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Abstract: The porosity defects in the ingot, which are caused by moisture absorption in slag during
the electroslag remelting process, deserve the researcher’s attention in the summer wet season.
The prediction of slag weight gain caused by moisture absorption is critical for developing slag
baking and scheduling strategies and can assist workshop managers in making informed decisions
during industrial production of electro slag remelting. The moisture absorption in slag under the
conditions of different air humidity, experimental time, slag particle size, and CaO content in the
slag are investigated by slag weight gain experiments. The purpose of this study is to predict the
rate of weight gain in slag using observed weight gain data and machine learning (ML) models. The
observation dataset includes features and rate of weight growth, which serve as independent and
dependent variables, respectively, for ML models. Four machine learning models: linear regression,
support vector regression, random forest regression, and multi-layer perceptron, were employed
in this study. Additionally, parameters for machine learning models were selected using 5-fold
cross-validation. Support vector regression outperformed the other three machine learning models in
terms of root-mean-square errors, mean squared errors, and coefficients of determination. Thus, the
ML-based model is a viable and significant method for forecasting the slag weight gain rate, whereas
support vector regression can produce results that are competitive and satisfying. The results of slag
weight gain data and ML models show that the slag weight gain increases with the increase of air
humidity, experimental time, slag particle size, and CaO content in the slag. The porosity defect in the
ingot during the ESR process often appears when the moisture in the slag exceeds 0.02%. Considering
saving electric energy, the complexity of on-site scheduling, and 4 h of scheduling time, the slag T3
(CaF2:CaO:Al2O3:MgO = 37:28:30:5) is selected to produce H13 steel ESR ingot in the winter, and slag
T2 (CaF2:CaO:Al2O3:MgO = 48:17:30:5) is selected to produce H13 steel ESR ingot in the summer.

Keywords: electroslag remelting; slag moisture absorption; machine learning; SVR; ingot porosity defects

1. Introduction

Electroslag remelting (ESR) is utilized to manufacture special steels [1,2] as for its
excellent solidification structure and secondary slag refining. It is a significant advantage
that good contact between metal and slag makes the steel chemically refined. However, the
existence of the slag phase has the disadvantage of controlling the porosity defects in the
ingot in the summer wet season due to the moisture absorption in slag. Moisture will be
absorbed into slag as a result of the reactions at the slag interface. During the industrial
ESR process, the moisture content of the slag plays a significant role in the formation of ESR
ingots [3–8]. Several investigations [9,10] have shown that moisture may be removed by
preheating the slag before ESR, while Polonsky et al. [11] indicated that extensive porosity
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and defects near sample surfaces are typically much more difficult to eradicate. Although
the slags were baked for 12 h at 700 ◦C before the ESR process, the porosity defects [12–15]
remain in the ESR ingot, as seen in Figure 1. It is the time from taking the slag out of
the heating furnace to adding it into the ESR furnace that causes moisture increase in the
slag. Furthermore, the heated slag will reabsorb moisture when put in humid air [16–20].
Moisture absorption of heated slag during the period from taking it out of the heating
furnace to putting it into the ESR furnace has a large influence on porosity defects of
ingot [21–23]. Moisture is absorbed into metal or slag as a result of processes at the slag
interface. Moisture in ESR slag has been a topic of much discussion on a practical level, but
there is a dearth of research on the weight gain prediction of slag in the literature. As far as
we know, this is the first study to employ machine learning techniques to design and assess
the performance of machine learning algorithms for the prediction of slag weight gain rate,
and it is worthwhile evaluating the moisture absorption capacity of heated slag in humid
air in advance, using machine learning (ML) techniques to assist the producer in making
more precise decisions.
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was taken from the authors’ ESR experiments.

The applications of ML techniques have grown dramatically in recent years, and they
are now widely used in a variety of fields. Han et al. [24] and Tandel et al. [25] employed
ML methods to voice recognition and speaker recognition. Kaur et al. [26] proposed an
ML-based system to accurately categorize the Sunflower flower in its natural habitat with
an accuracy of 88.52%. Celli et al. [27] revealed that the ML-based approaches performed
well when predicting the personality and interaction features of users’ profile images.
Dada et al. [28] recommended using more advanced ML methods, such as deep learning
techniques, to combat email spam. Choi and Lim [29] identified that the ML-based strategies
may also be utilized to safeguard adviser interests. Even in the sphere of healthcare,
ML-based strategies have been widely implemented. Karaman et al. [30] constructed a
convolutional neural networks model to automate the detection of Parkinson’s disease
with a high degree of accuracy. Notably, Alhudhaif et al. [31] and Polat et al. [32] employed
ML techniques to diagnose the new coronavirus disease 2019 (COVID-19), which sped
up the COVID-19 diagnosis and saved crucial time for disease control. ML is a subfield
of computer science concerned with the study of algorithms capable of learning from
and generalizing on data. Within ML, there are two primary paradigms: regression and
classification [33]. Regression entails the collection of input variables and predicting the
value of the output (dependent) variable(s). It is based on forecasting a numeric value
by estimating the connections between variables (independent and dependent variables)
(with an associated variance, in some cases). On the other hand, classification refers to the
process of accepting input variables and determining which of the N classes they belong to,
using training data from exemplars of each class. In this respect, it is based on the discovery
of decision boundaries that are suitable for separating the various classes.
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ML algorithms may “learn” complicated relationships between predictors and the
target variable, as well as interactions between predictors, without requiring the underlying
model to be specified [34]. ML also caught the attention of the steel sector [35–37]. Hence,
it is an intriguing study topic if ML techniques enable superior moisture absorption of
heated slag decisions. We address this challenge by studying ML techniques for a highly
relevant issue in active portfolio management: slag weight gain rate (SWGR) predictions in
the humid air.

