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Abstract: The additive manufacturing (3D printing) of metallic materials is a relatively new tech-
nology and its use is quickly increasing. Although it is of interest to many researchers, there are
still areas which are not fully explored. One of those areas is the behavior of large components
and/or semi-products processed by 3D printing. This work is focused on the study of material
properties of additive manufactured large block made of AISI 316L steel in two heat treatment
conditions (as-printed and solution annealed) and their comparison with the properties of hot-rolled
plate performed by tensile tests, Charpy V-notch tests, small punch tests and stress rupture tests.
Mechanical tests were complemented by microstructural investigation and the fractographic analysis
of fracture surfaces. We found out that mechanical and long-term properties of large 3D printed
blocks of this steel are excellent and comparable with other published results obtained on small-sized
and intentionally produced test pieces. The observed lower ductility is the result of printing imper-
fections in microstructure. The results of small punch tests confirmed the possibility of exploiting the
existing database and using the correlation between small punch tests and tensile tests results even
for 3D-printed AISI 316L steel.

Keywords: additive manufacturing; steel AISI 316L; mechanical properties; small punch tests;
stress-rupture tests

1. Introduction

Additive manufacturing, widely known also as 3D printing, is relatively new technol-
ogy. It is a process of creating a three-dimensional object layer by layer from a digital file
(CAD models) that was at first applied to plastic material and for producing models and
prototypes. The history of the 3D printing process, which dates back to 1980s, is described,
for instance, in [1–3].

The 3D printing of metallic materials is one of the promising ways of increasing the
competitiveness of companies in the engineering industry, especially in the production
of shape-complicated parts for material savings and the reduction of the material and
processing costs. However, before companies include these innovative technologies in their
product portfolio, designers, in particular, must know the properties of the parts produced
this way and guarantee their conformity with standards. Regarding the future use, the
important material properties can also include long-term creep properties.

There are many types of additive manufacturing processes. One of them is metal
powder bed fusion technology, as the International Committee ASTM F42 classified, and it
is included in the ISO/ASTM 52900:2015 [4] standard. Selective laser melting (SLM) as a
part of the powder bed fusion was used to produce our experimental material.

Selective laser melting is a technique designed to use a high-power density laser
to melt and fuse metallic powders together [5]. This technology can be used for special
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production in aerospace or automotive components, especially in cases where it is difficult
to manufacture them by conventional techniques, i.e., situations where it is economical and
where the material properties are satisfactory.

As the principal advantage of SLM technology lies in producing small and complex
products when the material properties cannot be tested by standardized test specimens, it
would be convenient to have another possibility of studying mechanical properties either
in the as-received state or even under operating conditions.

One way how to test small size components is to use the small punch test (SPT)
method [6]. SPT is a progressive testing method of miniature test samples and is very
often used, for instance, in nuclear and fossil fuel power plants for determining residual
lifetime of the key pressurized parts. It is applied to determine the mechanism of failure
and damage of the equipment too [7–9]. There are many literature references and extensive
and long-term experience with this method exploited in practice for wrought steels, but to
the author’s knowledge, there is only limited information about the use of this method for
additive manufactured (3D-printed) materials [10–13].

As is generally known, steel produced by the SLM process contains either more
or fewer pores, which have a significant effect on the strength and fracture properties
of steel. The steel produced by SLM technology has also a special texture and its mi-
crostructure is very similar to welds [5] and the material properties are therefore different
in various printing directions [14], including creep [15] and fatigue [16] properties. The
papers [15,17,18] show a lower creep service life of materials produced by 3D printing
(SLM method) compared to conventional manufacturing.

There is a lot of information in the literature about the influence of porosity, printing
(building up) direction, velocity and laser power on the material properties of intentionally
prepared test specimens but few about properties of the real products. Works which
examine real products are, for instance, concerned with machining issues [19], cutting
forces and anisotropy features in the milling [20] and methods for the inspection scheduling
of additive manufactured structures [21]. It is known and proven that the microstructure
and properties are affected by the cooling rate associated with, among other factors, heat
dissipation, which depends on the size of the product as well. This is the reason why we
decided to investigate the long-term behavior of austenitic steel on blocks produced by
SLM and to study the difference between intentionally produced samples presented in the
literature and a massive block produced within this study. This paper thus summarizes and
compares the material properties of a block made of AISI 316L steel produced by SLM with
a hot-rolled steel plate of the same steel grade. Both materials were tested by conventional
testing methods and small punch tests and stress rupture tests were supplemented by the
analysis of microstructure.

