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Abstract: The design and optimization of a sinter mixture moisture controlling system usually require
complex process mechanisms and time-consuming field experimental simulations. Based on BP
neural networks, a new KPCA-GA optimization method is proposed to predict the mixture moisture
content sequential values with time more accurately so as to derive the optimal water addition
to meet industrial requirements. Firstly, the normalized input variables affecting the output were
dimensionalized using kernel principal component analysis (KPCA), and the contribution rates of the
factors affecting the water content were analyzed. Then, a BP neural network model was established.
In order to get rid of the randomness of the initial threshold and weights on the prediction accuracy
of the model, a genetic algorithm is proposed to preferentially find the optimal initial threshold and
weights for the model. Then, statistical indicators, such as the root mean square error, were used to
evaluate the fit and prediction accuracy of the training and test data sets, respectively. The available
experimental data show that the KPCA-GA model has high fitting and prediction accuracy, and the
method has significant advantages over traditional neural network modeling methods when dealing
with data sets with complex nonlinear characteristics, such as those from the sintering process.

Keywords: sintering; moisture content prediction; KPCA; GA-BP hybrid prediction model

1. Introduction

Since the blast furnace ironmaking industry is nearly saturated, sinter ores are required
to possess physical and metallurgical characteristics as well as gas permeability for efficient
blast furnace operation. The development trend of the sintering production process has
changed to the realization of an intelligent human–machine combination to improve the
level of sintering concentrate while reducing the cost of sintered ore. The moisture content
of the mixture plays a role in the sintering process, including granulation, heating, and
combustion. A moisture content that is too high or too low can have a detrimental effect,
leading to poor mixing and granulation and affecting the permeability of the mixture. Ulti-
mately, the sintered ore is under- or over-sintered, reducing product quality and yield [1].
To be able to govern and control the production process in real time and with consistency,
the relevant parameters and control indicators need to be predicted so that the moisture
content of the mixture is kept within a certain range during the sintering process. The
moisture content of the mix depends on the moisture content of the raw materials and the
amount of water added. In addition, other factors, such as temperature and evaporation
rate, may have a slight effect on the moisture content, so moisture prediction and control
under complex working conditions are demanding and significant. Current plants mainly
rely on workers to add water manually based on manual estimates, and the moisture
content often varies widely. Therefore, considering the limitations of empirical models, it is
critical to developing a superior moisture prediction model.
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The optimal design of a moisture control system for a sintering platform using con-
ventional predictive control techniques is very complex. The literature [2] uses fuzzy logic
inference to rectify the controller parameters, which need to be adjusted in real time accord-
ing to the structural characteristics of the sintering furnace and the control performance
requirements to stabilize the sinter mix moisture. With the application of moisture meters
developed based on infrared, microwave, and neutron principles in sintering plants, more
refined data have led to the study of various optimization methods for sintering processes.
For example, Wu et al. added many independent variables, such as material layer thickness
and combustion rate, in the process of modeling the temperature field and subsequently
advanced a three-step optimization strategy to optimize the coke ratio [3]. Meanwhile,
Liu et al. emphasized the porous media heat transfer model in the process of building the
sintering temperature field model and used a particle swarm optimization algorithm to
solve the problem of parameter matching [4–6].

Artificial neural networks have also been applied in the field of sintered moisture
prediction due to their advantages such as classification recognition, optimal computation,
and nonlinear mapping. In the literature [7], an exogenous nonlinear autoregressive
(NARX)-based model was proposed to predict the target time series considering external
past and present values to keep the moisture values at an acceptable accuracy, which
can be further validated. There is also still room for improvement in reducing the model
complexity and improving its accuracy. The limitation of the neural network model is the
overfitting problem, which may lead to poor prediction accuracy [8,9], so an attempt was
made to combine various algorithms with neural networks. The genetic-based BP algorithm
optimization method is less prone to falling into local minima, and the trained network
performs well in terms of stability and has greater generalization ability [10]. Kernel
principal component analysis (KPCA) is an effective nonlinear application technique to
obtain rich information on the working conditions in the sintering process [11,12]. In
recent years, in data-driven process monitoring applications, Jingxin Zhang et al. proposed
a hybrid probabilistic principal component analysis algorithm based on clustering [13],
which replaces the traditional dimensionality reduction of principal component analysis
with singular value decomposition and reduces the computational complexity, making
the experimental data more intensive. The combination of the KPCA algorithm and
neural networks has been successfully applied in many fields, such as brain MR image
classification [14], autonomous driving pattern feature extraction [15,16], and complex
industrial variable prediction and fault identification [17–19].