As previously stated, the purpose of this work is to predict the SWGR using a regres-
sion model constructed from training data. Regression analysis is a statistical procedure
that involves the construction of mathematical models between dependent and indepen-
dent variables [38]. With regression analysis, one may determine the relationship that exists
between input and output while controlling for other independent factors. For machine
learning regression analysis, the objective is to map the relationship between inputs re-
ferred to as features and continuous numeric values as predictors. ML-based regression
algorithms will be beneficial for a range of applications. Linear regression (LR) [39], support
vector machine regression (SVR) [40,41], random forest regression (RFR) [42,43], and multi-
layer perceptron (MLP) [44] models are all frequently used ML regression approaches, and
they are also employed in this study.

This paper is organized as follows: Section 2 describes the research process, SWGR
experiment design, and the ML methods employed in this study. Section 3 presents the
results and discussion of the experiment described in Section 2.1 and the performance
assessment of the machine learning methods used to predict the SWGR. Finally, Section 4
describes the conclusions of this study.

2. Experiments and Machine Learning Methods

In accordance with Figure 2, the proposed approach is separated into several stages.
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Figure 2. Research process overview.

The first step was to conduct an experiment on slag weight gain in humid air and
to record the results in a database, and this step was carried out with the assistance of
several specialists. The second step in our methodology is data preprocessing, during
which the data is normalized to standardize the units of measurement and therefore enable
data comparison. Following the preprocessing step, the prediction step employed four
machine learning algorithms, and the prediction models were trained using 5-fold cross-
validation. The RMSE, MSE, and R2 values were utilized to compare the performance of
SWGR prediction accuracy during the assessment step.

2.1. Slag Weight Gain in Humid Air Experiment Design

In this section, the slag weight gain experiment is presented. In the slag weight gain
experiment in humid air, three kinds of pre-melted slag containing different amounts of
CaO are used, and the composition of slag is listed in Table 1.
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Table 1. Composition of pre-melted slag used in weight gain experiment.

Slag. CaO (%) CaF2 (%) Al2O3 (%) MgO (%)

T1 5 60 30 5
T2 17 48 30 5
T3 28 37 30 5

The experimental device used for slag weight gain is shown in Figure 3. It can be
seen that the slags were contained in the petri dishes, and the water was heated by the
constant temperature water generator. In addition, the sensors used in this experiment
have a high degree of accuracy; in particular, the hygrometer sensor has a range of 10–99%
and a measurement accuracy of ±(2–3%), and the highly precise electronic scale has a
weight limit of 320 g and a measurement accuracy of 0.001 g.
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Figure 3. The experimental device of SWGR.

The following describes the experimental procedure: (i) The pre-melted slags are
processed into different particle sizes; (ii) The slags were heated for 12 h at 700 ◦C to
fully remove moisture before experiments; (iii) The 100 g heated slags were put into the
experimental device described in Figure 3 for 4, 8, 16, 32 h; (iv) The weight gain values of
slags in each experiment were measured by high precision electronic scale. Following the
experiments, Figure 4 summarizes the experimental settings and corresponding weight
gain rate results.
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2.2. Dataset Description

The data were collected from actual observed data of the experiment mentioned in
Section 2.1. The SWGR served as the objective of this study, and four independent variables
were used as inputs to predict the SWGR. To model and assess SWGR prediction, this study
employed a total of 72 data observations from the experiment. The experiment dataset was
separated into training and test subsets. In general, for the purpose of SWGR prediction,
the test dataset consisted of 15 points (20% of the dataset), whereas the training dataset
comprised 57 points of 72 records (80% of the dataset).

The variables employed in this study are listed in Table 2. Additionally, the Pearson
correlation coefficient (PCC) [45] was employed to determine which independent variables
had a significant correlation coefficient with the SWGR. The PCC column in Table 2 de-
scribes the relationship between the independent variables and the SWGR variable. The
PCC findings indicate that the quantity of CaO in the slags has a greater effect on the
SWGR than the other independent variables, whereas humidity and slag particle size have
a similar effect. Furthermore, the statistical information is summarized in Table 3.

Table 2. Description of variables and the PCC.

Types of Variables Attribute Name Description PCC

Independent
variables

X1 Slag particle size 0.371
X2 CaO % 0.563
X3 Humidity 0.353
X4 Placement time 0.406

Dependent variable Y Weight gain rate -

Table 3. Statistics information for the dependent variable and independent variables.

X1 X2 X3 X4 Y

Mean 61.67 16.67 66.00 15.00 0.027
Std. 29.16 9.46 12.08 10.80 0.029
Min 30.00 5.00 54.00 4.00 0.001
Max 100.00 28.00 78.00 32.00 0.150

Standardization was used to preprocess the dataset’s characteristics. This step is
critical because the attributes in the dataset obtained had varying scales. Standardizing
the data allowed for the adjustment of these values to a similar condition. The MinMax
approach was employed in this study to transform attribute values into [0, 1] scaled values,
as described in Equation (1).

x′ =
x−min(x)

max(x)−min(x)
(1)

where x is the relevant variable.
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2.3. Machine Learning Methods

Four machine learning models for predicting and analyzing SWGR were developed in
Python (version 3.8, Python Software Foundation, Beaverton, OR, USA) using the scikit-
learn (version 0.24) [46] package. The ML experimental setup comprised of a 2.9 GHz Intel
Core i7 node with 16 Gb ram. Since the dataset in this study is relatively limited, only the
central processing unit (CPU) was used to train all ML models. The employees recorded
experimental data such as slag particle size, CaO percent, humidity, and placement time (in
hours). The critical phase in data preprocessing is determining which models to attempt
to fit the data. The study’s problem is a single-output regression-type machine learning
problem. Single-output regression is used to describe situations involving the prediction
of a single numerical value given a set of input samples. Numerous machine learning
algorithms have been developed to predict a single numeric number. The following models
were chosen for this study due to their ease of implementation using the scikit-learn
package and their popularity in real-world data fitting situations. Each of the four models
was trained independently using the same training data and was evaluated using the same
testing data.