2. Materials and Methods

The experimental material (3D-printed steel) was a block made of austenitic stainless
steel AISI 316L with the following dimensions for printing: base, 15 mm × 280 mm and
height, 170 mm. The block of 3D-printed steel was cut into two halves, the first stayed
in as-printed condition (marked hereafter as 3D) and the second was solution-annealed
(marked hereafter as 3DS).

Solution annealing was performed in a laboratory electric furnace at 1050 ◦C with a
holding time of 15 min followed by cooling in water.

The comparative test material was a hot-rolled plate of AISI 316L steel with similar
dimensions as the 3D-printed block and the solution annealed when exposed to 1050 ◦C
and cooled in water.

2.1. Blank Printing

The block was produced by an additive manufacturing process in the Protolab 3D
printing center of VSB—Technical University of Ostrava in Czech Republic on a Renishaw
AM400 (Wotton-under-Edge, Great Britain) in the 2019.
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The parameters of the selective laser melting (SLM) were chosen by the manufacturer,
namely: laser power 200 MW, layer thickness of 50 µm, scanning speed (vscan) 650 mm/s
and chessboard strategy, Figure 1, and without supporting elements.
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Figure 1. Chessboard strategy.

The powder SS 316L-0407 supplied by Renishaw is used for manufacturing, the
chemical composition of the powder is provided in Table 1 and the powder properties are
examined in detail in the following section [22].

Table 1. Chemical composition of Powder SS 316L-0407, 3D-printed block and plate (wt.%).

Type of Product C Mn Si P S Cu Ni Cr Mo V O N

Powder ≤0.03 ≤2.00 ≤1.00 ≤0.045 ≤0.030 - 10.00 to 14.00 16.00 to 18.00 2.00 to 3.00 - ≤0.10 ≤0.10

3D 0.025 0.490 0.660 0.0160 0.0050 0.110 12.700 16.600 2.360 0.039 0.001 <0.001

Plate 0.019 1.851 0.265 0.0372 0.0014 0.305 10.001 16.986 2.022 - - 0.0298

2.2. Scope of Testing

Mechanical properties were studied in both conditions, whereas creep behavior was
studied only in the as-printed condition. Testing samples were prepared in parallel (L) and
perpendicular (T) directions to the printing base (PB), see Figure 2, except for stress rupture
tests that were machined only in one direction. The hot rolled plate of the thickness of
16 mm made of the same steel grade (marked hereafter as P) was used for the comparison
of the material properties with the 3D-printed block. Samples for mechanical testing were
made from the plate in two directions, longitudinally (L) and transversely (T) to the rolling
direction, as seen in Figure 2.

Conventional creep test specimens with circular cross-sections were used for the stress
rupture testing of SLM steel as well as hot-rolled plate. One test specimen for one testing
condition (temperature and stress) was prepared.

2.3. Test Equipment and Principle of Applicated Methods
2.3.1. Chemical Composition

Chemical analysis was in both cases performed on X-ray fluorescence spectrometer
ARL ADVANTX; the concentration of C, S and N was tested on a LECO CS 230 and
LECO TCH 600; and the oxygen content was measured on a PERKIN ELMER OES ICP,
OPTIMA 8000.



Metals 2022, 12, 1283 4 of 17Metals 2022, 12, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 2. Direction of testing, where (L) and (T) stand for the conventional tensile tests; (A), (B) and 
(C) for SPT tests and microstructure analysis; and BD—building direction, SD—scanning direction 
and TD—thickness direction. 

Conventional creep test specimens with circular cross-sections were used for the 
stress rupture testing of SLM steel as well as hot-rolled plate. One test specimen for one 
testing condition (temperature and stress) was prepared. 

2.3. Test Equipment and Principle of Applicated Methods 

2.3.1. Chemical Composition 

Chemical analysis was in both cases performed on X-ray fluorescence spectrometer 
ARL ADVANTX; the concentration of C, S and N was tested on a LECO CS 230 and LECO 
TCH 600; and the oxygen content was measured on a PERKIN ELMER OES ICP, OPTIMA 
8000. 