For the modeling and prediction of complex processes similar to sintering, many
researchers have combined meta-heuristic optimizers with ML models, such as the Gray
Wolf Optimizer [20,21], Political Optimizer, and Moth Flame Optimizer [22–24]. In terms of
performance, the optimized ML model has higher prediction accuracy, while the black-box
model avoids solving various link parameters in the process and reduces the difficulty of
the calculation. This indicates that artificial intelligence provides novel solutions for heavy
industries such as material processing and steel manufacturing.

The main contributions of this paper are summarized as follows:

1. A new hybrid intelligence algorithm was developed to predict the moisture content
of the mix in real time during the sintering process.

2. Analysis and modeling of the dynamic, non-linear, and other characteristics of the
predicted object were performed for the two-stage mixing and water addition method
commonly used in sintering plants.

3. The GA optimization algorithm was used to reduce the shortcomings of BP neural
networks, such as slow convergence, a long training time, and the tendency to fall
into local minima, comparing the effect before and after optimization to illustrate
its necessity.

The results obtained from this method can be used as a prerequisite for the next step
of mixture moisture control, which is of practical importance in the sintering industry.
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2. Sintering Mixing and Water Addition Process Mechanism
2.1. Material Conservation Moisture Content Model

The sintering plant mostly adopts the two-stage mixing arrangement, and the arrange-
ment diagram is shown in Figure 1. Raw material preparation, ignition, and cooling are
the three main stages of iron ore sintering. A sinter mixture made of iron ore fines, fluxes,
solid fuels such as coke breeze, and return fines from the sinter plant is prepared before the
sintering process starts. Then, different amounts of water are added to the primary and
secondary mixers to achieve efficient mixing and granulation (18–22 t; 2–3 t). After laying
out the mixture on the sinter machine, several burners are used to ignite the coke particles
at the surface of the sinter bed. A series of oxidative exothermic reactions occur between
different raw materials at different temperature stages.

Figure 1. Sintering process layout diagram.

The principle of material conservation is used to obtain the formula for calculating the
moisture content of the mixture, as shown in Equation (1):

M =
∑n

i=1 KiKi + U1 + U2

∑n
i=1 Wi + U1 + U2

(1)

where M is the moisture content of the mix, Ki and Wi are the moisture content and mass,
respectively, of Sinter Mixture Component I, while n is the total number of sinter mixture
components. U1 and U2 denote the mass of water added to the primary and secondary
mixers, respectively. The expected value of the total water addition U is:

U = U1 + U2 =
1

1−M

n

∑
i=1

(M− Ki)Wi (2)

A neural network model was chosen since the moisture content Ki of the raw material
in the mechanism model equation was difficult to determine directly and Ki will fluctuate
with different batches of material.

2.2. Prediction Problem Description

The mixing process of sintered mixes is divided into two stages: primary mixing
and secondary mixing. The traditional manual water addition operation or feed-forward
moisture control is difficult to meet changes in the water content due to fluctuations
in raw materials and other factors, resulting in an uncertain time-varying and lagging
minute system.
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There is an interval of about 8 min between the addition of water to the primary
mixing and the moisture meter measurement; therefore, a single-point mix water content
prediction is defined as a kind of step-ahead time series prediction problem. Assuming
that X1:k = {x1, x2, . . . , xk} denotes the amount of material in the k bins, in a multivariate
prediction problem, the variables at time t in the future denote the mixture water content
using the known variable matrix X in the past t− αi moments:

yt = f
(

Xt−α1
1 , Xt−α2

2 , . . . , Xt−αM
M | θ

)
(3)

where yt denotes the observed value at the prediction point at time t, f is a function of the
prediction model, θ is a matrix of model parameters, and αi denotes the delay time of the
ith bin arriving at the observation point. Since the bins are arranged in different positions
and the time difference between the spare bins is neglected, the time difference between
the total amount of water added U to the moisture meter for the two mixing processes is
considered to be β. Then, the predicted value Y at the moisture meter detection can be
simplified as:

