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Abstract: In recent years, with the excavation of an increasing amount of gold and silver artifacts,
there has been an urgent need to optimize the formulations and methods of metallographic etching.
Herein, a kinetic control study is performed to investigate the mechanisms leading to poor results
when etching ancient gold materials with aqua regia, i.e., when secondary AgCl impurities form
during the etching of the sample surface. To this end, a concentrated ammonia and sodium thiosulfate
solution is used to dissolve AgCl impurities and obtain high-quality metallographic images of ancient
gold materials using a coordination reaction to generate stable free-state coordination ions from Ag+.
On this basis, a ferric chloride + sodium thiosulfate method is proposed to optimize the formulation of
the etchant for ancient silver materials. The formulation is efficient, safe and easy to handle, and solves
the problems of the easy failure of the commonly used etchant of ammonia + hydrogen peroxide
and the complicated preparation process of acidified potassium dichromate while maintaining the
long-term stability of the etched Ag–Cu alloy samples.

Keywords: metallographic research; ancient gold and silver materials; etchants; kinetic control study;
silver chloride impurities; coordination reaction

1. Introduction

Metallographic research on archaeological metal artifacts has been performed for over
100 years [1–3]. Metallographic observation is the most direct and effective method to
study the development of the smelting, casting and manufacturing processes of ancient
metal materials [4]. It is a destructive material testing method that requires the sample
to be embedded in an epoxy resin (or phenolic resin) block, pre-ground, and polished
to obtain a smooth surface. The polished metal surface does not reveal the details of
the microstructure. To observe the grain boundaries, the composition of the different
phases, inclusions and other micro traces of the manufacturing process, the polished metal
surface must be etched with a suitable chemical reagent (etchant) to reveal the differences
in grain orientation and microstructure, and the results are observed and recorded in
conjunction with a metallographic microscope (optical microscope) or a scanning electron
microscope [5].

The mechanism of etching utilizes the differences in dissolution rates between the
different structures and components of the alloys in the specific etchant to show the
difference in dissolution morphology [4,6,7], such as grain and grain boundaries, X-enriched
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phases and Y-enriched phases (X and Y represent different metal components in the alloy),
and metal matrix and intracrystalline particles. Therefore, the suitable etchant for each
alloy type is different. In addition, the poor state of preservation of ancient metal materials
due to their long-term burial and erosion by groundwater, soil ions, microorganisms, etc.,
which might result in faster dissolution rates, requires the researcher to adapt the etchant or
etching method to the actual condition of the samples to be tested and the metallographic
information of interest.

In the case of metal artifacts such as iron and bronze, which have been studied in
many samples, there are now well-established, comprehensive and targeted etchants for-
mulations and etching methods to obtain high-quality metallographic images. Iron: For
this metal, 2–3 vol.% Nital (alcoholic nitric acid) [4,8–10] and 2–3 vol.% methanolic nitric
acid [11–13] are the most common etchants and are used in a wide range of applications.
In addition, Heyn’s reagent (aqueous CuCl(NH4)) [10,14], Klemm’s reagent (aqueous
Na2S2O3 + K2S2O5) [4,10,14], Picral (alcoholic C6H2(OH)(NO2)3) and other reagents are
used to observe specific grain orientations, microstructures, inclusions and other types
of conditions in iron. Bronze: Aqueous ferric chloride [15,16] and alcoholic ferric chlo-
ride [17–19] are used in extremely wide applications for almost all copper alloys, in addition
to saturated solutions of chromium (VI) oxides (CrO3) and 5% potassium ferricyanide for
grain boundary etching and inclusion identification, respectively [4].

However, in the case of gold and silver, due to the relatively small number of exca-
vated artifacts and a limited number of samples, the common etchants are quite simple.
Gold: The commonly used etchant is aqua regia (a mixture of concentrated hydrochloric
acid and concentrated nitric acid) [20–24], sometimes with a small amount of chromium
(VI) oxides [25,26] or glycerol [27] to make the grain boundaries clearer; ammonium
persulfate + potassium cyanide is occasionally used [20]. Silver: Ammonia + hydrogen
peroxide [28–30] and acidified potassium dichromate [30–34] are the most common. As a
result, researchers often report problems when using these etchants in practice.