2.3.2. Tensile and Charpy V-Notch Tests 

Tensile tests were performed on MTS 500 kN test rig (speed 0.6 mm/min) at labora-
tory temperatures and the tensile testing was carried out and evaluated in accordance 
with the standard EN ISO 6892-1. 

Charpy tests were performed in accordance with the EN ISO 148-1 standard on spec-
imens 10 × 10 × 55 mm with an ISO-V notch at room temperature. Three samples of the 
same condition or direction were prepared. 

2.3.3. Small Punch Tests 

Moreover, the conventional tensile tests small punch test (SPT) method is used for 
the determination of the mechanical properties at room temperature of hot-rolled steel as 
well as 3D-printed block. The small punch test is based on the penetration of a disc-shaped 
specimen until it breaks. The method was described in detail elsewhere [23].  

Disc-shaped specimens with 8 mm in diameter and 0.5 mm in thickness (h0) were 
prepared from each direction of the 3D-printed material surface (A), transverse (B) and 
longitudinal (C), in both as-printed and solution-annealed conditions (Figure 2). The SPT 
samples of hot-rolled plate were machined only on the surface (A), according to the 

Figure 2. Direction of testing, where (L) and (T) stand for the conventional tensile tests; (A)–(C) for
SPT tests and microstructure analysis; and BD—building direction, SD—scanning direction and
TD—thickness direction.

2.3.2. Tensile and Charpy V-Notch Tests

Tensile tests were performed on MTS 500 kN test rig (speed 0.6 mm/min) at laboratory
temperatures and the tensile testing was carried out and evaluated in accordance with the
standard EN ISO 6892-1.

Charpy tests were performed in accordance with the EN ISO 148-1 standard on
specimens 10 × 10 × 55 mm with an ISO-V notch at room temperature. Three samples of
the same condition or direction were prepared.

2.3.3. Small Punch Tests

Moreover, the conventional tensile tests small punch test (SPT) method is used for
the determination of the mechanical properties at room temperature of hot-rolled steel as
well as 3D-printed block. The small punch test is based on the penetration of a disc-shaped
specimen until it breaks. The method was described in detail elsewhere [23].

Disc-shaped specimens with 8 mm in diameter and 0.5 mm in thickness (h0) were
prepared from each direction of the 3D-printed material surface (A), transverse (B) and
longitudinal (C), in both as-printed and solution-annealed conditions (Figure 2). The
SPT samples of hot-rolled plate were machined only on the surface (A), according to the
standard [6]. Five SPT samples for the same condition or direction were prepared and
tested in order to obtain the information about the scatter of results.

The principle of the small punch test is the penetration of a punch through the small
disc specimen that is clamped between the upper and lower die of the specimen-holder in
the testing device. Although the testing standard [6] specifies a punch diameter of 2.5 mm,
another punch diameter (2 mm) was used in this experiment because of our database of SPT
results and more than ten years of experience based on a 2 mm punch diameter. During the
test, the values of force and displacement of the punch tip are recorded and a curve with a
typical shape for most of the structural materials tested at room temperature is plotted. The
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following characteristics used for estimating the strength and fracture behavior of materials
can be determined from this curve:

• Fe—the elastic–plastic transition force in the small punch test which characterizes
the transition from linearity to the stage connected with the development of plastic
deformation through the whole thickness of the sample. This value corresponds to the
yield strength in the conventional tensile test and is defined as the point of intersection
of two constructed tangents (one of initial stiffens and a second of steady-state plastic
stretching) (N);

• Fm—the maximum force during the test which corresponds to the load at the tensile
strength in the conventional tensile test (N);

• dm—the displacement of the punch tip which corresponds to the force Fm (mm).

The guidelines for the translation of SPT data into tensile properties have been estab-
lished, for instance in [6].

2.3.4. Stress Rupture Test Method

Stress rupture testing is the method of uncovering the creep behavior of materials.
Stress rupture properties were tested on round test specimens, according to EN ISO 204, on
lever-type creep machines with a vertical load axis. Specimen elongation is not continuously
recorded in this type of test and the load is kept constant until the specimen ruptures. Stress
rupture tests were performed at temperatures 650 and 700 ◦C in the stress range that should
cover rupture times of approximately 100, 200, 500, 1000, 2000 and 5000 h.