Yt = F
(

Xt−α, Ut−β | θ
)

(4)

2.3. Factors Influencing the Moisture Content of the Mixture

The sintered mix moisture content is mainly affected by two factors. The system
factors include water addition fluctuation, mixing efficiency of the mixing machine, system
drum coefficient, ambient temperature and humidity, etc. The raw material factors include
material proportioning, material volume fluctuation, and the fluctuating moisture content
of raw materials. In this paper, we focus on the analysis of the relationship between
the fluctuation of water addition and raw material factors under the condition of certain
environmental temperature and humidity and mixing efficiency. Figure 2 shows the
correlation fraction between the mass of each mix and the total amount of water added.
The value of each intersection indicates the Pearson coefficient between the two different
factors named at the bottom left of the graph.

Figure 2. Correlations between moisture contents of raw materials.

According to the correlation coefficients between the water content of the mixture and
each raw material, it can be seen that the water content has the highest correlation with
limestone at 0.76, and quicklime has a weak negative correlation with water content WT
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−0.46. The correlation between raw materials varies from −0.55 to 0.76, which indicates
the redundant correlation information between different raw materials, while we selected
the four variables with the highest correlation with the water content of the mixture as the
main influencing factors, which were limestone, iron ore concentrate, total water addition,
and dolomite.

3. Moisture Prediction Model
3.1. KPCA

KPCA is a nonlinear extension algorithm of PCA, and its basic principle is that the
input data are projected into a high-dimensional feature space, and then principal element
analysis is performed on the mapped data in the high-dimensional feature space [25].
The projection of the data on the nonlinear principal elements is then computed in the
high-dimensional feature space so as to extract the data features. X = {xi | xi ∈ Rm},
i = 1, 2, . . . , n, is the sample set of data affecting the moisture content, n denotes the
number of samples, m denotes the number of sample dimensions, and the data were first
mapped from the original input space to the high-dimensional feature space F by the
nonlinear mapping φ(x): RN → F . The sintering data in the high-dimensional feature
space F satisfied the equation after normalization:

M

∑
i=1

φ(xi) = 0 (5)

Thus, the covariance matrix C for the M-sample estimation is calculated in F as follows:

CF =
1
M

M

∑
i=1

φ(xi)φ(xi)
T (6)

The characteristic decomposition of covariance matrix C:

λv = CFv (7)

where λ is the eigenvalue of the covariance matrix λ ≥ 0, and v is the covariance of the
eigenvectors corresponding to the covariance matrix. Multiplying Equation (7) simultane-
ously by φ(xi) obtains the following:

λφ(xi)v = φ(xi)CFv (8)

The eigenvector v corresponding to the non-zero eigenvalues can be obtained from
Equation (8):

v =
n

∑
i=1

αiφ(xi) (9)

By introducing the kernel matrix K, we can consider the equivalence in Equation (9):

MλKα = K2α (10)

where the kernel matrix K = φ(xi)·φ(xi)
T , and α denotes the column vector in v.

The obtained eigenvalues are arranged in descending order, the corresponding eigen-
vector units are orthogonalized, and the first t principal elements are extracted based on the
contribution rate of the principal elements. Finally, the projection of the kernel matrix on
the partial eigenvectors is obtained. The above conclusion is based on the ∑n

i=1 φ(xi) = 0
case, which does not necessarily hold in the real case and requires a correction to the kernel
matrix Kij in Equation (11):

K′ij = Kij − IKij − Kij I + IKij I (11)
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where I is an n× n matrix with 1/n elements. Following the KPCA procedure, the duplicate
data in the initial sintering data are removed, resulting in a solid database for the creation
of data-driven models.