2.3.1. Linear Regression (LR)

By minimizing the residual sum of squares between the observed and anticipated
data, linear regression is used to build a model with coefficients [33]. It is used to examine
if a dependent variable and one or more independent variables have a linear relationship.
The purpose of this study was to construct a linear regression method and to fit a model
using the training data. After training, the model was validated using the test sub-dataset
to evaluate the performance of prediction accuracy.

2.3.2. Support Vector Regression (SVR)

SVR is a kind of supervised machine learning algorithm based on statistical learning
theory [47]. In comparison to the linear regression method, SVR is effective in modeling
nonlinearly related features and solving regression tasks. SVR is a popular machine learning
approach that is utilized in numerous applications [48,49]. One of the reasons for SVR’s
widespread utilization is that it makes use of kernels. A kernel is a function that maps
the feature vectors to a higher dimension, allowing features that are not linearly separable
in lower dimensions to become separable. Kernels are very beneficial when dealing with
complex and nonlinear tasks. The linear, polynomial, radial basis function (RBF), and
sigmoid kernels are all types of SVR kernels [47]. The RBF kernel with a value of 0.15 was
employed in this study.

2.3.3. Random Forests Regression (RFR)

Random forest or random decision forest is an ensemble learning method for classifi-
cation, regression, and other tasks [50]. It works by building a lot of decision trees (DTs)
at training time and then outputting the class that is the mode of the classes or the mean
prediction of the individual trees. In this study, the RFR scikit-learn estimator was built,
trained, and tested with the datasets used in this study. There are nodes, branches, and
leaves in the structure of a DT model. The nodes are features or predictors, and the branches
are decisions. The leaves are responses or outputs. Regression DT can output continuous
values that can be used to model SWGR. This RFR can fit data, make predictions quickly,
and use very little memory.

2.3.4. Multi-Layer Perceptron (MLP)

Artificial neural networks, colloquially referred to as neural networks, are inspired
by the structure and operation of the human brain’s nervous system. Their objective is
to elucidate the enigma of human intelligence via the examination of the human brain’s
composition mechanism and way of thought [51]. Neurons are the fundamental building
blocks of neural networks, and the connecting of a large number of neurons in a neural
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network generates a variety of intelligent actions. Each neuron can receive a set of input
signals from other neurons, each input representing a weight, and the neuron’s output
is determined by the weighted sum of all inputs. There are several techniques to link
neurons in neural networks. Different connecting mechanisms result in a variety of network
connection models. The multi-layer perceptron (MLP) is a type of neural network that
consists of numerous hidden layers linked by neurons [52]. MLP is often utilized as a
feed-forward supervised neural network and is frequently used due to its simple design,
rapid operation, ease of construction, and ability to solve complex classification tasks. Three
primary layers comprise the MLP system: an input layer, a hidden layer, and an output
layer. These three primary layers are employed for data intake, data transport, and data
output. The hidden layer’s purpose is to send the results to the output layer. Each neuron’s
output can be scientifically characterized as given in Equation (2):

yi = f
(
∑ wijxi

)
(2)

where yi is the input that a single node j receives. The function f is a threshold, sigmoid,
or hyperbolic tangent function. wij denotes the weights between nodes i and j, while xi
denotes the output from node i.

2.4. Cross Validation

Both ML methods and regularized linear models rely on the selection of “tuning pa-
rameters” [53,54]. In essence, these parameters specify the degree to which a model adapts
to the training data. Tuning parameters include, but are not limited to, the penalization
parameter in linear regression, as well as the number or depth of trees in the random forest
and boosting. Tuning parameters can be adjusted to extreme values, resulting in a model
that is complicated and adapts nearly flawlessly to the training data. However, models
that are extremely well-adapted to the training data are frequently “overfitted”, meaning
they perform badly out-of-sample on the data from the test set [55]. This is especially true
when the data has a high level of noise, as is the situation with equity market forecasts. To
avoid overfitting models, we employ the standard technique of “cross-validation”. Cross-
validation is a technique for simulating an out-of-sample test of the model. The N-fold
cross-validation divides the training set into N randomly chosen subsets, with (N − 1)
subsets used for training and the remaining subset used for validation. The final model is
tuned using the parameters that minimize the forecast error over the n validation sets. All
models undergo five-fold cross-validation, and “tuning parameters” are estimated directly
from the data.

2.5. Evaluation Metrics

After proposing a set of models, evaluation metrics for the models were provided
to compare their performance. The implemented models were evaluated using root-
mean-square errors (RMSE), mean squared errors (MSE), and coefficients of determination
(R2) [56]. RMSE is one of the most commonly used statistics for estimating prediction
error. The MSE statistic is another type of statistical indicator that is used to quantify the
absolute error between observed and anticipated values. R2 denotes the degree to which
the expected and observed data are linearly related. The lower the MSE score, the more
accurate the prediction outcomes are. The R2 is a percentage value that indicates how much
the dependent variable varies in a regression model. These three indices are frequently
used to assess the predictive performance of models in the field of regression issues. The
equations of these three methods are defined in (3)–(5), Yi is the actual value and Ŷi is the
forecast value, where Y is the mean of the observations and Ỹ is the mean of the prediction,
and N is the size of the test data.