(a) Gold-aqua regia: The problem of poorly defined metallographic images and blurred
grain boundaries often occurs (Figure S1a). Some researchers have suggested that
this phenomenon is caused by over-etching or impurities on the surface of the sample
and have responded by properly polishing the sample after etching. However, this
treatment may result in new secondary scratches (Figure S1b) and relies on the
researchers’ personal experience of the experimental procedure, which is not suitable
for application;

(b) Gold/silver-ammonium persulfate + potassium cyanide: Although this etchant is
suitable for precious metal alloys such as platinum, gold and silver [20], KCN is a
highly toxic chemical and may pose a potential health risk to the researcher;

(c) Silver-ammonia + hydrogen peroxide: The oxidation–reduction reaction between
two components of this etchant forms N2, which leads to failure (in fact, the etchant is
usually only effective for approximately 10 min) and can cause considerable inconve-
nience when many samples must be etched (Figure S1c). Additionally, when using
this etchant many bubbles are formed, creating “hollow drums” on the surface of the
sample and preventing the etchant from continuously reacting with the metal, which
results in unsatisfactory etching results;

(d) Silver-acidified potassium dichromate: The formulation of this etchant is complex
and must be diluted in a certain proportion when used. In addition, although the
sample is washed after etching, some reagent remains on the surface and creates a
slow, continuous dissolution, which can require repolishing the sample after a period
of time (this problem also occurs with other etchants).

In recent years, increasing amounts of gold and silver artifacts have been excavated
(e.g., the Sanxingdui site in Guanghan, Sichuan Province [35]; the Jiangkou sunken silver site
in Pengzhou, Sichuan Province; the Tusi Cemetery of the Yang Family in Zunyi, Guizhou
Province [36]; Murong Zhi tomb of the Tuyu Hun royal Family in Wuwei, Gansu Province [37],
etc.), and there is an urgent need to optimize etchants to improve the experimental efficiency
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of metallographic research. In this paper, we explore the mechanism leading to the poor
effect of aqua regia for etching ancient gold materials through scientific analysis and
simulated etching experiments. Then, we improve the etching method in a targeted manner.
On this basis, we optimize the formulation of the etchant for silver artifacts to achieve an
easily accessible, simple, safe and stable performance.

2. Materials and Methods
2.1. Chemicals and Materials

Hydrochloric acid (HCl, 36–38%) and nitric acid (HNO3, 65–68%) were purchased
as guaranteed reagents from Xilong Scientific Co., Ltd., Shantou, China. Ammonium hy-
droxide solution (concentrated ammonia, NH4OH, 25–28%) was purchased as an analytical
reagent from Shanghai Greagent Technology Co., Ltd., Shanghai, China. Hydrogen perox-
ide solution (H2O2, 30%) was purchased as an analytical reagent from Beijing Tongguang
Fine Chemicals Co., Ltd., Beijing, China. Sodium thiosulfate (Na2S2O3) was purchased as
a guaranteed reagent from Tianjin Yongda Chemistry Co., Ltd., Tianjin, China. Iron (III)
chloride (FeCl3·6H2O) was purchased as an analytical reagent from Shanghai Hushi Labo-
ratorial Equipment Co., Ltd., Shanghai, China.

Epoxy resin was purchased from Guangzhou Shunyicheng Technology Co., Ltd.,
Guangzhou, China. Water-soluble polishing paste (the particle size, W = 1, 0.5) was
purchased from Shanghai Naibo Testing Technology Co., Ltd., Shanghai, China. Deionized
(DI) water with a specific resistance of 18.25 MΩ·cm was used in all of our experiments.