3.2. Improved Genetic Algorithm for Multilayer Neural Networks

A BP neural network is a “universal model and error correction function” that can
accurately express a nonlinear ingredient mixing system by establishing a BP neural
network, effectively solving the problems of a mathematical model of mixture moisture
content. Depending on the training results and expected results, error analysis is carried
out, and then the weights and thresholds are changed to produce a model that is compatible
with the anticipated outcomes. In forward propagation, the input samples are passed from
the input layer and processed by each implicit layer to the output layer [25]. If the desired
output is not obtained in the output layer, it is transferred to the back-propagation stage
of the error. The back-propagation of the error is done by back-propagating the output
error in some form through the hidden layer to the input layer and spreading the error to
all units in each layer so as to obtain the error increment of each unit, thus correcting the
weights and thresholds of each unit. The learning and training process of the network is
repeated, and this process is carried out until the output error of the network is reduced to
an acceptable degree or until the predetermined learning times are reached. In the actual
problem of sintering, the selection of the nodes of the hidden layer is determined on the
basis of an empirical formula. The network topology of the sinter mixture moisture content
prediction system proposed in this paper is shown in Figure 3. The three-layer BP neural
network was selected, the sigmoid function was chosen as the activation function, and the
learning rule of the fastest descent method was used. The BP neural network input was
chosen as the principal element after kernel principal component analysis, and the output
was the moisture content of the controlled object.

Figure 3. Basic structure of BPNN.

In Figure 3, wij, wjk denote the weights between the input and implicit layers and
the implicit and output layers, respectively, and xn and ym denote the input and output,
respectively. After iterative training and adjustment, the optimal weights and thresholds
were found later to fit the functional relationship between the sintered data. However, the
straightforward BP network topology is also susceptible to local minima due to the random
selection of weights and thresholds.

Genetic algorithms are a class of stochastic search algorithms that are inspired by the
principles of evolutionary theory and genetics and are applicable to adaptive probabilistic
optimization algorithms for complex system optimization [26]. The basic idea of a genetic
algorithm is to eliminate the poorly adaptive individuals in an initial population through
selection, crossover, mutation, and other operations, and retain the highly adaptive individ-
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uals to finally filter to get the optimal solution. The main steps of the algorithm include (1)
selection, which is achieved by random computer generation or the roulette wheel method;
(2) crossover, which is an important means to generate new individuals; (3) mutation,
which changes the genes of individuals with a certain probability. The above three steps can
realize the search for the optimal solution in the global range, thus compensating for the
defect that BP neural networks easily fall into local minima. The design of the parameters of
the sintered water content GABP network considers the following three aspects, which are
the coding length of chromosomes; the population size and the maximum genetic number;
and the fitness function. In this study, the reciprocal of the BP neural network objective
function was chosen as the fitness function. In summary, the water content prediction
process based on the KPCA-GABP algorithm is shown in Figure 4.

Figure 4. Moisture prediction strategy steps.

4. Simulation Results and Analysis
4.1. KPCA Data Pre-Processing

The data in this paper were obtained from the online production data of a metal
materials sintering plant company from 10 to 19 October 2020, with microwave conductivity
moisture meter sensors collected every 20 s and a total of 38,809 sets of samples in the data
set, some of which are shown in Table 1. Eleven parameters were selected as the input
variables, as described in Section 2.3 above, namely blended ore (MIX), iron ore concentrate
(IRON), coke (Coke), pulverized coal (COAL), limestone (LIMES), dolomite (DOLO), return
sinter fines (RE), dust (DUST), quicklime (QL), and first-mix water addition and second-mix
water addition (ADD). We organized the new data set obtained by merging the bin data
between the stored identical materials into a new matrix X, and matrix X was used to
generate the KPCA standard principal components, where X has 38,809 measurements and
11 variables. Figure 5 illustrates the sintering data input for KPCA-GABP.
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Table 1. Sample data overview.

No.
First

Moisture
Content (%)

Second
Moisture

Content (%)
Total Water
Added (t)

Blended
Ore (t)

Iron Ore
Concentrate (t) Dust (t) Quicklime (t) Date and Time

3529 7.62 7.34 15.89 390.96 110.85 10.89 29.58 18 October 2020
13:44

3530 7.56 7.34 16.04 390.31 109.68 10.78 29.84 18 October 2020
13:44

3531 7.62 7.21 15.92 380.49 108.22 9.99 29.06 18 October 2020
13:43

3532 7.62 7.34 16 399.17 108.34 9.24 29.14 18 October 2020
13:43

3533 7.69 7.47 15.97 378.95 105.96 9.11 28.75 18 October 2020
13:43

3534 7.49 7.22 16.03 399.05 112.44 9.54 28.82 18 October 2020
13:42

3535 7.62 7.41 15.9 375.54 108.33 9.66 28.87 18 October 2020
13:42

3536 7.56 7.02 15.99 389.96 112.8 10.59 28.43 18 October 2020
13:42

Figure 5. Sintering data input for KPCA-GABP.

