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Abstract: Due to the inaccuracy of the preset rolling force of cold rolling, there is a severe thickness
defect in the strip head after cold rolling due to the flying gauge change (FGC), which affects the
yield of the strip. This paper establishes a rolling force preset model (RFPM) by combining the rolling
force optimization model (RFOM) and the rolling force deviation prediction model (RFDPM). The
RFOM used a genetic algorithm (GA) to optimize the deformation resistance and friction coefficient
models. The RFDPM is constructed using a backpropagation (BP) neural network. The calculation
result of the RFPM shows that the average fraction defect of the preset rolling force is only 1.24%,
which proves that the RFPM has good calculation accuracy. Experiments show that the defect length
proportion of the strip head thickness at less than 20 m after FGC increases from 38.8% to 55.8%,
while the average defect length decreases from 47.3 m to 29.6 m, effectively improving the yield of
cold rolling.

Keywords: genetic algorithm; BP neural network; flying gauge change; preset rolling force;
thickness defect

1. Introduction

Improving the yield of cold rolling strips on the premise of ensuring product quality
is the constant pursuit of enterprises [1,2]. FGC technology can produce strips with dif-
ferent widths, thicknesses, or yield strengths (YS) and achieve endless rolling in tandem
cold rolling mills (TCM) [3]. If the rolling force that is set during the dynamic specifica-
tion change is inaccurate, it is easy to cause thickness fluctuation in the next strip head.
Therefore, improving the accuracy of the rolling force setting value is very important for
improving the yield [4,5].

The rolling force model is one of the most important models in steel rolling. Many
scholars use methods such as theoretical models, finite element simulations, optimization
algorithms, or artificial neural networks to improve the accuracy of the rolling force model.
Theoretical models are widely used because they can clearly show the physical relationships
between the parameters. Zhang et al. [6] proposed a new tangent velocity model and
corresponding strain rate fields to accurately predict the rolling force in the hot-strip rolling
process; by minimizing the total power function, an analytical solution of the rolling force
was obtained. You et al. [7] proposed a rolling force model of the arc-tangent velocity
field using the upper bound method. The model is based on the virtual work principle
and maximum plastic work principle, and the accuracy of the model is verified by the
finite element method. Peng et al. [8] proposed a method to predict the rolling force of
cold rolling, based on plastic mechanics. The analysis and solution of the rolling torque,
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rolling force, and stress state coefficient are obtained by minimizing the total power, which
includes the internal plastic power, frictional power, shear power, and tension power.
Finally, the validity of the model was proven through an industry experiment. Confusingly,
the accuracy of their new model was not significantly better than HIll’s model, and the
proportion in which the actual rolling force deviations were within 5% was only 77.2%. Liu
et al. [9] established a dynamic rolling force model by considering the mixed lubrication
friction state of the coexistence of boundary lubrication and hydrodynamic lubrication.
Based on the dynamic rolling force model, the effects of the friction coefficient, reduction
ratio, shear strength, and roll flattening on the unit’s normal pressure along the contact arc
and the rolling force were also analyzed. When an analytical method is used to establish
the rolling force model, it is often necessary to simplify many physical conditions or use
the empirical formula to give the correlation coefficient, which easily explains the rolling
force deviation when the rolling conditions change greatly, such as replacing lubricant,
producing new products, and so on.

