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Abstract: The results of studies on the processing of gibbsite-kaolinite bauxite are presented. The
developed technology includes preliminary chemical activation and thermal transformation during
enrichment to obtain a concentrate suitable for processing by the Bayer method. As a result of the
chemical activation of gibbsite-kaolinite bauxite in a solution of sodium bicarbonate, a change in the
phase composition occurs, which made it possible to improve the results of gravity enrichment with
the production of a coarse-grained gibbsite fraction. The transformation of bauxite in the temperature
range of 900–1000 ◦C is explained by the decomposition reactions of siderite, gibbsite, kaolinite,
calcite, dolomite and sodium ferro-sulfide oxide, as well as the formation of sodium aluminosilicate,
hematite, quartz and the chemically stable phase of corundum. The optimum firing temperature
of bauxite is 950 ◦C, after which, as a result of alkaline treatment during chemical enrichment,
the extraction of SiO2 into solution was 74.9%. A silicon modulus of enriched bauxite 10.9 units
was obtained. As a result of the autoclave leaching of gibbsite-kaolinite bauxite after a two-stage
enrichment, the maximum extraction of alumina into solution was 87.4%. The yield of red mud
during the processing of bauxite enriched and calcined at 950 ◦C was 37.62%. During the autoclave
leaching of bauxite without enrichment, the yield of red mud was 71%.

Keywords: roasting; bauxite; chemical activation; leaching; silica module

1. Introduction

Alumina is produced all over the world with the alkaline method [1,2]. This is due to
the simplicity of the method instrumentation, which does not require special grades of steels
or other scarce materials. Industrial alkaline methods intended to produce alumina from
bauxites, depending on the quality of the processed raw materials, are divided into the:

• hydrochemical method (Bayer method);
• sintering method;
• combined method (combination of the Bayer method and sintering method in parallel

and sequential versions) [3].

The classical Bayer method is suitable only for high-quality bauxites with a silicon
modulus greater than 7. The silicon modulus (µSi) of samples is determined from the
relation of Al2O3/SiO2. It is advisable to process bauxites with a silicon modulus less than
seven by sintering or a combined method.

The sintering method is more versatile and can be applied to any high-silicon alu-
minum raw material. The main disadvantage of this technology is the high prime cost
(320–330 USD per 1 ton Al2O3) of the obtained alumina, associated with high energy
consumption, material consumption of equipment, losses of alkali and alumina with
waste sludge.

Bauxites from various deposits differ significantly in their qualitative composition and
quantitative content of components; therefore, various methods or processing methods
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are used for them [3–5]. Processing methods are known for highly sideritized bauxites,
including their roasting, cooling, magnetic separation, leaching and processing of red
mud. The main advantage of these schemes is a good separation of bauxite components.
The disadvantages are labor-intensive crushing, screening, magnetic separation, flotation
processes and additional investment costs.

There is a hydrometallurgical caustification method for sideritized bauxites [6,7]. The
essence of this method is in the fact that bauxite is subjected to soda-lime leaching using
soda ash and limestone in autoclaves. However, the use of this method results in significant
alumina losses due to the formation of tricalcium hydroaluminate.

One of the technological options intended to process sideritized bauxite is thermal
causticization. The essence of the method is the roasting of bauxite at the temperature
of ~900 ◦C in a tubular rotary kiln with soda in the required amount. A method of
thermal conditioning for chloride-containing bauxites was proposed in [5] that enables the
removal of carbonates by roasting with chlorides. This roasting method is selective, as only
carbonate constituents are removed.

It was shown in [5–8] that the sintering method using calcium- and corundum-
containing additives enables the processing of high-iron bauxites. However, the disposal
of corundum-containing waste and the use of rotary sintering furnaces show that the
proposed method is not promising. Low-quality bauxites can be processed by the separate
leaching of clay and stony fractions of bauxites. However, the separation of bauxite frac-
tions in an alkaline medium does not provide the required separation degree of the clay
part [5,9–12].

The bauxites of the Krasnogorsk deposit currently used at the Pavlodar aluminum
plant (hereinafter referred to as PAP) of Aluminum of Kazakhstan JSC (the Republic of
Kazakhstan) in the production with the sequentially combined method named Bayer-
sintering, are distinguished by a low silicon modulus and an increased content of harmful
components: siderite, chamosite, hematite, pyrite, organic and other impurities, and their
quality constantly decreases, which results in a sharp deterioration in the composition of
solutions, middlings and a decrease in the technical and economic parameters [13]. With this
circumstance, a complex of theoretical and technological studies is performed to develop
an effective technology, since the above methods processing low-quality bauxite have a
number of disadvantages that make it difficult or impossible under production conditions.