MSE = ∑N
i=1 (Yi − Ŷi)

2 (3)



Metals 2022, 12, 958 8 of 14

RMSE =

√
∑N

i=1 (Yi − Ŷi)
2

N
(4)

R2 =

(
∑N

i=1(Yi − Ỹ)(Yi −Y)
)2

∑N
i=1 (Yi − Ỹ)

2
∑N

i=1 (Yi −Y)2 (5)

3. Results and Discussion
3.1. Prediction of Weight Gain Rate by Machine Learning Methods

This section compares four models (LR, RF, SVR, and MLP) using three metrics: RMSE,
MSE, and R2. We trained and tested the models using 5-fold cross-validation, and the
end results are the metric’s average values. Table 4 summarizes the performance of the
proposed methodologies in predicting the SWGR. As shown in Table 4, SVR performs
the best in terms of MSE and R2 (R2 = 0.9545), MLP follows closely behind (R2 = 0.9326),
while LR performs the lowest (R2 = 0.2717). To gain a better understanding of the models’
performance, plots of anticipated outputs versus actual observations are constructed for
the test dataset (14 points), as illustrated in Figure 5. The ideal scenario in this plot would
be for all points to lie on a straight line with a slope of 1, indicating that all predictions
are identical to observations. As seen in Figure 5, the SVR and MLP models outperform
the other models in terms of visual results. As shown in Table 4, the SVR (R2 = 0.9545,
RMSE = 0.0008) and MLP (R2 = 0.9326, RMSE = 0.0371) performed similarly to and better
than other models, owing to their higher R2 scores and lower RMSE and MSE values. MLP
typically performs better than other machine learning approaches because it can learn
non-linear and complicated behaviors extraordinarily well. Due to the SVR’s similarity to
the MLP, it may be used to generate accurate predictions regarding the SWGR issue. On
the other hand, the poor performance of the LR (R2 = 0.2717, RMSE = 0.1009) model
for SWGR prediction implies that the SWGR and independent variables exhibit non-
linear and complicated behaviors. Additionally, the performance of SVR against MLP
demonstrates that the use of artificial neural network-based algorithms should not be the
sole machine learning approach, and classic machine learning algorithms may do quite
well in some sectors.

Table 4. Performance evaluation of proposed regression models.

Model RMSE MSE R2

LR 0.1009 0.0112 0.2717
RF 0.0753 0.0062 0.7229

SVR 0.0270 0.0008 0.9545
MLP 0.0371 0.0023 0.9326
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As shown in Figure 6, the SVR model was used to predict the change in slag weight
gain rate with storage time in humid air under different conditions. It is clear that the
predicted results in Figure 6 are in good agreement with the measured data in Figure 4.
Additionally, Figure 6a demonstrates that the smaller the slag particle size, the greater the
slag gains weight. As seen in Figure 6b, the weight gain rate of slag increases as its CaO
concentration increases. Figure 6c demonstrates that air humidity has a significant effect
on the moisture absorption of heated slag during the transition from the heating furnace to
the ESR furnace, which plays a significant role in the ingot’s porosity defects. Summer’s
humid environment is a significant contributor to ingot defects.
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3.2. Analysis of Reasons for Slag Weight Gain

The primary cause of slag weight gain in humid air is the reaction CaO(s) + H2O(g)
= Ca(OH)2(s). After the slags were pre-melted, the CaO in the slags can form CaxAlyOz
compound with Al2O3, which can effectively prevent free CaO from combining with H2O.
T1 contains 5% CaO and T2 contains 17% CaO, there is almost no free CaO in these slags,
and existing much CaxAlyOz in slag systems, the slag weight increases slowly, as shown in
Figure 6b. T3 contains 28% CaO, and the existing free CaO caused the rapid increase rate
of slag weight.

In order to verify whether there is free CaO in each kind of slag, the element distribu-
tion of slag T1, T2, and T3 is analyzed by a scanning electron microscope (SEM) equipped
with an energy dispersive spectrometer (EDS), and the results are shown in Figures 7–9,
respectively. It is clear that: (i) slag T1 without free CaO has a very low rate of slag weight
gain; (ii) with the appearance of free CaO in slag T2, the slag weight gain rate is higher than
that of slag T1; (iii) slag T3 with a large amount of free CaO has the very high rate of slag
weight gain. With the increase of CaO in slag, the formation of CaxAlyOz is not enough to
eliminate all free CaO, which causes the increase in slag weight gain rate.

3.3. Application of Machine Learning Methods

The prediction of the SWGR and the reasons for weight gain were analyzed by machine
learning methods and SEM-EDS in the previous sections, respectively. In order to make
better use of the machine learning results, the ideal placement time before the pre-heated
slags can be put into the ESR process was estimated using the trained SVR model in order
to improve efficiency. The 5-ton ESR experimental results of electro slag remelting for
one year under different kinds of slag with 100 particle size are summarized in Table 5.
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The pre-melted slags were baked for 12 h at 700 ◦C before the ESR process. The power
consumption per ton of steel under the condition of slag T1, T2, and T3 are 1470~1500 kW h,
1220~1240 kW h, and 950 kW h, respectively. Slag T3 is more conducive to saving electric
energy. According to the data statistics in Table 5 and the experiments on slag weight gain,
the porosity defect in the ingot during the ESR process often appears when the SWGR
exceeds 0.02%. Thus, with the trained SVR-SWGR model, the target value was set to 0.02,
and the slag placement time between being taken out of the heating furnace and added
into the ESR furnace is calculated under different conditions, as shown in Table 6.
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Table 5. Porosity defects in ingots during ESR process under different seasons and slag system.