The testing parameters were almost the same for both 3D-printed blocks and the plate,
the last two tests of the plate at 650 ◦C are still running and are not stated here.

2.3.5. Fractographic and Metallographic Investigation

Fractographic investigation was performed on the fracture surface of some of the
3D and 3DS Charpy V-notch test, SPT test and stress rupture test specimens by using the
scanning electron microscope JEOL JSM-5510 equipped with the EDX microanalyzer X-max
20 (Oxford Instruments, Oxford, UK).

The microstructure of 3D and 3DS samples was analyzed in three directions, on the
surface of the block (A), perpendicular to the printing base (B) and parallel to the printing
base (C), as seen in Figure 2. The metallographic samples were prepared by grinding,
polishing and etching in a V2A etchant and analyzed on a OLYMPUS GX51 inverted
metallographic microscope (Shinjuku, Japan).

3. Results
3.1. Chemical Composition

The chemical composition of the steel powder, the 3D-printed block and hot-rolled
plate is stated in Table 1. The chemical composition of the 3D-printed block completely
conformed the requirements for the steel AISI 316L with a low concentration of trace
elements and even gases (O, N). The hot-rolled plate had slightly lower carbon, manganese,
silicon and nickel contents than 3D-printed block but all is still in accordance with the
material standards.

3.2. Tensile Test and Charpy V-Notch Test

The results of tensile test and Charpy V-notch test performed at room temperature
are stated in Table 2. The principal difference between 3D-printed and hot-rolled material
is in yield stress where it is more than 100 MPa higher in 3D-printed block after solution
annealing and even twice as high in 3D as-printed block compared to hot-rolled plate.
The difference in the tensile strength is, on the other hand, quite insignificant. While the
material properties of hot-rolled plate are practically identical regardless to the direction,
there is a drop in both the yield stress and tensile strength in transverse compared to the
longitudinal direction in 3D-printed block in both heat treatment states. The pronounced
decrease was detected also in plasticity and impact toughness, when the elongation of
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3D-printed material was only about half the value in longitudinal direction and even only a
quarter in the transverse direction compared to the hot-rolled plate. The annealing solution
then further lowered mechanical properties (yield stress as well as tensile strength), and
even reduced the reduction of area.

Table 2. Results of mechanical tests.

Material 3D 3D S P

Direction L T L T L T

M
ec

ha
ni

ca
l

pr
op

er
ti

es

Rp0,2 (MPa) 557 473 373 352 259 258

Rm (MPa) 690 591 621 532 644 643

A (%) 46.5 22.0 46.5 22.5 79.0 76.0

R.A. (%) 59.5 35.0 46.5 30.5 80.5 81.5

KV (J) 82 67 91 - 394 298

The results also show that the 3D-printed material reached only 30% of the absorbed
energy of the hot-rolled plate in the Charpy V-notch test and there was hardly any increase
in notch toughness after the annealing of the 3D-printed block.

3.3. Small Punch Tests

The results of SPT confirmed that the 3D-printed material had higher yield stress and
displayed comparable tensile strength to the hot-rolled plate of the same steel, as seen in
Figure 3a.
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The area under the force–displacement curve represents the fracture energy and can be
used for the qualitative estimation of fracture resistance. This area is lesser for 3D-printed
steel than for the hot-rolled plate, as seen in Figure 3a, and even lower for the solution
annealing conditions of the 3D-printed block (Figure 3b). The decrease of the fracture
energy of the 3D material versus plate is about 22%. SPT curves also show a large scatter
of results, especially for samples oriented perpendicularly to the printing base (B). On the
other hand, the smallest scattering of results was found in samples oriented parallel to the
plate surface (A), with the same orientation as the samples scooped in situ from the real
surface of an in-service component (short transverse direction), which gives good prospects
towards the future in-service testing of real components.
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Strength characteristics using SPT are determined on the basis of correlation between the
results of conventional tensile tests and small punch tests, according to Equations (1) and (2):

Rp0,2 = α· Fe

h02 = 0.5564· Fe

h02 (Mpa) (1)

Rm = β· Fm

h0·dm
= 0.4089· Fm

h0·dm
(Mpa) (2)

where Rp0,2 and Rm are the yield stress and tensile strength, respectively, h0 is the exactly
measured thickness of each disc-shaped specimen before testing in mm, Fe is the elastic-
plastic transition force in the small punch test in N, α is correlation coefficient, Fm is the
maximum force during the SPT in N and dm represents the displacement of the punch tip
in mm, which corresponds to the force Fm.