Because the BP neural network has a strong nonlinear mapping ability, which means
that the complex physical relationship between the input and output does not have to be
considered, a BP neural network is very suitable for dealing with problems with complex
variables [10–13]. At the same time, to avoid the problem of the BP neural network falling
into a local optimum, optimization algorithms, such as the genetic algorithm (GA) and
particle swarm optimization (PSO), are often used to optimize the initial weights and
thresholds of the BP neural network [14–17]. To enable technicians to carry out accurate
production process control, the relationships between process parameters in cold rolling
need to be decoupled and clarified. For this reason, some scholars established a hybrid
model by combining the respective characteristics of an analytical model and BP neural
network. Jansen et al. [18] successfully calculated the rolling force using the rolling force
model and a neural network. Their theoretical model provided an initial calculated value
for the rolling force, while the neural network predicted the calculation error between the
model and the measured value. The authors combined the two to obtain a high-precision
predictive value of rolling force. The RFPM established by Zhang et al. [19] consists of two
parts: the deformation resistance compensation model and the rolling force compensation
model. In both parts, the GA-BP model was first used to predict the deviation between the
analytical value and the inverse calculated value, based on the measured data, and was then
superimposed with the analytical value. The analytical model of rolling force contained
the calculation results of the deformation resistance compensation model. After the model
was applied to stainless steel production, the prediction accuracy of the rolling force was
noticeably improved. More recently, Cui [20] proposed a composite model integrating the
theoretical model and big data; then, they established a GA-BP rolling force prediction
model for TCM. The experimental results show that the new model’s prediction accuracy
of rolling force is much higher than when using the theoretical model. To predict the rolling
force of extra-thick plate production, Zhang et al. [21] combined the GA-BP model with
the traditional theoretical model, based on the principle of average error compensation,
and obtained the predicted value by the superposition of the compensation coefficient
predicted by GA-BP and the calculated results of the theoretical model. The results showed
that the prediction deviation of rolling force was within 3.32%, with good calculation
accuracy. However, most scholars only take the material model of a single steel grade
as the optimization target when they optimize the theoretical rolling force model, which
will bring great engineering problems when applied to TCM with large-scale multi-steel
grade production. Not all steel grades have an exclusive material model parameter in the
cold-rolling L2 control system. At the same time, they ignore the influence of the friction
coefficient on the rolling force because the rolling force will also be affected when the
lubrication conditions change.

A significant rolling force deviation exists between the strip head and the high-speed
stage after FGC. The automatic gauge control (AGC) needs to take longer to correct the
rolling force, which leads to a thickness defect in the strip head. To improve the accuracy of
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setting the rolling force, the GA is used to optimize the analytical model first, and then the
deviation prediction model is eliminated by adopting the BP neural network. By combining
the optimized model and the deviation prediction model, we establish an RFPM in which
the validation is proved by an experiment.

2. Theoretical Model of the Rolling Force

The research object of this paper is the 1720 mm 5-stand UCM TCM. Considering that
the rolling force is not controlled by the rolling force model when the work roll of the S5
stand uses the dull roll, this paper only studies the RFPM of the S1 to S4 stands.

In the calculation of rolling force, the Bland–Ford model with a relatively rigorous
theory is adopted. The calculation process of the model considers parameters such as the
friction coefficient, elastic deformation of rolls, and strip tension, as shown in Figure 1. The
equation is as follows:

Pc = b · Kp · κ · Dp ·
√

R′ · (H − h) · ZP

Dp = 1.08 + 1.79 · r ·
√

1− r · µ ·
√

R′
h − 1.02 · r

κ =
(

1− tb
Kp

)
·
(

1.05 + 0.1 ·
1−

t f
Kp

1− tb
Kp

− 0.15 ·
1− tb

Kp

1−
t f
Kp

)
ZP = Pa

Pc

(1)

where Pc is the calculated rolling force, Pa is the measured rolling force, and κ is the
influence coefficient of tension. Here, Dp is the influence coefficient of friction, Tf is the
forward tension, Tb is the post-tension, b is the strip width, R′ is the radius of the work roll,
Kp is the dynamic deformation resistance coefficient, ZP is the adaptive coefficient of the
rolling force, and µ is the friction coefficient.

Metals 2022, 12, x FOR PEER REVIEW 3 of 18 
 

 

rolling force, which leads to a thickness defect in the strip head. To improve the accuracy 
of setting the rolling force, the GA is used to optimize the analytical model first, and then 
the deviation prediction model is eliminated by adopting the BP neural network. By 
combining the optimized model and the deviation prediction model, we establish an 
RFPM in which the validation is proved by an experiment. 