Slag. Steel Moisture Absorption Time (h) Season in Coastal Areas Atmospheric Humidity Porosity
in Ingot

Power Consumption
per Ton Steel

kW·h

T1 H13 38 Winter 43% Yes 1490
T1 H13 33 Winter 43% No 1500
T1 H13 16 Summer 78% Yes 1470
T2 H13 15 Winter 43% No 1240
T2 H13 5 Summer 78% Yes 1220
T3 H13 5 Winter 43% Yes 950

Notes: Moisture absorption time is the time from taking the slag out of the heating furnace to adding it into the
ESR furnace.

Table 6. Prediction of porosity defects in ingots analyzed by machine learning methods.

Slag. Steel Moisture Absorption Time (h) Season in Coastal Areas Atmospheric Humidity Porosity
in Ingot

T1 H13 >36 Winter 43% Yes
T1 H13 >16 Summer 78% Yes
T2 H13 >18 Winter 43% Yes
T2 H13 >4 Summer 78% Yes
T3 H13 >5 Winter 43% Yes
T3 H13 >1.5 Summer 78% Yes

Table 6 shows that if the placement time is less than 5 h in winter, all three kinds of
slags can avoid the porosity defect in the ingot. The slag T3 will most likely cause a porosity
defect in the ingot if the placement time is more than 1.5 h in summer. Considering the
complexity of on-site scheduling and 4 h of scheduling time, all three kinds of slag can
be used to produce an ESR of H13 steel in the winter, and it is forbidden to use slag T3
to produce an H13 die steel ESR ingot in the summer. From the aspects of saving electric
energy and product quality, the slag T3 is selected to produce H13 steel ESR ingot in the
winter, and slag T2 is selected to produce H13 steel ESR ingot in the summer.

4. Conclusions

Moisture absorption of heated slag during the period from taking it out of the heating
furnace to putting it into the ESR furnace plays an important role in the porosity defects
of the ingot. This research investigates the slag weight gain in humid air by using four
machine learning models. The conclusions are as follows:

(1) The porosity defect in the ingot during the ESR process often appears when the
moisture in the slag exceeds 0.02%. Considering saving electric energy, the complexity
of on-site scheduling, and 4 h of scheduling time, the slag T3 (CaF2:CaO:Al2O3:MgO
= 37:28:30:5) is selected to produce H13 steel ESR ingot in the winter, and slag T2
(CaF2:CaO:Al2O3:MgO = 48:17:30:5) is selected to produce H13 steel ESR ingot in
the summer.

(2) The weight gain rate of slag increases with the increase of air humidity and CaO
content in slag. The smaller the slag particle size is, the greater the weight gain rate of
slag is. Free CaO in slag makes the air humidity have a large influence on the slag
weight gain rate.

(3) The SVR model can be used to make accurate predictions about “slag weight gain
in humid air”, and the calculated results of the SVR model agree well with the
measured data.

In the future, machine learning techniques such as deep learning models will be used
to assist in strengthening the steel industry’s management capability.



Metals 2022, 12, 958 12 of 14

Author Contributions: Conceptualization, G.Z. and D.H.; methodology, Y.H. (Yingbin Hu) and
D.H.; investigation, G.Z., D.H. and Y.H. (Yapeng Hu); writing—original draft preparation, G.Z.,
D.H., Y.H. (Yapeng Hu) and Y.H. (Yingbin Hu); writing—review and editing, D.Y., Q.Z. and X.L.;
project administration, X.L. and D.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This project is supported in part by the National Nature Science Foundation of China
with grant No. 51804205, in part by the National Key Research and Development Program of China
(No. 2021YFD2100605), in part by the Open Project Program of National Engineering Laboratory for
Agri-product Quality Traceability (AQT-2020-YB8).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shi, C.B.; Li, J.; Cho, J.W.; Jiang, F.; Jung, I.H. Effect of SiO2 on the crystallization behaviors and in-mold performance of

CaF2-CaO-Al2O3 slags for drawing-ingot-type electroslag remelting. Metall. Mater. Trans. B 2015, 46, 2110–2120. [CrossRef]
2. Duan, S.C.; Shi, X.; Wang, F.; Zhang, M.C.; Sun, Y.; Guo, H.J.; Guo, J. A review of methodology development for controlling loss

of alloying elements during the electroslag remelting process. Metall. Mater. Trans. B 2019, 50, 3055–3071. [CrossRef]
3. Chen, Z.Y.; Yang, S.F.; Qu, J.L.; Li, J.S.; Dong, A.P.; Gu, Y. Effects of different melting technologies on the purity of superal-loy

GH4738. Materials 2018, 11, 1838. [CrossRef] [PubMed]
4. Fang, J.L.; Pang, Z.G.; Xing, X.D.; Xu, R.S. Thermodynamic properties, viscosity, and structure of CaO-SiO2-MgO-Al2O3-TiO2-

based slag. Materials 2021, 14, 124. [CrossRef] [PubMed]
5. Lee, S.H.; Min, D.J. A novel electrochemical process for desulfurization in the CaO-SiO2-Al2O3 system. Materials 2020, 13, 2478.