Figure 4 describes these correlations between tensile tests and SPT valid for austenitic
stainless tubes tested at MMV and is supplemented by the results of the tested hot-rolled
plate and 3D-printed block. It is clear that the last results lie below the respective correlations.
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Figure 4. Correlation of SPT and standard tensile test data for austenitic steels the results present:
(a) yield point, (b) tensile strength.

Figure 5 compares the SEM images of the ruptured SPT specimens. While in the
hot-rolled sample the crack was circumferential, as is usual in metallic materials (Figure 5a),
there were several branched cracks and othar point defects on the surface of the 3D sample,
as seen in Figure 5b.
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3.4. Stress-Rupture Tests

The comparison of the creep resistance of both the 3D-printed block (samples
No. 1–10, Table 3) and hot-rolled plate (samples No. 11–20, Table 4) was performed
by stress rupture tests at 650 and 700 ◦C.

Table 3. Results of stress rupture tests of selective laser melting AISI 316L steel plate.

Sample No. Temperature Stress Time to Rupture Elongation R.A.
◦C Mpa h % %

1 650 130 4576 16.4 11.3

2 650 150 865 14.2 6.8

3 650 170 216 10.0 7.9

4 650 190 311 13.9 7.1

5 650 220 52 14.8 8.3

6 700 80 2384 20.2 10.8

7 700 95 1435 13.4 8.9

8 700 115 884 18.1 8.1

9 700 130 338 13.6 14.2

10 700 155 103 16.0 13.6

11 700 175 46 14.0 14.5

Table 4. Results of stress rupture tests of the hot-rolled AISI 316L steel plate.

Sample No. Temperature Stress Time to Rupture Elongation R.A.
◦C Mpa h % %

12 650 170 1863 19.2 68.6

13 650 190 523 16.8 64.8

14 650 220 35 50.3 57.8

15 650 240 11 43.9 56.4

16 700 65 4967 39.6 69.3

17 700 80 3288 44.8 66.1

18 700 95 1245 28.8 65.0

19 700 115 1234 38.8 70.2

20 700 130 598 32.2 78.3

21 700 155 205 19.6 68.3

22 700 175 12 39.2 70.2

The results are plotted in Figure 6 in terms of the stress vs. the rupture time. It
was confirmed that the creep rupture life, tf, and the stress, σ, can be described by the
Norton equation:

tr = Ar·σ−nr (3)

where Ar and nr are the temperature-dependent constants summarized in Table 5 and
in Figure 6a,b.

Regardless of the low stress dependence of time to rupture at 650 ◦C of the hot-rolled
plate, which can be due to only restricted results and their relatively short times to rupture,
the results of stress rupture tests of both tested materials are very well comparable.
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Table 5. Constants of Norton equation for the 3D and hot-rolled material of AISI 316L steel.

Material Temperature (◦C) Ar nr

3D block
650 1.20.1020 7.83

700 2.02.1013 5.14

Hot-rolled plate
650 5.00.1037 15.41

700 1.92.1013 5.13

In order to compare both tested materials and to confront the results of stress rupture
tests with the data of the material standard of AISI 316 steel, results were also recalculated
by using the Larson–Miller parameter, which allows the combination of the temperature
and time to rupture in the form of:

PLM = T·[C + log(t)] (4)

where T is temperature in Kelvin and t is the time to rupture in hours. The value of the
Larson–Miller parameter (C = 15.2) was calculated using the least square method from the
mean values of the creep rupture strength, as stated in the material standard EN 10 216-5
for steel X6CrNiMo17-13-2 (AISI 316H).

The comparison shows that the results of stress rupture tests, however short-lived
and without regarding the above-shown differences in stress–time to rupture dependence,
lie within the range between the mean value of CRS (solid line in Figure 7) and −20%
tolerance limit (dashed line in Figure 7) of the steel 316. Although the obtained results of
the stress rupture test do not allow the estimation of CRS in 10,000 h so far, it can be seen
that both the hot-rolled plate and 3D-printed block have fairly good prospects for achieving
good creep properties.