The optimal solution to involve the majority of bauxite deposits in Kazakhstan into the
processing industry is our proposed technology intended to process low-quality gibbsite-
kaolinite bauxite with a preliminary two-stage beneficiation, including innovative technical
solutions that enable to remove harmful impurities, to transform the phase composition, to
remove silicon during subsequent alkaline processing and to obtain material suitable for
the alumina production in the simplest and most efficient Bayer process.

The proposed technology for processing low-quality gibbsite-kaolinite bauxites, with
preliminary two-stage enrichment, makes it possible to obtain a material suitable for the
production of alumina by the simplest and most efficient Bayer method.

2. Materials and Methods

X-ray fluorescence analysis was performed with a Venus 200 PANalytical B.V. spec-
trometer with wave dispersion (Malvern PANalytical B.V., Almelo, The Netherlands).
Chemical analysis of the samples was performed on an optical emission spectrometer with
inductively coupled plasma Optima 2000 DV (PerkinElmer, Waltham, MA, USA). X-ray
experimental data were obtained with a Bruker D8 ADVANCE (Bruker Corporation, Biller-
ica, MA, USA) apparatus using copper radiation at an accelerating voltage of 36 kW and a
current of 25 mA. Thermodynamic calculations of the reactions accepted for analysis were
performed using the HSC Chemistry special program (Outokumpu Oyj, Helsinki, Finland).

The initial data for calculations were obtained from the NIST Standard Reference
Database 13 website [14,15]. Beneficiation (desiliconization) of the calcined coarse-grained
fraction was performed in a 1800-mL thermostatted beaker while stirring with a mechan-
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ical stirrer at 400 rpm in a solution containing 10% NaOH at the temperature of 100 ◦C,
L:S = 6:1 (Liquid:Solid) for a duration of 2 h. The circulating solutions were mixed before
the experiments by placing the canisters on the roller tables of the laboratory mill for
30 min.

The chemical activation and leaching of beneficiated bauxites were performed in
300-mL autoclaves installed in a thermostatically controlled tunnel with automatic tem-
perature control 0–300 ◦C and stirring of the autoclaves over the head. This autoclave was
designed and manufactured for laboratory research at the Institute of Metallurgy and Ore
Beneficiation (Almaty, Kazakhstan).

Heat treatment was performed in a tubular rotary kiln that enables to create condi-
tions for uniform roasting as a result of mixing (Zhengzhou SuTong Electric Equipment
Company, Zhengzhou, China). The material of the reaction tube was stainless steel. Ac-
cepted designations: αкy—caustic modulus; µSi—silicon modulus; Na2Oкy—caustic alkali;
Na2Oкб—carbonate alkali; and Na2Ooб—total alkalinity. The novelty of the technology lies
in the two-stage enrichment of bauxite by gravity and chemical methods (Figure 1).
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Before gravity enrichment, preliminary chemical activation is conducted in a sodium
bicarbonate solution. The selected coarse-grained fraction is sent for thermal transformation
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followed by chemical enrichment in an alkaline solution. The clay fraction is sent to the
sintering process of the main alumina production.

As a result of the performed operations, a conditioned product with a silicon modulus
of more than 7 was obtained that meets the requirements for processing by the simplest and
most economical Bayer method. In the process of research, the material composition of the
original bauxite and the resulting middlings of the technology-bauxite after activation, clay
and sand fractions, enriched bauxite, pulp, red mud, alumina and solutions were analyzed
by XRD and chemical analysis.

3. Results and Discussion
3.1. Physical and Chemical Composition

A representative sample of gibbsite-kaolinite bauxite from the Krasnogorsk deposit
was used for the study: % wt—Al2O3 42.0; SiO2 11.5; Fe2O3 19.5; CaO 1.08; Na2O 0.22;
MgO 0.18; K2O 0.03; TiO2 2.05; SO3 0.24; Cl-0.04; other 23.16; and µSi 3.65.

The X-ray phase bauxite composition is presented in Figure 2.
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Figure 2. X-ray diffraction pattern of bauxite from the Krasnogorsk deposit. The data were previously
given in the publication [16].

3.2. Chemical Activation

Chemical activation of bauxite before gravity beneficiation was performed in a sodium
bicarbonate solution containing 120 g/dm3 NaHCO3 at temperatures of 90–200 ◦C [16,17].
The NaHCO3 concentration was taken using the solubility limit. Changes in the chemical
and phase compositions of bauxite depending on temperature and duration are shown in
Figures 3–6 (Data from the publication [16] were used here).