[CrossRef]
6. Gao, Y.X.; Leng, M.; Chen, Y.F.; Chen, Z.C.; Li, J.L. Crystallization products and structural characterization of CaO-SiO2-based

mold fluxes with varying Al2O3/SiO2 ratios. Materials 2019, 12, 206. [CrossRef]
7. Leng, M.; Lai, F.F.; Li, J.L. Effect of cooling rate on phase and crystal morphology transitions of CaO-SiO2-based systems and

CaO-Al2O3-based systems. Materials 2019, 12, 62. [CrossRef]
8. Gu, S.P.; Wen, G.H.; Ding, Z.Q.; Tang, P.; Liu, Q. Effect of shear stress on isothermal crystallization behavior of CaO-Al2O3-SiO2

-Na2O-CaF2 Slags. Materials 2018, 11, 1085. [CrossRef]
9. Bandyopadhyay, T.R.; Rao, P.K.; Prabhu, N. Behavior of alloying elements during electro-slag remelting of ultrahigh strength

steel. Metall. Min. Ind. 2012, 4, 6–16.
10. Jiang, Z.; Dong, Y.; Liang, L.; Li, Z. Hydrogen pick-up during electroslag remelting process. J. Iron Steel Res. Int. 2011, 18, 19–23.

[CrossRef]
11. Polonsky, A.T.; Echlin, M.P.; Lenthe, W.C.; Dehoff, R.R.; Kirka, M.M.; Pollock, T.M. Defects and 3D structural inhomogeneity in

electron beam additively manufactured inconel 718. Mater. Charact. 2018, 143, 171–181. [CrossRef]
12. Jiang, Z.H.; Hou, D.; Dong, Y.W.; Cao, Y.L.; Cao, H.B.; Gong, W. Effect of slag on titanium, silicon and aluminum content in

superalloy during electroslag remelting. Metall. Mater. Trans. B 2016, 47, 1465–1474. [CrossRef]
13. Hou, D.; Jiang, Z.H.; Dong, Y.W.; Cao, Y.L.; Cao, H.B.; Gong, W. Thermodynamic design of electroslag remelting slag for high

titanium and low aluminium stainless steel based on IMCT. Ironmak. Steelmak. 2016, 43, 517–525. [CrossRef]
14. Hou, D.; Jiang, Z.H.; Dong, Y.W.; Gong, W.; Cao, Y.L.; Cao, H.B. Effect of slag composition on the oxidation kinetics of al-loying

elements during electroslag remelting of stainless steel: Part-2 control of titanium and aluminum content. ISIJ Int. 2017, 57,
1410–1419. [CrossRef]

15. Hou, D.; Jiang, Z.H.; Dong, Y.W.; Gong, W.; Cao, Y.L.; Cao, H.B. Effect of slag composition on the oxidation kinetics of al-loying
elements during electroslag remelting of stainless steel: Part-1 mass-transfer model. ISIJ Int. 2017, 57, 1400–1409. [CrossRef]

16. Hou, D.; Jiang, Z.H.; Qu, T.P.; Wang, D.Y.; Liu, F.B. Aluminum, titanium and oxygen control during electroslag remelting of
stainless steel based on thermodynamic analysis. J. Iron Steel Res. Int. 2019, 26, 20–31. [CrossRef]

17. Hou, D.; Wang, D.Y.; Qu, T.P.; Tian, J.; Wang, H.H. Kinetic study on alloying element transfer during an electroslag re-melting
process. Metall. Mater. Trans. B 2019, 50, 3088–3102. [CrossRef]

18. Hou, D.; Wang, D.Y.; Jiang, Z.H.; Qu, T.P.; Wang, H.H.; Dong, J.W. Investigation on slag-metal-inclusion multiphase reac-tions
during electroslag remelting of die steel. Metall. Mater. Trans. B 2021, 52, 478–493. [CrossRef]

19. Hong, L.; Chen, W.P.; Hou, D. Kinetic analysis of spinel formation from powder compaction of magnesia and alumina. Ceram. Int.
2020, 46, 2853–2861. [CrossRef]

20. Hou, D.; Jiang, Z.H.; Dong, Y.W.; Li, Y.; Gong, W.; Liu, F.B. Mass transfer model of desulfurization in the electroslag re-melting
process. Metall. Mater. Trans. B 2017, 48, 1885–1897. [CrossRef]

http://doi.org/10.1007/s11663-015-0402-2
http://doi.org/10.1007/s11663-019-01665-2
http://doi.org/10.3390/ma11101838
http://www.ncbi.nlm.nih.gov/pubmed/30261696
http://doi.org/10.3390/ma14010124
http://www.ncbi.nlm.nih.gov/pubmed/33396742
http://doi.org/10.3390/ma13112478
http://doi.org/10.3390/ma12020206
http://doi.org/10.3390/ma12010062
http://doi.org/10.3390/ma11071085
http://doi.org/10.1016/S1006-706X(11)60044-7
http://doi.org/10.1016/j.matchar.2018.02.020
http://doi.org/10.1007/s11663-015-0530-8
http://doi.org/10.1080/03019233.2015.1110920
http://doi.org/10.2355/isijinternational.ISIJINT-2017-148
http://doi.org/10.2355/isijinternational.ISIJINT-2017-147
http://doi.org/10.1007/s42243-018-0107-2
http://doi.org/10.1007/s11663-019-01690-1
http://doi.org/10.1007/s11663-020-02032-2
http://doi.org/10.1016/j.ceramint.2019.09.278
http://doi.org/10.1007/s11663-017-0921-0


Metals 2022, 12, 958 13 of 14

21. Liu, W.H.; Li, H.; Zhu, H.M.; Xu, P.J. Effects of steel-slag components on interfacial-reaction characteristics of permeable
steel-slag-bitumen mixture. Materials 2020, 13, 3885. [CrossRef] [PubMed]