2.2. Metallographic Observation

The ancient gold/silver samples were embedded in epoxy resin, polished with SiC
papers (P = 400, 800, 1200, 2000) and finished with water-soluble diamond paste (W = 1, 0.5).
Then, the polished samples were etched with the appropriate etchants. The metallographic
images were taken by a Shangguang 13XF-PC metallographic microscope.

2.3. SEM–EDS Analysis

SEM–EDS analysis was performed by a Hitachi TM3030 scanning electron microscope
and BRUKER energy dispersive X-ray spectroscopy (15.00 kV, low vacuum, 90~120 s).

3. Results and Discussion
3.1. Kinetic Control Study of Etching Ancient Gold Materials with Aqua Regia

The ancient gold sample in our study was a detached fragment from a gold artifact
(Figure S2a) excavated from the Sanxingdui site [35]. The EDS result showed that the
composition (wt.%, same as below) of this sample was Au 85.43%–Ag 14.57% (Figure S2b),
which indicates that the material was a Au–Ag alloy.

Considering the potential for both excessive dissolution and impurities on the surface
of the sample when directly etched with aqua regia, which can cause the problem of poorly
defined metallographic images and blurred grain boundaries, diluted aqua regia was used
to obtain a controlled etching process to exclude the possibility of excessive dissolution.
The etchant was diluted at a ratio of 1:2.5 (6 mL HCl + 2 mL HNO3 diluted to 20 mL), added
dropwise to the polished sample surface, placed under the metallographic microscope,
and images were taken and recorded at 20 s intervals (Figure 1). The gradual presence of
isometric grains and annealing twins enabled us to interrupt the etching process at any
necessary time to achieve control. When the etching process progressed to approximately
100 s, the sample was removed, washed in flowing distilled water, and dried.
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Figure 1. The ancient gold sample (of the gold artifact from the Sanxingdui site) was etched by
diluted aqua regia (6 mL HCl + 2 mL HNO3 and diluted to 20 mL); (a–f) show the morphology of the
sample from etching for 0 s to 100 s, respectively (20 s intervals).

The dried sample surface showed a large quantity of diffusely distributed particulate
impurities, which obscured the view, but the grain boundaries and slip lines were quite
clear underneath the impurities (Figure 2a). The SEM image showed particulate impurities
with regular crystal shapes and a maximum diameter of approximately 2 µm (Figure 2b).
The EDS mapping analysis showed that the overall composition of this region was Au
58.11%–Ag 28.61%–Cl 13.28%, with Au mainly distributed in the alloy matrix and Ag and
Cl in the particulate impurities. Combining the crystalline form, EDS analysis and chemical
properties of the reactants, we can deduce that the impurities produced were AgCl crystals
which underwent the following reaction process:

NO−3 + 3 Cl− + 4 H+ → NOCl (g) + Cl2 (g) + 2 H2O (1)

Au + 3 NOCl → Au3+ + 3 Cl− + 3 NO (g) (2)

Ag + NOCl → Ag+ + Cl− + NO (g) (3)

Ag+ + Cl− → AgCl (s) (4)



Metals 2022, 12, 1229 5 of 14

Metals 2022, 12, x FOR PEER REVIEW 5 of 14 
 

 

We verified the reproducibility of this experimental procedure by changing the dilu-
tion ratio of the etchant (1:2.0, 6 mL HCl + 2 mL HNO3 diluted to 16 mL) and the etching 
time was 40 s. The EDS mapping analysis showed that the region of interest had a com-
position of Au 65.73%–Ag 27.98%–Cl 6.28%, again with Ag and Cl mainly distributed in 
the crystals (Figure 2c). The experimental phenomena were similar to those previously 
described. In addition, we found that the maximum diameter of the precipitated crystals 
under this condition was relatively small (less than 1.5 μm), possibly due to the short 
etching time and insufficient growth of the nucleus. 