2. Theoretical Model of the Rolling Force 
The research object of this paper is the 1720 mm 5-stand UCM TCM. Considering that 

the rolling force is not controlled by the rolling force model when the work roll of the S5 
stand uses the dull roll, this paper only studies the RFPM of the S1 to S4 stands. 

In the calculation of rolling force, the Bland–Ford model with a relatively rigorous 
theory is adopted. The calculation process of the model considers parameters such as the 
friction coefficient, elastic deformation of rolls, and strip tension, as shown in Figure 1. 
The equation is as follows: 

' ( )

'1.08 1.79 1 1.02

1 1
1 1.05 0.1 0.15

1 1

=

c p p

p

f b

p pb

b fp

p p

a

c

P b K D R H h ZP

RD r r r
h

t t
K Kt
t tK
K K

PZP
P

κ

μ

κ

 = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅



= + ⋅ ⋅ − ⋅ ⋅ − ⋅

   − −    = − ⋅ + ⋅ − ⋅       − −   


  

(1)

where Pc is the calculated rolling force, Pa is the measured rolling force, and κ is the 
influence coefficient of tension. Here, Dp is the influence coefficient of friction, Tf is the 
forward tension, Tb is the post-tension, b is the strip width, R’ is the radius of the work 
roll, Kp is the dynamic deformation resistance coefficient, ZP is the adaptive coefficient of 
the rolling force, and μ is the friction coefficient. 

 
Figure 1. The deformation zone of the roll gap. 

As shown in Equation (1), the dynamic deformation resistance coefficient, Kp, and the 
friction coefficient, μ, are very important for calculating the rolling force and seriously 
affect the calculation accuracy of the rolling force model. 

2.1. Friction Coefficient Model 
The friction coefficient model is shown in Equation (3). The friction coefficient, μ, is 

directly related to the lubrication characteristics of the emulsion. In addition, the change 

Figure 1. The deformation zone of the roll gap.

As shown in Equation (1), the dynamic deformation resistance coefficient, Kp, and
the friction coefficient, µ, are very important for calculating the rolling force and seriously
affect the calculation accuracy of the rolling force model.

2.1. Friction Coefficient Model

The friction coefficient model is shown in Equation (3). The friction coefficient, µ, is
directly related to the lubrication characteristics of the emulsion. In addition, the change in
rolling speed, roll surface roughness, strip length, reduction, and other factors will cause a
change in the friction coefficient, µ. In this paper, the friction coefficient model parameters
related to the change in lubrication conditions are considered, which is independent of the
steel grade, so only µ0 is optimized:

µ =

(
µ0 +

µ1

v + µ2
+ µ3 · v

)(
µ4

1 + Nr · µ5

)
(2)
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where µ0 represents the lubrication conditions, µ1, µ2, µ3, and µ4 represent the rolling
speeds, µ5 is the rolling roll number, v is the rolling speed, and Nr is the number of rolling
rolls after the roll change.

2.2. Deformation Resistance Model

In the calculation of deformation resistance, the influence of the initial mechanical
properties of the strip, the deformation temperature, and the deformation rate during
rolling should be considered. Therefore, the deformation resistance model is composed of
static and dynamic terms, as shown in Equation (2).

In the ideal state, each steel grade should be associated with a set of static deformation
resistance parameters. However, in production, the steel grade with an approximate YS is
usually classified as a steel group, with the same static deformation resistance parameters.
The dynamic deformation resistance coefficient, Kp, is linearly related to static deformation
resistance, Ks, which is only associated with the mechanical properties of the material.
When the new steel grade is produced or some of the original steel grade compositions
are adjusted, there will be an unreasonable classification of steel groups. Therefore, this
paper only considers optimizing the parameters in the Ks of all steel groups, as seen in
Equation (3): 

Kp = Ks(1000 · ·ε)
α

Ks = l · (ε + m)n

ε = ln{1/(1− rt)}
(3)

where Ks is the static deformation resistance, α is the deformation rate sensitivity coefficient,
·
ε is the strip deformation rate, l and m are the parameters of the static deformation resistance,
n is the work-hardening coefficient, rt is the average reduction rate, and ε is the true strain.