Studies of the influence of the chemical activation temperature on the change in the
chemical and phase composition were performed for a duration of 60 min. The conditions
were chosen based on previous studies [18]. Studies of the effect of the chemical activation
duration were performed at the temperature of 120 ◦C, at which the maximum reduction
in the hard-to-open kaolinite phase was obtained.

X-ray phase analysis results of the coarse-grained fraction of bauxite after chemical
activation are presented in Figure 7.
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3.3. Preliminary Roasting and Chemical Beneficiation

The coarse-grained fraction of bauxite after gravity beneficiation was subjected to
thermal transformation to obtain a high-quality bauxite concentrate with a silicon modulus
of more than 7 suitable for processing according to the Bayer scheme. The transformation
included preliminary roasting at the temperature of 900–1000 ◦C for 2 h. The technology
provides for the use of sintering furnaces, which are installed at the PAP. The operating
temperature of the furnaces at the inlet is 900–950 ◦C. The duration was chosen taking into
account the time spent on heating the material and bringing it to the temperature of the
sintering zone, 1000 ◦C [19].

The phase composition of bauxite depending on the roasting temperature is specified
in Figure 8.
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The mechanism of transformation of the phase composition can be represented as the
following reactions based on the results of bauxite roasting:

Na2O · 2FeS + 3O2 → Na2O + 2FeO + 2SO2 ∆G = −1434.9 − 0.436 T (1)

Na2O + 2Al(OH)3 + 2SiO2 → Na2O·Al2O3·2SiO2 + 3H2O ∆G = 18.81−0.119 T (2)

FeCO3→FeO + CO2 ∆G = 79.64 − 0.179·T (3)
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4FeCO3 + O2→2Fe2O3 + 4CO2, ∆G = −265.44 − 0.442·T (4)

Fe2O3→2FeO + 0.5O2, ∆G = 292 − 0.692 T (5)

2Al(OH)3→Al2O3 + 3H2O (6)

Al2O3 · 2SiO2·2H2O 500–600 oC→ Al2O3·2SiO2+2H2O (7)

2(Al 2O3 · 2SiO2)
850–925 oC→ 2Al2O3·3SiO2+SiO2 (8)

2Al2O3 · 3SiO2
1000 oC→ 2(Al 2O3·SiO2) + SiO2 (9)

The phases of siderite, gibbsite, kaolinite, calcite, dolomite and ferro-sulfide sodium
oxide disappear as a result of roasting. A chemically stable phase of corundum is formed.
The contents of hematite, quartz and mullite increase. The increase in the content of
quartz can be explained by the decomposition of kaolinite with the formation of mullite in
accordance with Equations (7)–(9).

The appearance of a chemically stable phase of corundum enables to prevent the
transition of Al2O3 into solution during chemical beneficiation and to ensure the maximum
removal of silica. Chemical beneficiation of calcined bauxite was performed with an
alkaline solution containing 10% NaOH at the temperature of 100 ◦C for 2 h and L:S = 6.
We used the factory alkaline solution of PAP with a content of 496 g/l Na2Oкy to obtain
an alkaline solution containing 10% NaOH. The chemical beneficiation results of calcined
bauxites are shown in Table 1 and Figure 9.

Table 1. The composition of bauxite after chemical beneficiation (with Extraction of SiO2 into solution).

Bauxite Roasting
Temperature, ◦C

Content, % Extraction of SiO2
into Solution, %

Al2O3 SiO2 Fe2O3 CaO SO3 Na2O Cl TiO2 Other µSi

900 45.77 10.27 22.49 2.03 0.61 3.99 0.01 3.05 11.76 4.45 55.2
925 52.72 9.36 26.58 1.95 0.48 3.76 0.01 3.13 2.01 5.63 56.0
950 58.06 5.33 27.12 2.31 0.12 0.49 0.01 3.3 0.08 10.9 74.9
975 57.47 5.37 27.14 2.25 0.09 0.53 0.01 3.14 0.01 10.6 74.6

1000 60.35 5.69 27.49 2.1 0.09 0.59 0.01 3.44 0.03 10.6 74.3
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The dependence of the change in the silicon modulus of bauxite and the degree of
extraction of SiO2 into the solution as a result of chemical beneficiation on the roasting
temperature are shown in Figure 10.
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It follows from the obtained chemical beneficiation results that a roasting temperature
of 950 ◦C is sufficient to obtain a silicon modulus of bauxite of more than 7 units, while
the extraction of SiO2 into the solution was 74.9%. Autoclave leaching of beneficiated
bauxite was performed at the temperature of 280 ◦C during 2 h in a recycled alkaline-
aluminate solution of PAP composition, wt g/dm3: 123.9 Al2O3; 326.6 Na2Ooб; 6.4 Na2Oкб;
320.2 Na2Oкy; and αкy-3.099. The circulating solution was dosed based on the calculation
of a solution with αкy-1.48 to be obtained. The autoclave leaching pulp was diluted
with distilled water to obtain an aluminate solution for decomposition with a content of
Na2Oкy ≈ 120 g/dm3.

