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Abstract: HIsmelt is well suited for smelting vanadium–titanium magnetite due to its flexibility in
feedstock selection and tolerance to high viscosity slag, compared with the blast furnace. In this work,
the effect of smelting time on the distribution behavior and recovery rates of vanadium and titanium
in HIsmelt smelting of vanadium–titanium magnetite was investigated by experiment for the first
time. The relationship between slag viscosity and temperature at different smelting times was further
revealed by thermodynamic calculations. The experimental results show that extending the smelting
time increases the FeO content in the slag, the LV rose from 0.66 to 5.02, the LTi declined from 206.90
to 114.86, the shorter smelting time is favorable for increasing the recovery ratio of vanadium and
titanium in metal and slag. In addition, slag viscosity decreases with increasing smelting time. The
precipitation of high melting point titania spinel and CaTiO3 phases is responsible for the significant
increase in slag viscosity at 1300 ◦C.

Keywords: HIsmelt; vanadium titano–magnetite; distribution behavior; recovery; viscosity

1. Introduction

Vanadium–titanium magnetite is an important Fe, V, and Ti resource with a highly
comprehensive utilization value [1–3]. Chinese vanadium–titanium magnetite reserves are
plentiful but underutilized, with over 18 billion tons of proven vanadium and titanium
magnetite reserves in China as of 2019 [4]. However, because of the complex phase structure
and numerous mineral compositions, vanadium–titanium magnetite is classified as a typical
polymetallic paragenic resource that is difficult to treat and utilize [5–7]. Currently, the
smelting process of vanadium–titanium magnetite is mainly a blast furnace–converter
process [4,8]. However, it was found that the smelting operation and the comprehensive
utilization of the V–Ti burden in the blast furnace were seriously affected by its poor
tumbler strength compared with that of ordinary sintering [9–12]. In addition, the smelting
atmosphere in the blast furnace is reductant, which promotes the over–reduction reaction
of TiO2 in the slag and the formation of Ti (C, N) with a high melting point, resulting in
the increase of the slag viscosity and the decrease of the permeability in the blast furnace,
which deteriorates the smelting conditions [13].

HIsmelt is a molten reduction ironmaking process that has been used for the industrial
smelting of ordinary iron ore [14,15]. The HIsmelt process takes ore powder, flux, and coal
powder as raw materials and has the advantage of less energy consumption and pollution
compared with the blast furnace as it has no sintering and coking processes, which can
avoid the adverse effects of vanadium and titanium magnetite sintering [16–18]. In addition,
the atmosphere in the HIsmelt smelting reduction furnace is weakly oxidizing, which could
inhibit the over–reduction reaction of TiO2 [18–20]. Moreover, the raw material is injected
directly into the slag and metal through the lance in the HIsmelt smelting reduction vessel,
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it is not necessary to consider the gas permeability, thus HIsmelt has twice the slag viscosity
tolerance of the blast furnace [20–23].

In the blast furnace, the ore is gradually reduced to lose oxygen by the blast furnace
gas during the slow downward movement and is eventually reduced to hot metal in the
hearth, so it is not necessary to consider the effect of smelting time on production [24,25].
However, in the HIsmelt smelting process, the raw material is reduced by carbon in the hot
metal after being sprayed into the molten pool through the lance, thus the smelting time
affects the production efficiency of HIsmelt plants [23,26,27]. Since HIsmelt smelting of
vanadium–titanium magnetite has not yet been industrialized, it is essential to investigate
the effect of smelting time on such a process.

In this paper, the effect of smelting time on the vanadium and titanium distribution
behavior and slag viscosity properties in the HIsmelt smelting of vanadium–titanium
magnetite is investigated for the first time through experiments and thermodynamic
calculations. First, melting pre–experiments and equilibrium experiments were designed to
reveal the effect of smelting time on the vanadium and titanium distribution and recovery
ratio. Then, the relationship between slag viscosity and temperature at different smelting
times was calculated using the FactSage thermodynamic package. Finally, the phase and
composition of the slag were analyzed by scanning electron microscopy equipped with
energy dispersive spectroscopy. The results of this study could be helpful in promoting the
industrialization of HIsmelt smelting of vanadium–titanium magnetite.

2. Experimental Section
2.1. Materials

Vanadium–titanium magnetite was used in the experiments from Panzhihua, China.
The mineralogical composition of the ore is shown in Table 1, the macroscopic morphology
and particle size characteristics of the ore are shown in Figure 1.

Table 1. Composition of Panzhihua vanadium titanomagnetite (wt%).

Composition Total Iron SiO2 CaO V2O5 TiO2 MgO Al2O3 S P

Content 56.03 2.98 0.89 0.62 10.87 2.84 2.83 0.61 0.01
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Figure 1. Macroscopic morphology and particle size characteristics of Panzhihua vanadium titano-
magnetite. (a) Macroscopic morphology, (b) particle size distribution.