3. Rolling Force Preset Model (RPFM)

The RPFM consists of a rolling force optimization model (RFOM) and a rolling force
deviation prediction model (RFDPM), as shown in Equation (4). The RFOM uses a GA
to optimize the friction coefficient model and the deformation resistance model step by
step. The RFDPM is established by a BP neural network, and the output of this model is
the deviation between the measured values and the RFOM calculation result. The input is
the measured process parameters. Figure 2 is the flow chart of the RPFM. The calculation
uses the following equation: {

Pset = PBP + POP
Pδ = Pa − POP

(4)

where Pset is the preset rolling force, PBP is the rolling force deviation by the BP neural net-
work, POP is the calculation rolling force after GA optimization, but not the best calculation
result of each strip, and Pδ is the rolling force deviation.
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3.1. RFOM Established Based on GA

The RFOM adopts a real-coded GA to optimize the deformation resistance model
and friction coefficient model. The calculation process includes population initialization,
fitness calculation, fitness sorting, and new population generation by cross variation. The
calculation process is shown in Figure 3.
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The calculation process of each stand is the same except for the input parameters
when calculating the rolling force, so the RFOM model will optimize the friction coefficient
parameters of the four stands at the same time. The fitness function of the RFOM model is
shown in Equation (5), and the approximation between the calculated value and the mea-
sured value is positively correlated with the F value. The RFOM model uses the measured
production process data as input, in which the initial µ0 of each stand and the initial l, m
parameters of each steel group are collected from the cold-rolling L2 control system.

The variables of the initial population in the friction coefficient optimization model
are µ0 of the S1 to S4 stands. After 100 populations were initialized and the fitness was
calculated, the top 50 populations with the best fitness were defined as the initial paternal
population. With the method of crossing, 50 progeny populations were generated by
the initial paternal population. The now 100 populations were sequenced according to
fitness and generated new paternal populations, then the GA was repeated until the target
converged. The optimization of the deformation resistance model was based on the new
friction coefficient, and the deformation resistance model of each group was optimized by
grouping the data according to the yield strength, using the following equation:

F =
4

∑
j=1

n

∑
i=1
|1−

Pj
i a

Pj
i c
| =

4

∑
j=1

n

∑
i=1

∣∣∣1− ZPj
i

∣∣∣ (5)

where n is the number for the calculation data.
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3.2. An RFDPM Established Based on a BP Neural Network
3.2.1. BP Neural Network Theory

The BP neural network is a multilayer forward network based on the backpropagation
algorithm, which has one input layer, one output layer, and several hidden layers. Accord-
ing to the approximation theory, a BP neural network with a nonlinear transfer function
can realize nonlinear mapping with arbitrary precision when the number of hidden layer
neurons is sufficient. For nonlinear processes and functions that only know input data and
output data, the BP neural network can be used to train its input and output data with
excellent fitting ability, so that the BP neural network can obtain a mapping function that is
very close to the nonlinear process.

When the signal is transmitted forward, the output of each neuron is determined
by the input of the neuron in the previous layer, so the signal calculation formula of the
corresponding hidden-layer neuron and output-layer neuron are shown as follows, in
Equations (6) and (7).

Hidden-layer neuron output:

Hi = f (
m

∑
j=1

wijxj + bi) (6)

Output-layer neuron output:

Yk = g(
n

∑
i=1

wkiHi + sk) (7)

where f and g are the activation functions of the hidden layer and output layer; m and
n are the input vector dimensions for the input layer and output layer; wij and wki are
the weights of the input layer to the hidden layer and the weights of the hidden layer to
the output layer, respectively; and bi and sk are the biases of the hidden layer and output
layer, respectively.