 

 

 

Metals 2022, 12, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 2. The mechanism of formation of the AgCl impurities. (a) The grain boundaries and slip 
lines underneath the impurities; (b) SEM image and EDS mapping analysis of the impurities (etch-
ant: 6 mL HCl + 2 mL HNO3 and diluted to 20 mL; etching duration: 100 s); (c) SEM image and EDS 
mapping analysis of the impurities (etchant: 6 mL HCl + 2 mL HNO3 and diluted to 16 mL; etching 
duration: 40 s); (d) differences in AgCl impurity patterns when using low/high-concentration aqua 
regia to etch ancient gold samples. 

This result reminds us of the crystallography theory that when the concentration of 
the etchant is low, the rate of Ag dissolution is slow, and only few crystallization nuclei 
are formed when Ag+ combines with Cl−. When the etching continues, the nuclei gradually 
grow, which causes the diffuse distribution of particulate AgCl crystals on the sample 
surface. At very high concentrations of etchant (pure aqua regia in this paper), the initial 
dissolution occurred very vigorously, which directly produced many crystallization nu-
clei densely distributed on the sample surface and formed a structure similar to a AgCl 
thin film (Figure 2d) [39]. The EDS mapping analysis of the pure aqua regia-etched sample 
confirmed our idea (Figure S3). High levels of Cl were detected (Au 53.74%-Ag 26.83%-Cl 
19.42%), and the distribution was relatively evenly spread over the surface. Thus, we iden-
tified the mechanism behind the poor effect of pure aqua regia to etch ancient Au–Ag 
alloys: the large amount of AgCl impurities was uniformly distributed on the surface of 
the etched samples and hindered the observation of grain boundaries and metallographic 
microstructures. 

3.2. Removal of Silver Chloride Impurities 
Having investigated the mechanism of the poor etching results, we should turn our 

attention to the removal of the AgCl impurities. AgCl is a cubic crystal system with the 
closest packing of Cl− in a face-centered cubic structure and Ag+ filling the octahedral 
voids. The solubility product constant (Ksp) of AgCl was 1.56 × 10−10 (298 K) [39], which 
suggests that it would be difficult to remove the secondary AgCl from the sample surface 
by conventional distilled water washing and drying. Therefore, mechanical or chemical 
methods were initially considered to study and compare the removal results. For visual 

Figure 2. The mechanism of formation of the AgCl impurities. (a) The grain boundaries and slip
lines underneath the impurities; (b) SEM image and EDS mapping analysis of the impurities (etchant:
6 mL HCl + 2 mL HNO3 and diluted to 20 mL; etching duration: 100 s); (c) SEM image and EDS
mapping analysis of the impurities (etchant: 6 mL HCl + 2 mL HNO3 and diluted to 16 mL; etching
duration: 40 s); (d) differences in AgCl impurity patterns when using low/high-concentration aqua
regia to etch ancient gold samples.
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In this case, Equation (1) is the reaction of the two components of aqua regia, HCl
and HNO3 to form nitrosyl chloride (NOCl) and Cl2, which are responsible for the actual
high oxidizing properties of this etchant [38]. Equations (2) and (3) are the processes of
dissolution of Au and Ag in the alloy. Equation (4) is the process by which the dissolved
Ag+ combines with Cl− in the etchant to produce AgCl crystal precipitation.

We verified the reproducibility of this experimental procedure by changing the dilution
ratio of the etchant (1:2.0, 6 mL HCl + 2 mL HNO3 diluted to 16 mL) and the etching time
was 40 s. The EDS mapping analysis showed that the region of interest had a composition
of Au 65.73%–Ag 27.98%–Cl 6.28%, again with Ag and Cl mainly distributed in the crystals
(Figure 2c). The experimental phenomena were similar to those previously described. In
addition, we found that the maximum diameter of the precipitated crystals under this
condition was relatively small (less than 1.5 µm), possibly due to the short etching time
and insufficient growth of the nucleus.