In this study, a highly applicable Gaussian radial basis kernel function was used,
defined by Equation (12).

k(x, xi) = exp

(
−|x− xi|2

2σ2

)
(12)

where x is the sample data and xi is the centroid of the data. Before the data downscaling
procedure, the kernel parameter, which is a single variable in KPCA, needed to be defined.
The parameters in the KPCA method have a strong influence on the prediction effect, and
the KPCA parameters in this study were x = 7.5. Meanwhile, the parameter gamma in the
KernelPCA function is related to the number of features, which was set to 1/10 in this study.
Thus, the eight principal components were obtained in the order of their corresponding
variance contribution rates, as shown in Table 2. The first principal component is a linear
combination of all the variables with the largest variance, so it accounts for as many
variables as possible in the data. After this, the variance of each latter component is the
largest in turn, subject to the constraint of being orthogonal to the previous component. The
first seven principal components accounted for 93% of the cumulative variance. This shows
that to fully explain the variance, only the top eight major components need to be retained.



Metals 2022, 12, 1287 9 of 14

Table 2. KPCA.

Principal Components Variance Contribution
Rate (%)

Cumulative Contribution
Rate (%)

CP1 22.30 22.30
CP2 19.17 41.47
CP3 17.10 58.57
CP4 10.03 68.60
CP5 9.21 77.81
CP6 8.05 85.86
CP7 7.14 93
CP8 7.0 100

4.2. GA-BP Prediction Results

After performing the KPCA dimensionality reduction on the above experimental data,
the original inputs affecting the moisture content of the sinter mixture were replaced by
CP1 to CP8, from which the number of input layers of the network structure could be
determined as eight layers. In the training process of the neural network, 28,500 samples
from the plant data set were used as the training data set, 5700 samples as the validation
data set, and 5700 samples as the test set, according to the principle of randomness. The
initial number of nodes in the hidden layer was determined to be 10 according to the
empirical formula. Therefore, the network structure of the BPNN was determined to be
8-10-1, the weight value was 90, the threshold value was 11, and the coding length of the
genetic algorithm was 101. Through extensive experimental verification, the operating
parameters were set, the maximum number of iterations was 200, the learning rate was 0.3,
and the test error range was ±2%. The absolute value of the sum of the prediction errors of
the training data was taken as the individual fitness value, and the smaller the individual
fitness value, the better the individual is. Figure 6 shows a schematic diagram of the BP
neural network model training validation and the test sample data regression.

Figure 6. Training validation test sample regression schematic.
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In Figure 6, it can be seen that there is a gap between the predicted and target values
of the sample data, where the R value of the test set is 0.832, and the results show that
the error is about 10%, which is a poor fit. The accuracy of the prediction results did not
significantly improve as the computation time increased by adding more hidden layer
neurons. To further improve the model performance, the initial thresholds and weights
of the optimized object-BP neural network were used as the initial populations, and they
were computationally optimized using the GA toolbox that comes with MATLAB. The
parameter settings of the optimal genetic algorithm optimization model were selected
through repeated experiments, as shown in Table 3.

Table 3. Genetic algorithm optimization parameter settings.

Parameters KPCA-GABP Model

Initial generation 10
Population size 100
Crossover rate 0.3
Variation rate 0.15

Number of genes random 1–3
Gene value boundary −15~15

The improved BP neural prediction model for sintered water content using genetic
algorithm optimization and the comparison of the training and regression curves for both
sets of predictions are shown in Figures 6 and 7.

Figure 7. Regression diagram of training validation test samples after optimization.

