CuMo
	410 Steel





	Crystallite size
	16.55 nm
	36.55 nm



	Lattice Strain
	0.2065
	0.2031



	Dislocation density
	5 × 1014 m/m3
	9 × 1013 m/m3
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Table 3. Corrosion rate comparison between 06Cr15Ni4CuMo steel and 410 stainless steel.
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	Values
	06Cr15Ni4CuMo Steel (SLM)
	410 Steel





	ECorr (mV)
	−254.2
	−267.3



	ICorr (mA/cm2)
	−2.31
	−2.68



	Epit
	147.08
	48.28



	Corrosion rate (mmpy)
	0.025
	0.030
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