3.5. Analysis of Microstructure and Fracture Surfaces

The highly localized melting, strong temperature gradient and a high solidification
front rate, which are associated with the 3D printing of metallic materials, generate a
microstructure with extreme nonequilibrium, far from that accessible through conventional
manufacturing methods. The microstructure analysis of the 3D-printed samples in the
as-printed state (3D) and after solution annealing (3DS) was performed in three directions,
on the surfaces A, B and C (Figure 2).

The microstructure of the studied samples developed by etching in V2A revealed
the microstructure typical for 3D-printed metals, i.e., multilayered structure with clearly
detectable strip boundaries (molten pools). Grains with a dendritic arrangement and
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precipitates along grain boundaries were observed (Figures 8 and 9). Solution annealing led
to the dissolution of the strip boundaries, but the influence of build orientation remained
preserved even after solution annealing (Figure 10).
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The variety of size and shapes of the austenitic grains in the 3D-printed block was far
from the equiaxed austenitic grains, with annealing twins found on the hot-rolled plate, as
seen in Figure 11.
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The mechanical properties and, especially, the toughness of the steel always reflect
the state of the microstructure and the presence of defects. The comparative fracto-
graphic analysis of Charpy V-notch test samples of the 3D-printed block and hot-rolled
plate confirmed fully the transgranular ductile fracture with typical elongated dimples
which were very fine in the case of 3D-printed material with the size corresponding with
the fine cellular structure and were relatively coarse in the hot-rolled plate (compare
Figures 12a, 13a and 14). However, the fracture surface of 3DS samples was a combination
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of two mechanisms where the transgranular-dimpled ductile fracture prevailed but partly
appeared as a transgranular cleavage fracture (Figure 13a). A large number of defects,
such as dilutions, and unmelted metal particles, such as balls (blue arrows in Figure 12b),
were detected on the fracture surfaces of both 3D and 3DS-printed material variants, see
Figures 12b and 13b.
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4. Discussion

The results of mechanical tests, including SPT, show that the 3D-printed material
has higher yield stress and a comparable tensile strength to the hot-rolled plate of the
same steel but significantly lower plasticity and fracture toughness. Such behavior is a
result of the printing technology, which is characterized by the special structure that looks
like fine molten pools arranged in bands that are contoured with the columnar grains,
inside which a fine cellular structure appears. Low plasticity is then due to numerous
defects and imperfections, such as pores and unmelted powder. This special combination
of material properties and microstructure is a typical feature of 3D-printed materials [14].
The microstructure and also the strength and plasticity can be improved by hot isostatic
pressing, as is recommended in [24]. Our results did not confirm the pronouncedly positive
effect of heat treatment, especially on ductility.

The defects in microstructure overcame the positive effect of the fine grain size and
the presence of the substructure in the 3D-printed block where the size of dimples in the
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fracture surface was several times smaller than in the hot-rolled plate and reduced the
plasticity in both tensile as well as stress rupture tests.

When we compare mechanical properties (yield strength and tensile strength) of our
3D-printed steel, with the results reported in [25], the strength is higher, about 80 MPa in
the scanning direction (15%) and about 45 MPa in the building direction (10%). The effect
of the test direction was maintained, as well as the yield strength/tensile strength ratio
(0.80), which is twice as high for 3D-printed steels than for wrought austenitic stainless
steels (about 0.40).

We assume that our results were influenced by the production of a large block
(dimensions 170 × 250 mm), which generated higher internal stress and the accumulation of
inhomogeneities in the material compared to the production of intentionally manufactured
samples or test specimens, which have been widely studied. This assumption is also con-
firmed by the results obtained on half of the 3D-printed block that was solution-annealed,
which led to the elimination of melting bands, the partial homogenization of properties,
the reduction in yield strength (YS) without changes in ductility (Figure 15) and the slight
increase in notch toughness. Although this heat treatment most likely reduced the stress, as
evidenced by the decrease in yield strength, it did not remove unmelted powder and pores,
so there was no detectable improvement in plasticity after solution annealing. The results
of the stress rupture tests are comparable with the data published by other authors [26–29],
see Figure 16. At the same time, all data lie close to the mean CRS stated in the material
standard of AISI 316H, which is the closest heat-resistant equivalent to the steel AISI 316L.
All experimental data stated in Figure 16 are taken from the vertical samples (the long axis
of the sample is parallel with the building direction) and the results show that the creep
resistance of the 3D-printed material is not negatively influenced by the size of the printed
block. Figure 15 compares our results with literature values from [14,30–34].

