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Abstract: Machine learning methods were applied to data with an atmospheric corrosion monitoring
sensor based on strain measurements to improve the evaluation accuracy of the thickness reduction
of a low-carbon steel plate due to atmospheric corrosion. Monitoring data used in this study were
taken in a previous study using active–dummy strain gauges for corrosion product experiments.
Values measured by the gauges before inducing corrosion via saltwater treatment of the test piece
and reference data of the thickness reduction in a reference test piece were used for training data.
By using the trained machine learning methods, the errors for the outputs of the machine learning
models were smaller than those for the evaluation in monitoring data of our previous study.

Keywords: ACM sensor; steel test piece; strain measurement; machine learning; supervised learning

1. Introduction

To prevent serious accidents from occurring due to the aging of buildings and infras-
tructure, and to maintain safety, corrosive factors in the environment must be accurately
measured and the appropriate maintenance performed. Studies on corrosion have been
conducted by various researchers. Perveen et al. [1] studied a printed circuit board with
a wireless, inductively coupled corrosion potential sensor to monitor the corrosion of
steel-reinforced concrete civil infrastructure. Almubaied et al. [2] investigated the evolution
of corrosion detected using fiber Bragg grating (FBG) sensing techniques and found a
correlation between the FBG wavelength shift and the corrosion percentage of the reinforce-
ment material. Hassan et al. [3] studied an optical sensor for monitoring the corrosion of
reinforcement rebar. This method offers a real-time and inexpensive technique for appli-
cations involving remote monitoring. Hu et al. [4] developed a corrosion sensor for steel
based on an iron film-coated optical fiber polarizer which can be used for monitoring the
early stage of steel corrosion by building the relationship between the corrosion status
and the polarization characteristics. Chen et al. [5] investigated modifying the relationship
between the Bragg wavelength shift and the axial strain of the FBG to make highly accurate
predictions of the level of corrosion of a steel bar embedded in concrete. Al Handawi et al. [6]
researched a strain-based FBG corrosion sensor and tested the sensor on mild steel speci-
mens to demonstrate its capability to measure the corrosion rate with real-time monitoring.
Shitanda et al. [7] developed an electrochemical sensor for monitoring the corrosion of a cir-
cuit board and demonstrated its usability for the detection of sulfur gas and high humidity.

Some researchers have worked on atmospheric corrosion monitoring for many years
by using electrochemical methods such as electrochemical noise (EN) and electrochemical
impedance spectroscopy (EIS). Xia, Dahai et al. [8] established a portable EN monitoring
system, designed two electrochemical probes, and concluded that EN can be used as
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a new method to identify the form of corrosion resistance in atmospheric conditions.
Nishikata et al. [9] monitored weathering steel corrosion under natural atmosphere by an
EIS. Xia, D. H et al. [10] reviewed electrochemical probes and sensors used to detect and
monitor atmospheric corrosion and concluded that the gap between adjacent electrodes
and electrode sides affect the electrochemical measurement results.

Additionally, some researchers have studied atmospheric corrosion monitoring (ACM)
sensors. Shinohara et al. [11] developed an ACM sensor consisting of an Fe-Ag galvanic cou-
ple and evaluated the corrosiveness of outdoor and indoor environments. Mizuno et al. [12]
investigated an ACM sensor for automotive parts that was based on an analysis of the
correlation between the output of ACM sensors and the corrosion rates of actual materials.

Our previous studies have proposed an ACM sensor using strain measurements [13–16].
Nining et al. [15] studied an ACM sensor using strain measurements with the active–
dummy method and reported that the measured signals of the test piece corresponded to
its thickness reduction. However, these signals contained errors induced by temperature
changes and corrosion products.

To improve the evaluation of the corrosion caused in an environment, some researchers
have focused on applying the machine learning methods to the study of corrosion eval-
uation. Aghaaminiha et al. [17] modeled measurements of the corrosion rates of carbon
steel as a function of time and found that the sensitivity of corrosion rates to changes
in the environmental variables were well predicted by a trained random forest model.
Pei et al. [18] studied predicting instantaneous atmospheric corrosion using an Fe/Cu-type
galvanic corrosion sensor and a random-forest-based machine learning approach.

As mentioned above, by using machine learning, the data concerning corrosion could
be used to make more accurate corrosion evaluations. This study applied machine learning
methods to the data obtained from our previous study and evaluated the amount of
thickness reduction of a low-carbon steel test piece.

2. Methods
2.1. ACM Sensor Based on Strain Measurements

When the test piece is damaged by corrosion, the thickness of the test piece decreases
and the strain at the surface changes. The strain gauge attached to the test piece measures
the strain and calculates the thickness reduction based on the following theory.