Agitation mixing of the diluted pulp of autoclave leaching was performed at the tem-
perature of 105 ◦C for 2 h. The compositions of aluminate solutions and solid phases (red
mud) of autoclave leaching of bauxite after pulp dilution are presented in
Tables 2 and 3 and Figures 11 and 12.

Table 2. The compositions of aluminate solutions (with αкy and µSi).

Bauxite Roasting Temperature, ◦C
Content, g/dm3

αкy µSi
Al2O3 Na2Ooб Na2Oкб Na2Oкy SiO2

900 116.325 132.5 9.5 123.0 1.0 1.74 116
925 118.3 132.8 9.9 122.9 0.99 1.70 119.4
950 130.8 133.04 11.04 122.0 0.88 1.54 140
975 133.9 133.4 11.3 122.1 0.85 1.50 148

1000 133.5 134 11.5 122.5 0.820 1.51 158
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Table 3. The compositions of solid phases (red mud) with µSi and Al2O3 extraction.

Bauxite Roasting
Temperature, ◦C

Solids Content, %
µSi

Extraction into Solution
Al2O3, %Al2O3 SiO2 Fe2O3 CaO SO3 Na2O Cl TiO2

900 21.403 21.869 30.986 1.556 0.2 16.95 2.771 3.623 0.98 66.1
925 20.31 15.73 34.15 2.8 0.3 16.74 2.58 3.45 1.21 70.3
950 14.1 10.65 54.5 3.11 0.5 15.82 2.306 3.554 1.29 87.8
975 12.7 10.7 54.22 3.2 1.09 15.01 2.35 3.45 1.505 88.1

1000 15.0 11.4 54.8 3.8 0.8 12.44 1.401 4.009 1.89 87.0
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Analysis of the autoclave leaching results for pre-calcined bauxite showed that the
optimal conditions are the roasting temperatures of bauxite 950–975 ◦C, while the alumina
extraction into the solution was 87.8–88.1%. A higher roasting temperature resulted in an
increase in the proportion of the sparingly soluble Al2O3 phase, respectively, to a decrease
in extraction.
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The yield of red mud during the processing of bauxite enriched and calcined at
950 ◦C was 37.62%. During autoclave leaching of bauxite under the accepted conditions
without enrichment, the yield of red mud was 71%, i.e., carrying out preliminary enrich-
ment significantly reduces the amount of environmentally harmful waste from alumina
production—red mud.

The technology uses methods of gravitational enrichment with the separation of an
environmentally friendly product—kaolinite (clay) fraction and chemical enrichment in a
recycled alkaline solution, which is regenerated with the release of extracted silica into a
commercial product (for example, liquid glass).

4. Conclusions

The technology was developed to process gibbsite-kaolinite bauxite, including pre-
liminary chemical activation and thermal transformation during beneficiation, to obtain a
concentrate suitable for processing by the Bayer method. A change in the phase composi-
tion occurs as a result of the chemical activation of gibbsite-kaolinite bauxite in a sodium
bicarbonate solution that made it possible to improve the gravity beneficiation results with
the production of a coarse-grained gibbsite fraction.

The chemical activation mode is selected from the conditions excluding the formation
of an undesirable phase—dawsonite. The bauxite transformation within 900–1000 ◦C
is represented by the reactions of decomposition of siderite, gibbsite, kaolinite, calcite,
dolomite and ferro-sulfide sodium oxide, as well as the formation of sodium aluminosilicate,
hematite, quartz and the chemically stable phase of corundum.

The optimum roasting temperature of bauxite is 950–975 ◦C, after which a bauxite
silicon modulus of more than 7 units was obtained as a result of alkaline treatment during
chemical beneficiation. The extraction of SiO2 into solution was 74.9%. The maximum
extraction of alumina into a solution of 87.8–88.1% was obtained as a result of autoclave
leaching of gibbsite-kaolinite bauxite after a two-stage beneficiation.
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