This result reminds us of the crystallography theory that when the concentration of
the etchant is low, the rate of Ag dissolution is slow, and only few crystallization nuclei are
formed when Ag+ combines with Cl−. When the etching continues, the nuclei gradually
grow, which causes the diffuse distribution of particulate AgCl crystals on the sample
surface. At very high concentrations of etchant (pure aqua regia in this paper), the initial
dissolution occurred very vigorously, which directly produced many crystallization nuclei
densely distributed on the sample surface and formed a structure similar to a AgCl thin
film (Figure 2d) [39]. The EDS mapping analysis of the pure aqua regia-etched sample
confirmed our idea (Figure S3). High levels of Cl were detected (Au 53.74%-Ag 26.83%-Cl
19.42%), and the distribution was relatively evenly spread over the surface. Thus, we
identified the mechanism behind the poor effect of pure aqua regia to etch ancient Au–Ag
alloys: the large amount of AgCl impurities was uniformly distributed on the surface of
the etched samples and hindered the observation of grain boundaries and metallographic
microstructures.

3.2. Removal of Silver Chloride Impurities

Having investigated the mechanism of the poor etching results, we should turn our
attention to the removal of the AgCl impurities. AgCl is a cubic crystal system with the
closest packing of Cl− in a face-centered cubic structure and Ag+ filling the octahedral
voids. The solubility product constant (Ksp) of AgCl was 1.56 × 10−10 (298 K) [39], which
suggests that it would be difficult to remove the secondary AgCl from the sample surface
by conventional distilled water washing and drying. Therefore, mechanical or chemical
methods were initially considered to study and compare the removal results. For visual
comparison, the sample was etched using a 1:2.5 dilution of the etchant (100 s etching time)
to obtain a clear volume of particulate AgCl impurities in advance (Figure 3a).

Rubbing is the simplest method of mechanical removal. We attempted to remove
AgCl by gently rubbing the etched surface with a skimmed cotton swab dipped in alcohol.
The results show that this method could remove AgCl impurities to some extent but
might introduce many secondary scratches, which would greatly affect the subsequent
observation and judgement of the metallographic organization of the sample (Figure S4).
Ultrasonic cleaning is also a common method of mechanical removal. However, the results
of the pre-experiments showed that this method had very little success. Moderate polishing
of the etched sample may provide better results (Figure S1b), but this method will also
introduce secondary scratches and is not suitable for application, as it heavily relies on the
personal experimental experience of researchers.

AgCl is normally insoluble in distilled water, but it can be dissolved in a specific
solution by using certain ligands to form more stable free state coordination compounds
with Ag+, which is the basic idea of the chemical removal method. Common Ag+ ligands,
coordination numbers and accumulative stability constants are shown in Table 1 [40]. The
solubility of AgCl in the corresponding ligand solutions can be calculated from the stability
constants. The following is an example of ammonia (NH4OH).
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Table 1. Common Ag+ ligands, coordination numbers, and accumulative stability constants.

Ag+ Ligand (X) Coordination Number (n) Accumulative Stability Constant (lgβn)

NH3 1, 2 3.24, 7.05
S2O3

2− 1, 2 8.82, 13.46
CN− 2, 3, 4 21.1, 21.7, 20.6
Br− 1, 2, 3, 4 4.38, 7.33, 8.00, 8.73

SCN− 1, 2, 3, 4 4.6, 7.57, 9.08, 10.08

Ag+ has two coordination ion forms with NH3: [Ag(NH3)]
+ and [Ag(NH3)2]

+. In solution:

Ag+ + NH3 
 [Ag(NH3)]
+; β1 =

[Ag(NH3)]

[Ag][NH3]
= 1.74× 103 (5)
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Ag+ + 2 NH3 
 [Ag(NH3)2]
+; β2 =

[Ag(NH3)2]

[Ag][NH3]
2 = 1.12× 107 (6)

According to Equations (5) and (6), the distribution of the coordination ions at each
level can be obtained:

[Ag(NH3)] = [Ag] β1[NH3] ; [Ag(NH3)2] = [Ag] β2[NH3]
2

We express the total concentration of various forms of Ag-containing ions in the
solution as cAg_NH3 and the total concentration of various forms of NH3-containing ions as
cNH3 , as follows:

cAg_NH3 = [Ag] + [Ag(NH3)] + [Ag(NH3)2] = [Ag](1 + β1[NH3] + β2[NH3]
2) (7)

cNH3 = [NH3] + [Ag(NH3)] + 2 [Ag(NH3)2]

= [NH3] + [Ag] β1[NH3] + 2 [Ag] β2[NH3]
2 (8)

According to the dissolution equilibrium, there is:

Ksp = [Ag][Cl] = 1.56× 10−10 (9)

Since Ag+ released during the dissolution of AgCl is equal to Cl−, and there are no
other forms of Cl−-containing ions in solution, [Cl] = cAg_NH3 . When the concentration
of the ligand solution is 1 mol/L, we have cNH3= 1 mol/L, [NH3] = 9.23 × 10−1 mol/L,
and cAg_NH3= 3.86 × 10−2 mol/L. In other words, a maximum of 55.3 mg (mAgCl_NH3 =

cAg_NH3 × 10 mL×MAgCl) of AgCl can be dissolved in 10 mL of 1 mol/L ammonia. Simi-
larly (Table S1), when the concentration of other ligand solutions is 1 mol/L, we can calcu-
late that mAgCl_S2O2−

3
= 7.12 × 10−1 g, mAgCl_CN−= 7.15× 10−1 g, mAgCl_Br−= 6.78 × 10−6 g,

and mAgCl_SCN−= 6.62 × 10−6 g.
From the calculation results, S2O3

2− and CN− should be the more effective ligands
for dissolving AgCl. However, although ammonia is less capable of dissolving AgCl
at 1 mol/L, when concentrated ammonia is used, the theoretical calculation result is
mAgCl_NH3

∗ = 8.53 g (cNH3 ≈ 12 mol/L). Considering the accessibility of reagents and the
safety and efficiency of dissolving AgCl, we decided to use concentrated ammonia and
1 mol/L Na2S2O3 solution in the dissolution experiments.

The experimental results showed that when the etched ancient Au–Ag alloy sample
was immersed in concentrated ammonia, the particulate AgCl crystals on the surface
rapidly and more fully dissolved with a longer immersion time (Figure 3b); when the
immersion time reached 120 s, the degree of dissolution no longer significantly changed
(until 540 s, Figure 3c). At this point, the sample was washed and immersed in 1 mol/L
Na2S2O3 solution. The AgCl crystals were further dissolved (Figure 3d). These results
show that both concentrated ammonia and 1 mol/L Na2S2O3 solution positively affect the
removal of AgCl impurities, with the latter being slightly effective.

3.3. Optimizing the Etching Methods for Ancient Au–Ag Alloys

Following the idea of aqua regia etching + concentrated ammonia/Na2S2O3 solution
for the removal of impurities, we collected a full range of metallographic information on
our Au–Ag alloy sample from the Sanxingdui site (Figure 4). During our experiment, we
adjusted the concentration of the etchant or the length of etching to obtain better quality
metallographic images (the specific etching methods are indicated in the notes of Figure 4).
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Figure 4. The full range of metallographic information obtained through aqua regia etching + concentrated
ammonia/sodium thiosulfate solution removal of impurities (scale bar, 200 µm). (a) Etchant: aqua regia
with dilution ratio 1:1.5; etching duration: 40 s; impurity removal: 1 mol/L sodium thiosulfate solution—
80 s; (b,e,f) etchant: pure aqua regia; etching duration: 10 s; impurity removal: 1 mol/L sodium thiosulfate
solution—80 s; (c) etchant: pure aqua regia; etching duration: 10 s; impurity removal: concentrated
ammonia—200 s; (d) etchant: aqua regia with dilution ratio 1:2; etching duration: 50 s; impurity removal:
1 mol/L sodium thiosulfate solution—120 s.