Error backpropagation of the BP neural network is conducted using the gradient
descent method. The loss function adopts the mean squared error (MSE) function, as
shown in Equation (8). When the loss function reaches the target range or the expected
value, the neural network’s learning ends:

Ep =
1

2P

P

∑
a=1

(
L

∑
k=1

Ya
t −Ya

k )

2

(8)

where Ya
t and Ya

k are the target value and predicted value, respectively.

3.2.2. BP Neural Network Structure and Parameter Setting

The BP neural network is a typical supervised learning algorithm, so the parameters
affecting the rolling force can be clearly established by analyzing the rolling force model.
As shown in Table 1, the 20-dimensional process parameters were selected from the cold
rolling data to be the neural network input layer, with Pδ as the output layer, and the
training result is PBP. The training process of all stands is the same, and 8 parameters
corresponding to the stand number are selected from the 20-dimensional parameters as the
input layer for each stand training, so the number of input layers is 8.

Adopting the momentum optimization method for training, and using the ReLU as
the activation function, the learning rate adopts 0.1 and the momentum term is 0.9. Due
to the enormous differences in the orders of magnitude of the input parameters, to avoid
adverse effects on the learning results, the min-max standardization method is adopted to
normalize the data, as shown in Equation (9):

xi =
x− xmin

xmax − xmin
(9)
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where xmax and xmin are the maximum and minimum numbers of the data sequences,
respectively, and xi is the normalization value of the data, i.

Table 1. BP neural network input parameters.

No Parameter Unit Min Max

1 Yield strength MPa 175 499
2 Strip width mm 870 1595
3 Entry thickness of S1 mm 2.001 5.616
4 Exit thickness of S1 mm 1.316 4.65
5 Exit thickness of S2 mm 0.772 3.866
6 Exit thickness of S3 mm 0.508 3.011
7 Exit thickness of S4 mm 0.383 2.462
8 Exit speed of S1 mpm 53.7 426.70
9 Exit speed of S2 mpm 70.4 639.70
10 Exit speed of S3 mpm 104.6 969.4
11 Exit speed of S4 mpm 146.7 1203.70
12 Unit back tension of S1 MPa 2.04 7.93
13 Unit forward tension of S1 MPa 5.43 16.34
14 Unit forward tension of S2 MPa 6.19 19.11
15 Unit forward tension of S3 MPa 7.76 20.04
16 Unit forward tension of S4 MPa 8.76 22.58
17 Working roll radius of S1 mm 206.96 216.97
18 Working roll radius of S2 mm 195.04 216.78
19 Working roll radius of S3 mm 193.91 216.83
20 Working roll radius of S4 mm 192.95 207.09

The computation accuracy and complexity of the BP neural network should be consid-
ered when selecting the number of hidden layer neurons. The number of neurons should
be reduced as much as possible under the conditions of meeting the prediction accuracy of
the model; otherwise, it will lead to overfitting of the BP neural network and reduce the
generalization ability. As shown in Figure 4, when the number of neurons is 10, the model’s
prediction accuracy begins to oscillate noticeably and no longer improves continuously, so
the BP neural network has a topological structure of 8-10-1.

Metals 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 

should be reduced as much as possible under the conditions of meeting the prediction 
accuracy of the model; otherwise, it will lead to overfitting of the BP neural network and 
reduce the generalization ability. As shown in Figure 4, when the number of neurons is 
10, the model’s prediction accuracy begins to oscillate noticeably and no longer improves 
continuously, so the BP neural network has a topological structure of 8-10-1. 

 
Figure 4. The effect of hidden-layer neuron numbers. 

4. Analysis of the Calculation Results 
4.1. Calculation Result of RFOM 

The calculated data were collected from the L2 control system, which could be 
divided into 21 groups according to YS, and 5000 data points, including all groups, were 
chosen to optimize the rolling force model after eliminating the abnormal data. 