22. Li, X.; Long, X.; Wang, L.Z.; Tong, S.H.; Wang, X.T.; Zhang, Y.; Li, Y.T. Inclusion characteristics in 95CrMo steels with different
calcium and sulfur contents. Materials 2020, 13, 619. [CrossRef] [PubMed]

23. Li, B.; Shi, X.; Guo, H.J.; Guo, J. Study on precipitation and growth of TiN in GCr15 bearing steel during solidification. Materials
2019, 12, 1463. [CrossRef] [PubMed]

24. Han, J.H.; Bae, K.M.; Hong, S.K.; Park, H.; Kwak, J.-H.; Wang, H.S.; Joe, D.J.; Park, J.H.; Jung, Y.H.; Hur, S.; et al. Machine
learning-based self-powered acoustic sensor for speaker recognition. Nano Energy 2018, 53, 658–665. [CrossRef]

25. Tandel, N.H.; Prajapati, H.B.; Dabhi, V.K. Voice recognition and voice comparison using machine learning techniques: A survey.
In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS),
Piscataway, NJ, USA, 1 March 2020; IEEE: New York, NY, USA, 2020; pp. 459–465.

26. Kaur, R.; Jain, A.; Kumar, S. Optimization classification of sunflower recognition through machine learning. In Proceedings of
the Materials Today-Proceedings, Bengaluru, India, 1–2 May 2021; Elsevier: Amsterdam, The Netherlands, 2022; Volume 51,
pp. 207–211.

27. Celli, F.; Bruni, E.; Lepri, B. Automatic personality and interaction style recognition from facebook profile pictures. In Proceedings
of the Proceedings of the 2014 ACM Conference on Multimedia (mm’14), Orlando, FL, USA, 3–7 November 2014; Association for
Computing Machinery: New York, NY, USA, 2014; pp. 1101–1104.

28. Dada, E.G.; Bassi, J.S.; Chiroma, H.; Abdulhamid, S.M.; Adetunmbi, A.O.; Ajibuwa, O.E. Machine learning for email spam
filtering: Review, approaches and open research problems. Heliyon 2019, 5, e01802. [CrossRef] [PubMed]

29. Choi, J.-A.; Lim, K. Identifying machine learning techniques for classification of target advertising. ICT Express 2020, 6, 175–180.
[CrossRef]

30. Karaman, O.; Çakın, H.; Alhudhaif, A.; Polat, K. Robust automated parkinson disease detection based on voice signals with
transfer learning. Expert Syst. Appl. 2021, 178, 115013. [CrossRef]

31. Alhudhaif, A.; Polat, K.; Karaman, O. Determination of COVID-19 pneumonia based on generalized convolutional neural network
model from chest X-ray images. Expert Syst. Appl. 2021, 180, 115141. [CrossRef]

32. Polat, Ç.; Karaman, O.; Karaman, C.; Korkmaz, G.; Balcı, M.C.; Kelek, S.E. COVID-19 diagnosis from chest X-ray images using
transfer learning: Enhanced performance by debiasing dataloader. J. Xray Sci. Technol. 2021, 29, 19–36. [CrossRef]

33. Chen, J.; de Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt,
U.A.; Katsouyanni, K.; et al. A comparison of linear regression, regularization, and machine learning algorithms to develop
europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 2019, 130, 104934. [CrossRef]

34. Gholamnia, K.; Nachappa, T.G.; Ghorbanzadeh, O.; Blaschke, T. Comparisons of diverse machine learning approaches for wildfire
susceptibility mapping. Symmetry 2020, 12, 604. [CrossRef]

35. Ivo, R.F.; de A. Rodrigues, D.; Bezerra, G.M.; Freitas, F.N.C.; de Abreu, H.F.G.; Rebouc, P.P. Non-grain oriented electrical steel
photomicrograph classification using transfer learning. J. Mater. Res. Technol. JMRT 2020, 9, 8580–8591. [CrossRef]

36. Colla, V.; Pietrosanti, C.; Malfa, E.; Peters, K. Environment 4.0: How digitalization and machine learning can improve the
environmental footprint of the steel production processes. Mater. Tech. 2020, 108, 507. [CrossRef]

37. Amin, D.; Akhter, S. Deep learning-based defect detection system in steel sheet surfaces. In Proceedings of the 2020 IEEE Region
10 Symposium (tensymp)—Technology for Impactful Sustainable Development, Dhaka, Bangladesh, 5–7 June 2020; IEEE: New
York, NY, USA, 2020; pp. 444–448.

38. Wauters, M.; Vanhoucke, M. Support vector machine regression for project control forecasting. Autom. Constr. 2014, 47, 92–106.
[CrossRef]

39. Nauman, F.; Nattila, J. Exploring helical dynamos with machine learning: Regularized linear regression outperforms ensemble
methods. Astron. Astrophys. 2019, 629, A89. [CrossRef]

40. Candelieri, A. Clustering and support vector regression for water demand forecasting and anomaly detection. Water 2017, 9, 224.
[CrossRef]

41. Weizhen, H.; Zhengqiang, L.; Yuhuan, Z.; Hua, X.; Ying, Z.; Kaitao, L.; Donghui, L.; Peng, W.; Yan, M. Using support vector
regression to predict PM10 and PM2.5. In Proceedings of the 35th International Symposium on Remote Sensing of Environment
(ISRSE35), Beijing, China, 22–26 April 2013; Guo, H., Ed.; IOP Publishing Ltd.: Bristol, UK, 2014; Volume 17, p. 012268.