Figure 1 shows a test piece with thickness h, bending moment M, radius of curvature
ρ, and corrosion-induced thickness reduction ∆h under the bending moment. The A-A
plane is subjected to compressive strain and the B-B plane is subjected to tensile strain.
The length of the O-O plane after bending is equal to the length of the O-O plane before
bending. The O-O plane after bending is thus ρdθ, as shown in Figure 1a. Since the length
of the A-A plane after bending is

(
ρ − h

2

)
dθ, the strain ε induced in the A-A surface can be

expressed by Equation (1).

ε =

(
ρ − h

2

)
dθ − ρdθ

ρdθ
= − h

2ρ
(1)

∆h is generated due to corrosion, as shown in Figure 1b, and the B-B and O-O planes
move to the B’-B’ and O’-O’ planes. Since ∆h is negligibly small compared to ρ, the radius
of curvature ρ − ∆h/2 can be approximated by ρ. The change in strain is expressed by
Equation (2).

∆ε = −∆h/2ρ (2)

Corrosion-induced thickness reduction ∆h can be obtained by rewriting Equation (2)
to Equation (3).

∆h = −2ρ∆ε (3)
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The decrease in the test piece thickness can be measured by the change in strain at the
constant radius of curvature ρ. Therefore, based on Equation (3), we can monitor the level
of corrosion by measuring the strain with a sensor.
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2.2. Data Collection with an ACM Sensor

The test piece was 95 mm in length, 45 mm in width, and 0.5 mm in thickness. The
material was low-carbon steel and the total area exposed to corrosion was 1350 mm2. A
schematic diagram of the test piece is shown in Figure 2. The ACM device also had a
base and cover with ρ = 430 mm, as in reference [15]. The test piece was placed in the
apparatus. Active and dummy strain gauges were installed on the back surface, as shown
in Figure 2. A full bridge with 2 active and 2 dummy gauges was employed to enhance the
accuracy of the measurement. In addition, to cancel noise from the strain measurement
circuit, two identical strain measurement circuits were manufactured, and one of them
was used as a dummy circuit [14,15]. The active gauges of the active circuit detected strain
based on changes in the thickness of the test piece, temperature changes, and the formation
of corrosion products. The dummy gauges of the active circuit detected the strain changes
only due to the temperature. By taking the difference between the active and dummy gauge
values, the change in strain due to the temperature can be removed and these differential
values were taken to be the actual amount of thickness reduction due to corrosion in the
test piece.

Corrosion monitoring data were collected for 83 days and the measurements are
plotted in Figure 3. The time interval was 10 min and there were 11,962 data points in
total. In Figure 3, the left vertical axis is the strain measured by the sensor and the right
vertical axis is the temperature. The red circles are the decreases in the thickness of the
reference coupon test piece. Since the reference test piece was installed near the sensor,
it was assumed that the conditions were the same as that of the test piece installed near
the sensor. In addition, the reference test piece underwent the same saltwater treatment
as the test piece of the ACM sensor. The blue line is the active gauge data, the green
line is the dummy gauge data, and the yellow line is the temperature. The active gauge
strain decreased until about the 40-day mark, after which it then showed an increasing
trend. On the other hand, the dummy gauge strain was gradually decreasing overall. The
temperature was gradually increasing due to seasonal factors with the daily range. The
black line is the difference between the active and dummy values, and these data were
used as the monitoring data. In our previous study [14], three stages of the black line were
described. The first stage was considered the initial condition and preceded the application
of a saltwater spray. This stage lasts for 15 days and during this time, the reduction in
thickness is almost always measured to be 0 mm, as in Figure 3. The second stage defines
the conditions from day 15 to 40 after spraying the salt water, in which corrosion products
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are generated, as shown by the negative trend in the measured strain. During this time, the
test piece thickness is increased by the accumulation of corrosion products. The third stage
demonstrates corrosion progression. It showed a positive trend in the measured strain,
which indicates that the test piece thickness decreased due to corrosion. This type of data
therefore poses two problems for accurate corrosion monitoring. The first is the negative
trend of the second stage. According to Equation (3), strain increases when thickness
decreases; however, the strain decreased. The second is the noise in the overall data. The
goal of our research is to eliminate these problems and produce more accurate predictions
of the actual corrosion rate by applying machine learning methods.
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3. Machine Learning Approach to Predicting Corrosion
3.1. Supervised Learning

Supervised learning was used in the present study. A portion of the measurement data
from our previous study was used as training data for the model. Initially, the measure-
ments made during the first stage, in which it was clear that the strain was zero, were used
as training data. The number of these training data points was 2161. However, from these
data alone, we were unable to train the model to correctly evaluate the thickness reduction,
which should have increased over time; therefore, the final thickness reduction was also
entered as one training data point corresponding to the endpoint of the measurements.
According to the known thickness reduction of the reference test piece, the final value of the
strain was about 100 µε. This value was chosen as a training data point for the corrosion
progression region and the details of all the training data are summarized in Table 1.