The prediction results are close to the test data of the training sample. The correlation
coefficient of the training data is 0.99491. The results show that the fit is good. In addition,
the R-values of the validation and test data are 0.99403 and 0.99626, respectively. To obtain
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a clearer view of the model performance, we plotted the mean square error (MSE) iterative
effect of the data set, as shown in Figure 8. The blue, green, and red lines represent the
MSEs of the training, validation, and test sets, respectively. The validation data modified
the parameters of the model based on the training data. From Figure 8, it can be seen that
the model has the best performance at the ninth iteration. The GABP training terminated at
the 15th generation without overfitting. Therefore, the model can be considered reliable.

Figure 8. Optimized neural network training performance.

In this study, the mean absolute error (MAE), root mean square error (RMSE), and
efficiency coefficient (EC) were used as evaluation indexes, where the MAE and RMSE
were used to measure the predictive ability and the model error of the model, respectively.
The obtained model prediction errors are shown in Table 4.

RMSE =

√
∑n

k=1(yk − yk)
2

n
(13)

MAE =

√
∑n

k=1|yk − xk|
n

(14)

R =
∑n

k=1(xk − x)(yk − y)√
∑n

k=1(xk − x)2 ∑n
k=1(yk − y)2

(15)

EC = 1− ∑n
k=1(xk − yk)

2

∑
n(xk−x)2

k=1

(16)

where xk and yk are the measured data, x and y are the average of the data, and n denotes
the number of samples.

Table 4. Performance evaluation of the investigated ML models.

Evaluation
Indicators MSE RMSE MAE R2 EC

KPCA-BPNN 0.131 0.362 0.276 0.720 0.735
KPCA-GABP 0.046 0.067 0.053 0.992 0.975

Figure 9 shows the predicted results of the moisture content of the mix for October 2020
using the two prediction models. The red solid line in the figure indicates the actual values,
the green dashed line indicates the predicted results of KPCA-BPNN, and the blue dashed
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line indicates the GA-optimized fitted values, where more than 90% of the predictions lie
in the range of 6.5–8.6. Among them, the real value of the mixture water content fluctuated
widely between samples 1400 and 1600, The maximum difference was less than 0.2%, and
the KPCA-GABP model captured the fluctuation of the mixture water content during this
time to avoid serious deviations generated by local minima, which shows the consistency
of the optimized model. Meanwhile, in terms of accuracy optimization, when the number
of iterations was about 30, the evolution of the GA process reached the lowest average
adaptation value.

Figure 9. Prediction results of optimized water content model.

Figure 10 shows the prediction errors of the two methods. It can be seen that the
average absolute error of the prediction of the optimized neural network using the genetic
algorithm was reduced from 0.276 to 0.053, the root mean square error was reduced from
0.362 to 0.067, and the R-squared value increased from 0.720 to 0.992. This was due to the
advantage of KPCA for complex sintering process data processing, combined with GA
optimization to obtain the optimal network structure parameters to maximize its prediction
accuracy at the expense of an acceptable runtime.

Figure 10. Error of moisture content prediction result.
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5. Conclusions

In this paper, we analyzed and discussed the mixed water addition mechanism model
of a sintering plant and obtained the main factors affecting water content through correla-
tion analysis. We determined the input of the neural network by combining KPCA and
the BP neural network and then optimized the neural network by using a GA. Finally, we
established the KPCA-GABP prediction model, which can reduce the influence of multiple
variables caused by the sintering water addition process. The prediction model can reduce
the impact of multivariate coupling and time-varying delay between variables on the
prediction model due to the sintering and water addition process and effectively improve
the prediction accuracy of the mixture water content under complex working conditions.
The prediction model can reduce the influence of multivariate coupling and time delay
between variables on the prediction model and effectively improve the prediction accuracy
of mixture moisture content under complex working conditions.

In future research, probabilistic confidence prediction can be used to further estimate
the integrated physicochemical properties of the sinter mixture and to evaluate the quality
of the sinter mixture. By modeling the spatial 3D distributed parametric system of the
sintering process, it is possible to predict the indices of the moving material layers on the
sintering machine. Nevertheless, there are still some issues to be solved in further research,
such as the selection of the model parameters and the calibration of the measurement
sensors; the solutions to these problems will be the priority of our future work.
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