In this process, we utilized the following optimization methods to etch ancient
Au–Ag alloys:

(a) Rapid etching: The etchant is pure aqua regia, and the etching time is approximately
10 s. The morphology of the AgCl impurities is a “thin-film” pattern. Both concen-
trated ammonia and 1 mol/L Na2S2O3 solution can be used to efficiently remove
AgCl impurities;

(b) Local etching: The etchant is diluted aqua regia, the dilution ratio can be adjusted
according to the composition of the Au–Ag alloy samples (1:1.5–1:2.5 ranging), and
the length of etching is 30–100 s according to the dilution ratio. The advantage of this
method is that the etching process of the region of interest can be observed under the
metallographic microscope, and the end point of the etching can be flexibly controlled.
The morphology of the AgCl impurities is a “particulate crystal” pattern, which
requires a long immersion time with concentrated ammonia or 1 mol/L Na2S2O3
solution; thus, ammonia may face the problem of volatilization, and it is better to use
Na2S2O3 solution.

3.4. Optimizing the Etchant Formulations for Ancient Silver Material

We have found that etchant + secondary AgCl impurity removal solutions are very
effective for metallographic studies of ancient gold materials, which we may similarly
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introduce into the optimization of etchant formulations for ancient silver materials, giving
preference to a chlorine-based etchant + concentrated ammonia/Na2S2O3 solution. As we
mentioned earlier, the basic mechanism of etching is to exploit the differences in dissolution
rates between different structures and components of the alloy in the specific etchant [4]; in
other words, solutions that likely the cause dissolution of various components of ancient
silver materials (mainly Ag–Cu alloys) can be used in our experiments.

The first etchant that we should consider is aqua regia. Its strong oxidizing properties
cause the dissolution of Au materials, and thus we expected the same result for the Ag–Cu
alloys. We used a 1:1.5 dilution of aqua regia to etch the silver sample from a silver bowl
(No. G1.2, Ag 96.89%–Cu 3.11%) excavated in Yiwu City (etching time 15 s). Similar
to the observed phenomenon after the pure aqua regia etching of the Au–Ag sample
(Figure S5a), the EDS results showed that the same AgCl “thin film” was produced during
the etching process and covered the surface of the sample (Figure S5b). After treating the
AgCl impurities with 1 mol/L Na2S2O3 solution, we obtained a metallographic image
of excellent quality (Figure 5). Thus, the aqua regia + secondary AgCl impurity removal
solution approach worked. However, since the Ag–Cu alloys were much less resistant to
dissolution than the Au–Ag alloys, the aqua regia must be diluted in the process of etching
the ancient silver materials to avoid reacting too quickly and exceeding the appropriate
critical point; similar to the ammonia + hydrogen peroxide etchant system, the diluted
aqua regia may face failure, and a higher dilution ratio corresponds to a shorter effective
time (during our experiments, the effectiveness of the 1:2.5 dilution of aqua regia did not
last more than half an hour), which obviously does not satisfy our experimental needs.
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Figure 5. The ancient silver sample (of the silver bowl excavated in Yiwu City) was etched by diluted
aqua regia (6 mL HCl + 2 mL HNO3 and diluted to 12 mL); etching duration: 15 s; impurity removal:
1 mol/L sodium thiosulfate solution for 60 s.

Ferric chloride (FeCl3) is a common etchant for bronze as it is efficient, safe, and easy
to handle. Normally, Fe3+ cannot be used to etch ancient silver materials because the
standard electrode potential of Fe3+→Fe2+ {ϕ	(Fe3+/Fe2+) = 0.771 V} is lower than that of
silver {ϕ	(Ag+/Ag) = 0.799 V}. However, in the presence of Cl−, Cl− will reduce the silver
electrode potential, which may enable the etching of Ag–Cu alloys. We can use a 1 mol/L
FeCl3 solution as an example for theoretical calculations [41].