When |ZP − 1| ≤ 0.1, it is considered that the calculated value of rolling force is 
accurate and defines |ZP − 1|as the δZP named rolling force adaptive deviation. The rolling 
force qualification rate, Φacc, is shown in Equation (10): 

(0.1)

(0.1)

(0.1)

1,      1 0.1

0,      1 0.1

           

i

i

i

i

N

i
acc

ZP
C

ZP

C

N
φ

 − ≤= 
− > 



 =


 (10)

where (0.1)
i
C  represents the statistics within the adaptive deviation’s acceptable range 

and the upper corner is the limit of deviation, and N is the number representing calculated 
data. 

4.1.1. Rolling Force Model before Optimization 
Figure 5 shows the calculated rolling force results of all stands before optimization, 

where the area surrounded by blue dotted lines is δZP ≤ 0.1, and the solid blue line 
represents ZP = 1. It can be seen that the distribution of data points of each stand exceeds 
the range of blue dotted lines. The maximum ZP value of the S1 stand is 1.3003, and the 
minimum ZP of the S4 stand is 0.669. 

As shown in Figure 6, the rolling force qualification rate (0.1)
accφ  of the S3 and S4 

stands is less than 50%, among which the S4 stand is only 22.4%. Even compared with the 

range of δZP ≤ 0.15, the qualification rate (0.15)
accφ  of the S4 stand is also less than 60%. The 

results show that the rolling force model currently used online can no longer meet the 
requirements of the high-precision rolling force preset. 

Figure 4. The effect of hidden-layer neuron numbers.

4. Analysis of the Calculation Results
4.1. Calculation Result of RFOM

The calculated data were collected from the L2 control system, which could be divided
into 21 groups according to YS, and 5000 data points, including all groups, were chosen to
optimize the rolling force model after eliminating the abnormal data.
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When |ZP − 1| ≤ 0.1, it is considered that the calculated value of rolling force is
accurate and defines |ZP − 1|as the δZP named rolling force adaptive deviation. The
rolling force qualification rate, Φacc, is shown in Equation (10):

C(0.1)
i =

{
1, |ZPi − 1| ≤ 0.1
0, |ZPi − 1| > 0.1

φ
(0.1)
acc =

N
∑
i

C(0.1)
i

N

(10)

where C(0.1)
i represents the statistics within the adaptive deviation’s acceptable range and

the upper corner is the limit of deviation, and N is the number representing calculated data.

4.1.1. Rolling Force Model before Optimization

Figure 5 shows the calculated rolling force results of all stands before optimization,
where the area surrounded by blue dotted lines is δZP ≤ 0.1, and the solid blue line
represents ZP = 1. It can be seen that the distribution of data points of each stand exceeds
the range of blue dotted lines. The maximum ZP value of the S1 stand is 1.3003, and the
minimum ZP of the S4 stand is 0.669.
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As shown in Figure 6, the rolling force qualification rate φ
(0.1)
acc of the S3 and S4 stands

is less than 50%, among which the S4 stand is only 22.4%. Even compared with the range
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of δZP ≤ 0.15, the qualification rate φ
(0.15)
acc of the S4 stand is also less than 60%. The results

show that the rolling force model currently used online can no longer meet the requirements
of the high-precision rolling force preset.
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4.1.2. After Optimization of the Friction Coefficient Model

As shown in Figure 7, the distribution of the calculated rolling force has three obvious
characteristics after optimizing µ0:
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(1) The maximum and minimum values of ZP have changed. Taking S2 as an example,
the maximum and minimum ZP values before optimization are 1.2172 and 0.6787, respec-
tively, but they become 1.1576 and 0.8529 after optimization. The optimization of µ0 can
effectively reduce the rolling force deviation.

(2) The ZP distribution is more compact. Obviously, the data distribution is signifi-
cantly thinner than before optimization, and the dispersion of data decreases significantly.