Metals 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

lie close to the mean CRS stated in the material standard of AISI 316H, which is the closest 
heat-resistant equivalent to the steel AISI 316L. All experimental data stated in Figure 16 
are taken from the vertical samples (the long axis of the sample is parallel with the 
building direction) and the results show that the creep resistance of the 3D-printed 
material is not negatively influenced by the size of the printed block. Figure 15 compares 
our results with literature values from [14,30–34].  

 
Figure 15. Relation between elongation and yield strength from literature and this study, red arrows 
show the effect of solution annealing. 

 
Figure 16. Comparison of stress–time to rupture dependence for 3D-printed steel 316L, lines 
represent the mean CRS of AISI 316H steel. 

Figure 15. Relation between elongation and yield strength from literature and this study, red arrows
show the effect of solution annealing.



Metals 2022, 12, 1283 15 of 17

Metals 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

lie close to the mean CRS stated in the material standard of AISI 316H, which is the closest 
heat-resistant equivalent to the steel AISI 316L. All experimental data stated in Figure 16 
are taken from the vertical samples (the long axis of the sample is parallel with the 
building direction) and the results show that the creep resistance of the 3D-printed 
material is not negatively influenced by the size of the printed block. Figure 15 compares 
our results with literature values from [14,30–34].  

 
Figure 15. Relation between elongation and yield strength from literature and this study, red arrows 
show the effect of solution annealing. 

 
Figure 16. Comparison of stress–time to rupture dependence for 3D-printed steel 316L, lines 
represent the mean CRS of AISI 316H steel. 

Figure 16. Comparison of stress–time to rupture dependence for 3D-printed steel 316L, lines represent
the mean CRS of AISI 316H steel.

As both dislocation and diffusion creep rely on the diffusion of atoms and the grain
boundaries represent the fast diffusion path, it is clear that the creep rate and reciprocal
time to rupture strongly depends on the grain size: the smaller the grain size, the larger
grain boundary areas and the faster diffusion rate. Diffusion is also dominant in the stress
direction as the atomic spacing and vacancies are increased. Columnar grains in 3D-printed
material grow in the building direction. The vertically-built specimens are therefore loaded
parallel to the direction of columnar grain growth and the maximum principal stress is
also parallel to the grain boundaries. In this case, the grain size is relatively large along
the direction of loading compared to the horizontal case, and diffusion paths are longer.
Vertical specimens should thus exhibit longer times to rupture compared to horizontal
ones [27] and could have the closest creep resistance to the wrought material. The results
of Calderón [26] and this work seem to confirm this, at least from time to rupture up to
10,000 h (Figure 17).
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The difference between 3D-printed and hot-rolled material fits well within the usual
scatter band of the results of creep tests and the results are quite even close to the mean
value of CRS for the steel AISI 316H.

The obtained results also showed that the correlation curves routinely applied in small
punch testing of wrought austenitic steels for determining tensile strength cannot be used
for defining the tensile strength (UTS) of the 3D-printed material, because there is high
value dispersion and therefore the prediction of the UTS value can be misleading, see
Figure 4b. On the other hand, the use of such a correlation for the estimation of YS is
appropriate, because the variance is minimal, and the coefficient of reliability is high and
almost reaches the value valid for wrought stainless steels (Figure 4a).

5. Conclusions

This paper summarized the results of the study focused on the influence of additive
manufacturing on the material properties of AISI 316L steel with the same dimensions as
the hot-rolled plate made of the same steel.

• The results of tensile-testing at room temperature confirmed the much higher yield
stress of 3D-printed material compared to the hot-rolled plate of the comparable tensile
strength due to fine cellular structure and its as-welded state. It was, at the same time,
accompanied by a drop in elongation as well as impact energy.

• The solution annealing of the 3D-printed block led to the homogenization of properties
but could not reduce the pores and particles of unmelted metal powder.

• The good mechanical properties of a 3D-printed block also confirmed the results of
the comparative stress rupture test with the hot-rolled plate when the results of both
test series were very well comparable and lay in the scatter band around the mean
values of the creep rupture stress for the steel AISI 316.
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