Table 1. Training data characteristics.

Description Value Number of Data Points

Strain before spraying 0 2161
Final strain 100 1

Total number 2162

In this study, a neural network and a support vector machine were used as the machine
learning methods. The software Orange Canvas [19], which is a software that allows for
visual programming by combining widgets, was used for the training and validation of the
machine learning model.

3.2. Data Preprocessing

Before training the model, preprocessing of the monitoring data was performed.
By applying a four-day moving average, noise due to abrupt temperature changes was
removed, as shown in Figure 4. The data with this moving average applied were used as
features in the machine learning training to create a model that can evaluate the amount of
thickness reduction of the test piece after 83 days.
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3.3. Model Validation

We validated the performance of the machine learning model. The data from the first
stage were divided into two sets and used as training data and test data. The moving
average data for the active gauge, the dummy gauge, and the temperature were used as
the features. The value of the first stage was considered to be zero because the first stage
occurs before spraying the saltwater, that is, the thickness reduction is zero. To compare
the accuracy of the evaluation results, the root mean square error (RMSE) was used. The
RMSE is given by the formula in Equation (4). Here, fk is the value predicted by machine
learning, yk is the ideal value of the monitoring data, that is, fk = 0 mm, and n is the number
of data points.

RMSE =

√
1
n

n

∑
k=1

( fk − yk)
2 (4)

The machine learning models predicted values of mostly zero and a small error was
obtained. Root mean square errors between the data source and reference data are shown in
Table 2. We then proceeded to apply the trained models to predict the thickness reduction
over a period corresponding to the entire monitoring duration.

Table 2. Root mean square error of the data before corrosion generates.

Data Source Root Mean Square Error [µm]

Neural network prediction 0.5
Support vector machine prediction 0.0

Monitoring data 1.4

3.4. Evaluation Result

The level of corrosion over the entire monitoring period was evaluated using two
machine learning models, namely a neural network and a support vector machine trained
with the data described in Section 3.1. The neural network employed in the study had
20 layers. The activation function was ReLu and the solver was Adam. The architecture of
the neural network was set up after examining several patterns in the preliminary analysis.
In the support vector machine, the regression type was used. The linear function was set as
the kernel function. The cost was 1 and the regression loss was 0.1. The data for the four-day
moving averages of the active gauge strain, dummy gauge strain, and temperature, as well
as the elapsed time since the start of the experiment, were used as features. The RMSEs
between the reference test piece data and the evaluation results of the machine learning
models are summarized in Table 3, and the relationships between the reference piece data
and the results predicted by both the neural network and the support vector machine are
shown in Figure 5. The black circles in Figure 5 indicate the amount of thickness reduction
of the reference test piece, the solid line is the prediction result of the neural network, and
the dotted line is the prediction result of the support vector machine. The values during
the first 15 days were predicted to be 0 µm by the neural network and had a small error
based on the thickness reduction values of the reference test piece. After 15 days, there
were temporary decreases, but the overall trend was a continued increase and the error also
became smaller. After 40 days, there were again temporary decreases, but the overall trend
was also a continued increase. On the other hand, the values for the first 15 days predicted
by the support vector machine were not 0 µm. The support vector machine predictions
showed an increasing trend until day 20 and then decreased until day 40.

In the present study, we were able to use a neural network to obtain predicted results
that were closer to the amount of thickness reduction in the reference test piece than the
data obtained by ACM sensors. These results suggest that neural networks can be suitable
for improving the accuracy of predicted atmospheric corrosion.
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Table 3. Root mean square error of the thickness reduction between reference values, predicted
values, and monitoring data.

Data Source Root Mean Square Error [µm]

Neural network prediction 8.8
Support vector machine prediction 15.7

Monitoring data 31.1
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4. Conclusions

In this study, we applied machine learning to an ACM sensor using strain measure-
ments with an active–dummy method. We used a neural network model and a support
vector machine model as regression models to predict the total thickness reduction due to
corrosion. The model was trained using the following features: the active gauge strain, the
dummy gauge strain, temperature, and elapsed time. The active gauge, dummy gauge, and
temperature data had four-day moving averages applied to remove noise due to abrupt
temperature change. The performance of the machine learning models was evaluated with
validation data corresponding to the 15 days before the corrosion started. It was found that
the errors between the predicted values by the machine learning models and the test data
were small, and the models were deemed adequate. The models were then used to predict
the thickness reduction over the entire monitoring period and these values were compared
to those of the reference test piece. The errors for the outputs of the machine learning
models were smaller than those for the evaluation in monitoring data of our previous
study [15]. The results of this study demonstrate that an ACM sensor with applied machine
learning may have the potential to be applied in the maintenance of, for example, steel
structures or buildings.
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