(3) The data are concentrated around ZP = 1. The optimized rolling-force data are
distributed on both sides of the solid line of ZP = 1, indicating that the optimized rolling
force is closer to the expected value.

4.1.3. After Optimization of the Deformation Resistance Model

Either the steel component was adjusted or a new steel grade was developed to meet
process improvement or market demand requirements. At this point, the original defor-
mation resistance model coefficient is unsuitable, as it will lead to rolling-force deviation.
Figure 8 shows that after the deformation resistance model is optimized, the degree of
dispersion of the rolling force data is further reduced.
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As shown in Figure 9, the qualification rate of δZP ≤ 0.1 was improved significantly
when the deformation resistance model was optimized. The S3 stand increased from 90.26%
to 97.57%, and the S4 stand increased from 89.89% to 95.18%. Since δZP ≤ 0.05 is a more
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stringent evaluation indicator, the qualification rate of the 4-stand average increased by
12.9% according to this indicator.
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4.2. Calculation Result of RFDPM

BP neural network training also adopts 5000 data points; the ratio of the training set,
test set, and verification set is 7:2:1. A standard normal distribution, with a mean value
of 0 and a standard deviation of 1, was used for weight initialization and the number of
training sessions was set to 50,000.

Two hundred groups of data were randomly selected from the calculated results
compensated for by RFDPM and were compared with the actual values. As shown in
Figure 10, although the actual rolling force of each stand varies widely, the deviation
between the preset rolling force and the actual value remains small. As shown in Table 2,
the rolling force qualification rate φ

(0.1)
acc was compared. Here, φ

(0.1)
acc was further promoted

after BP neural network compensation, and the average φ
(0.1)
acc of the four stands increased

from 96.27% to 98.76%.
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Table 2. Comparison of rolling force qualification rate, φ
(0.1)
acc .

S1 S2 S3 S4 Average

Original(%) 81.64 91.98 49.37 22.49 61.37
GA(%) 96.45 95.87 97.57 95.18 96.27

GA-BP(%) 98.63 98.44 98.86 99.10 98.76

Guo et al. [22] proved that the rolling force deviation presented a normal distribution.
Therefore, to obtain a more accurate preset rolling force, the distribution of the rolling force
adaptive deviation, δZP ≤ 0.1, should conform to the three-sigma determinant criterion.
Equation (11) calculates the probability density function of ZP. The histogram of the
ZP value distribution from all stands after compensating for the rolling force with the
BP neural network is shown in Figure 11, where the dotted line represents the normal
distribution curve.
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(1) The adaptive deviation δZP of the rolling force after GA optimization is almost less
than 0.1, but it is clear that in stands S1 and S2, part of the adaptive deviation is in the range
of 0.92 to 0.96, which means that the accuracy of these calculated values is low. Similarly,
data in the 0.98 to 1.02 range are less common in the S4 stand.

(2) The data compensated for by the BP neural network have a high degree of coin-
cidence with the normal distribution. As shown in the Table 3, the average qualification
rate, φ

(0.05)
acc , of the GA method is 73.60%, while the GA-BP method increases to 86.06% after
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statistical analysis where δZP ≤ 0.05. Thus, the preset rolling force compensated for by the
BP neural network has higher accuracy.

f (ZP) =
1√

2π( 1
30 )

exp(− (ZP− 1)2

( 1
30 )

2 ) (11)

Table 3. Comparison of the rolling force qualification rate, φ
(0.05)
acc .

S1 S2 S3 S4 Average

GA(%) 72.76 72.56 78.22 70.87 73.60
GA-BP(%) 86.49 79.60 87.07 91.09 86.06

5. Industrial Applications of RFPM
5.1. Thickness Defect Analysis of the Strip Head before Optimization

If the actual thickness of the strip deviates from the target thickness by more than
1%, the strip is considered to have a thickness defect. Some of the FGC strips before
optimization are shown in Table 4, and Figure 12 shows the strip head thickness defect.
It was evident that a large thickness defect was prevalent in the strip heads after FGC
was executed.