For the electrode reaction Ag+→Ag, according to the Nernst equation:

ϕ = ϕ	 +
RT
F

lg[Ag] = ϕ	 + 0.0592 lg[Ag] (10)

According to Equation (9), [Ag] = 5.20 × 10−11 mol/L, which can be calculated and
substituted into (10) to obtain ϕ(AgCl/Ag) = 0.191 V. The calculation results show that
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ϕ	(Fe3+/Fe2+) > ϕ	(Cu2+/Cu) > ϕ(AgCl/Ag), which implies that 1 mol/L FeCl3 solution
can be used to etch Ag–Cu alloys.

The experimental results show that high-quality metallographic images of Ag–Cu
alloys can be obtained using the FeCl3 (etchant) + Na2S2O3 (secondary AgCl impurity
removal solution) approach (Figure 6a–d). To verify the wide applicability of this method,
further experiments were performed on samples of the silver plate (No. G11, Ag 98.08%–Cu
1.93%) and bowl (No. G14, Ag 98.44%–Cu 1.56%) excavated from the Murong Zhi tomb, and
similarly good results were obtained (Figure 6e,f).
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20 s), and impurities were removed by 1 mol/L sodium thiosulfate solution (for 120 s). (a–d) Ancient
silver sample of the silver bowl excavated in Yiwu City; (e,f) ancient silver samples from Murong
Zhi tomb.

In addition, we found that the metallographic images of the samples treated by the
above approach remained at high quality after a long period of time (over 3 months in this
paper, Figure 7a,b) with only a slight increase in color. We acknowledge the possibility that
the Na2S2O3 solution used to remove the AgCl impurities neutralized the remaining FeCl3
solution on the surface of the samples. These results indicate that our optimization of the
etchant formulation for the ancient silver materials was very successful.
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Figure 7. Reobservation of the etched sample after three months. (a) Corresponds to the same region
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4. Conclusions

In this paper, we first investigated the mechanism of poorly defined metallographic
images and blurred grain boundaries of ancient gold materials etched by aqua regia
using a detached fragment from the gold artifact excavated from the Sanxingdui site as a
sample through controlled simulated etching experiments. The results show that the Ag+

released from the metal matrix during the etching process reacted with Cl− in the etchant
to form AgCl impurities and covered the sample surface. When pure aqua regia was used,
the impurities were in the form of AgCl “thin film”, and when diluted aqua regia was
used, they were in the form of “particulate crystals”, both of which obscured the surface
morphology of the sample to varying degrees and affected the observation and recording
of the metallographic organization.

Subsequently, theoretical calculations and experimental investigations were performed
to demonstrate that certain ligands undergo coordination reactions with Ag+ to generate
stable free-state coordination ions that can dissolve the AgCl impurities on the etched
sample surface. Both concentrated ammonia and 1 mol/L sodium thiosulfate solution
proved to be effective in dissolving AgCl. However, concentrated ammonia was less
effective than sodium thiosulfate solution in treating particulate AgCl crystals due to the
possibility of volatilization failure.

Finally, we optimized the formulation of etchants for ancient silver materials using
chlorine-based etchant + secondary AgCl impurity removal solutions and concluded that a
combination of ferric chloride + sodium thiosulfate solution was the better approach. This
method is highly efficient, safe and easy to handle, which is lacking in the commonly used
etchants for Ag–Cu alloys. This method was applied on silver artifacts excavated from
Yiwu City and silver artifacts excavated from Murong Zhi tomb with excellent results.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/met12071229/s1. Figure S1: Problems with commonly used ancient
gold/silver material etchants; Figure S2: The ancient gold material used in this study; Figure S3:
The AgCl “thin film” of the pure aqua regia-etched gold sample; Figure S4: Comparison of the
effectiveness of silver chloride impurities rubbed off (scale bar: 20 µm); Figure S5: The AgCl “thin
film” of the diluted aqua regia-etched silver sample; Table S1: Calculation process for mAgCl_S2O3

2−,
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