42. Jokhakar, V.N.; Patel, S.V. A random forest based machine learning approach for mild steel defect diagnosis. In Proceedings of the
2016 IEEE International Conference on Computational Intelligence and Computing Research, Chennai, India, 15–17 December
2016; Krishnan, N., Karthikeyan, M., Eds.; IEEE: New York, NY, USA, 2016; pp. 144–151.

43. Zhang, W.; Wu, C.; Li, Y.; Wang, L.; Samui, P. Assessment of pile drivability using random forest regression and multivariate
adaptive regression splines. Georisk 2021, 15, 27–40. [CrossRef]

44. Askari, M.; Keynia, F. Mid-term electricity load forecasting by a new composite method based on optimal learning MLP algorithm.
IET Gener. Transm. Distrib. 2020, 14, 845–852. [CrossRef]

45. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Cohen, I.,
Huang, Y., Chen, J., Benesty, J., Eds.; Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4,
ISBN 978-3-642-00296-0.

http://doi.org/10.3390/ma13173885
http://www.ncbi.nlm.nih.gov/pubmed/32887480
http://doi.org/10.3390/ma13030619
http://www.ncbi.nlm.nih.gov/pubmed/32019218
http://doi.org/10.3390/ma12091463
http://www.ncbi.nlm.nih.gov/pubmed/31064151
http://doi.org/10.1016/j.nanoen.2018.09.030
http://doi.org/10.1016/j.heliyon.2019.e01802
http://www.ncbi.nlm.nih.gov/pubmed/31211254
http://doi.org/10.1016/j.icte.2020.04.012
http://doi.org/10.1016/j.eswa.2021.115013
http://doi.org/10.1016/j.eswa.2021.115141
http://doi.org/10.3233/XST-200757
http://doi.org/10.1016/j.envint.2019.104934
http://doi.org/10.3390/sym12040604
http://doi.org/10.1016/j.jmrt.2020.05.070
http://doi.org/10.1051/mattech/2021007
http://doi.org/10.1016/j.autcon.2014.07.014
http://doi.org/10.1051/0004-6361/201935945
http://doi.org/10.3390/w9030224
http://doi.org/10.1080/17499518.2019.1674340
http://doi.org/10.1049/iet-gtd.2019.0797


Metals 2022, 12, 958 14 of 14

46. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-Learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

47. Amoako, R.; Jha, A.; Zhong, S. Rock fragmentation prediction using an artificial neural network and support vector regression
hybrid approach. Mining 2022, 2, 233–247. [CrossRef]

48. Astudillo, G.; Carrasco, R.; Fernandez-Campusano, C.; Chacon, M. Copper price prediction using support vector regression
technique. Appl. Sci. 2020, 10, 6648. [CrossRef]

49. Malchiodi, D.; da Costa Pereira, C.; Tettamanzi, A.G.B. Predicting the possibilistic score of OWL axioms through support
vector regression. In Proceedings of the 12th International Conference on Scalable Uncertainty Management (SUM 2018); Milan, Italy,
3–5 October 2018, Ciucci, D., Pasi, G., Vantaggi, B., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018;
Volume 11142, pp. 380–386.

50. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
51. Lee, M.G.; Park, Y.K.; Jung, K.K.; Hwang, S.I.; Lee, D.K. Forecasting and analysis for smart vending machine using neural networks.

In Proceedings of the 19th World Multi-Conference on Systemics, Cybernetics and Informatics, WMSCI 2015, Orlando, FL, USA,
12–15 July 2015; International Institute of Informatics and Systemics, IIIS: Orlando, FL, USA, 2015; Volume 1, pp. 263–266.

52. Pham, B.T.; Nguyen, M.D.; Bui, K.-T.T.; Prakash, I.; Chapi, K.; Bui, D.T. A novel artificial intelligence approach based on
multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil.
CATENA 2019, 173, 302–311. [CrossRef]

53. Menapace, A.; Zanfei, A.; Righetti, M. Tuning ANN hyperparameters for forecasting drinking water demand. Appl. Sci. 2021, 11, 4290.
[CrossRef]

54. Roozbeh, M.; Arashi, M.; Hamzah, N.A. Generalized cross-validation for simultaneous optimization of tuning parameters in
ridge regression. Iran J. Sci. Technol. Trans. Sci. 2020, 44, 473–485. [CrossRef]

55. Roelofs, R.; Shankar, V.; Recht, B.; Fridovich-Keil, S.; Hardt, M.; Miller, J.; Schmidt, L. A meta-analysis of overfitting in machine
learning. In Proceedings of the 33rd Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 13–14
December 2019; Curran Associates Inc.: Red Hook, NY, USA, 2019; Volume 32.

56. Zhang, G.; Hu, Y.; Yang, D.; Ma, L.; Zhang, M.; Liu, X. Short-term bathwater demand forecasting for shared shower rooms in
smart campuses using machine learning methods. Water 2022, 14, 1291. [CrossRef]

http://doi.org/10.3390/mining2020013
http://doi.org/10.3390/app10196648
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.catena.2018.10.004
http://doi.org/10.3390/app11094290
http://doi.org/10.1007/s40995-020-00851-1
http://doi.org/10.3390/w14081291

	Introduction 
	Experiments and Machine Learning Methods 
	Slag Weight Gain in Humid Air Experiment Design 
	Dataset Description 
	Machine Learning Methods 
	Linear Regression (LR) 
	Support Vector Regression (SVR) 
	Random Forests Regression (RFR) 
	Multi-Layer Perceptron (MLP) 

	Cross Validation 
	Evaluation Metrics 

	Results and Discussion 
	Prediction of Weight Gain Rate by Machine Learning Methods 
	Analysis of Reasons for Slag Weight Gain 
	Application of Machine Learning Methods 

	Conclusions 
	References