Table 4. The FGC strip before optimization.

Coil Steel Grade Strip
Width/mm

Entry
Thickness/mm

Exit
Thickness/mm YS/MPa

Length of
Thickness
Defect/m

7A16592300 SPHD 1340 4541 1495 225 67.5
7A15916300 LG280VK 1295 4873 2500 391 53.5
8A00067500 SPHC-B 1300 5347 2500 225 153.5
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The actual rolling-force curve of strip steel is shown in Figure 13. The rolling force
of the S3 and S4 stands after FGC is different from that in the high-speed rolling stage, so
it takes a long time to adjust. According to the roll-gap model shown in Equation (12), if
AGC executes the closed-loop adjustment of rolling force for a long time period, the roll
gap adjustment speed will also be affected, which will result in the actual thickness of the
strip not being controlled quickly enough to achieve the target value. Hence:

g = hi+1 −
(

p
Ks

+ ξ − δ0

)
+ gz + gzm − c1 + sl (12)
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where ζ is the roll surface stiffness coefficient, p is the rolling force, hi+1 is the exit strip
thickness, Ms is the mill’s longitudinal stiffness, δ0 is the oil film thickness, gz is the zeroing
gap, gm is the zeroing gap spring value, c1 is the constant, and sl is the self-learning value
of the gap.
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5.2. Optimization Effect Analysis

As shown in Figure 14, the deviation between the rolling force set on stands 3 and 4
and the rolling force at the high-speed rolling stage is small, so the closed-loop adjustment
of the rolling force after FGC is more rapid, which can stabilize the rolling force in a
short time and effectively reduce the head-thickness defect. As shown in Figure 15 and
Table 5, the lengths of the strip head-thickness defect exceeding the allowable range for
coils A005338710 and A007732020 after FGC are only 21.5 and 23.5 m, respectively.
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Table 5. The FGC strip after optimization.

Coil Steel
Grade

Strip
Width/mm

Entry
Thick-

ness/mm

Exit Thick-
ness/mm YS/MPa

Length of
Thickness
Defect/m

A007732020 40Mn-C 1230 2076 1590 467 19.5
A007721210 S50-A 1210 2468 2004 435 23.5

After optimizing the preset rolling force, the average thickness defect length of the
strip head is shortened from 47.3 m to 29.6 m. As shown in Figure 16, the proportion
of defective lengths of less than 20 m increases from 38.8% to 55.8%, and the proportion
between 20–40 m decreases from 36.7% to 20.9%. The defects of thickness over 60 m are also
greatly improved. Therefore, the thickness defect length of the strip head can be effectively
reduced by optimizing the rolling force model; this method is useful for all steel grades.
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6. Conclusions

(1). The GA method is used to optimize the friction coefficient model and the deforma-
tion resistance model in the rolling-force theoretical model. The optimization results show
that the average φ

(0.1)
acc of the four stands increased from 61.37% to 96.27%, and the φ

(0.1)
acc of

the S4 stand increased from 22.49% to 95.18%. The calculation accuracy of the rolling force
theoretical model is, therefore, significantly improved.
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(2). After compensating for the RFOM with a BP neural network, the RFPM was
established. The GA-BP method improves the average φ

(0.1)
acc of four stands, from 96.27%

to 98.76%, and makes the rolling-force deviation distribution consistent with the normal
distribution, in which ZP follows N(1,(1/30)2). In this case, the preset rolling force has high
accuracy and high precision.

(3). After applying the RFPM, the deviation between the preset rolling force and the
actual rolling force is effectively reduced, so that the closed-loop adjustment time of the
rolling force is also reduced. After FGC, the proportion of thickness defect lengths of less
than 20 m increases from 38.8% to 55.8%, and the proportion between 20–40 m decreases
from 36.7% to 20.9%.
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