A simplified chemical composition of vanadium–titanium magnetite was used in
experiments, experimental ore powders were synthesized using analytical grade chemical
reagents. In order to avoid the influence of P and S elements on the experiment, the synthetic
ore contained no P and S elements, while the binary basicity (CaO/SiO2) was adjusted by
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changing the CaO addition ratio to satisfy basicity of 1.2, which is the suitable basicity for
smelting vanadium–titanium magnetite in HIsmelt [13]. In addition, the graphite addition
when the metal is carburized at 4% was calculated using the FactSage 8.1 thermodynamic
package [28]. The proportions of raw ore, CaO, and graphite powder in the synthetic ore as
well as the synthetic ore compositions that were normalized are shown in Table 2.

Table 2. Experimental ore powder composition.

Material Proportion (wt%) Mineralogical Composition (wt%)
Graphite (g)

Raw Ore CaO Graphite Total Iron CaO SiO2 Al2O3 MgO V2O5 TiO2

93.95 2.56 3.49 55.76 3.56 2.97 2.82 2.83 0.62 10.82 3.65

2.2. Synthetic Ore Samples

Experimental ore was synthesized using analytical grade chemical reagents to ensure
the accuracy of the experimental results, the purity of reagents and their suppliers are
shown in Table 3. Firstly, the experimental reagents such as CaO, SiO2, Al2O3, MgO, and
TiO2 were roasted at 1000 ◦C for 2 h under argon protection, the CO2 or H2O likely present
in the reagents were removed to reduce the experimental errors.

Table 3. Chemical reagent purity and their suppliers.

No. Chemicals Purity/% Supplier

1 CaO 98 Sinopharm
2 SiO2 99 Sinopharm
3 Al2O3 99 Sinopharm
4 MgO 98.5 Sinopharm
5 TiO2 98 Sinopharm
6 V2O5 99 Energy
7 Fe 98 Aladdin
8 Graphite 99.9 Macklin

2.3. Experimental Scheme and Procedure

The experiments were divided into melting pre–experiments and equilibrium experi-
ments. As shown in Figure 2, the purpose of the melting pre–experiment was to obtain the
melting time of synthetic ore at 1500 ◦C (the melting time corresponds to the heating time
during the melting stage in the equilibrium experiments). The equilibrium experiment was
divided into the melting stage and the equilibrium stage. In the melting stage, the synthetic
ore was melted at high temperature and the slag–metal started to separate, the melting
stage time was the ore melting time in the melting pre–experiment. In the equilibrium
stage, the separation of slag and metal was completed, and the element distribution in slag
and metal gradually reached equilibrium.
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2.3.1. Melting Pre–Experiments

The chemical reagents were weighed and mixed thoroughly according to the synthetic
ore composition, 0.8 g of synthetic ore was added to the powder briquetting machine, and
a cylindrical material block with a diameter of 8 mm and a height of 4 mm was obtained
after being kept under 5 Mpa pressure for 1 min, as shown in Figure 3.

Metals 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

2.3.1. Melting Pre–Experiments 
The chemical reagents were weighed and mixed thoroughly according to the syn-

thetic ore composition, 0.8 g of synthetic ore was added to the powder briquetting ma-
chine, and a cylindrical material block with a diameter of 8 mm and a height of 4 mm was 
obtained after being kept under 5 Mpa pressure for 1 min, as shown in Figure 3. 

 
Figure 3. Macroscopic morphology of cylindrical material block. (a) Front view, (b) top view. 

Then, the cylindrical material block was placed on an Al2O3 sheet (50 × 22 × 6 mm) 
inside a graphite boat, then the graphite boat was put into the ash fusibility tester (abbre-
viated as AFT; Chang Sha U–Therm Instrument Manufacturing Co., Ltd.; Model YH–HRD 
3000, Changsha, Hunan, China). The AFT was sealed and then argon (99.999%, 3 L/min) 
was injected, the cylindrical material block was heated (at a rate of 500 °C/h) to 1500 °C 
and then kept at constant temperature. The pictures were taken and recorded every 10 s. 
Finally, the melting time of the ore was determined by comparing the deformation and 
angle of the columnar blocks at 1500 °C with Photoshop graphic processing software (2020, 
Adobe, San Jose, CA, USA). 

2.3.2. Equilibrium Experiments 
The weighed Fe, V2O5, and graphite powders were thoroughly mixed and denomi-

nated as sample 1, and CaO, SiO2, Al2O3, MgO, and TiO2 were mixed and labeled as sam-
ple 2. Sample 1 was placed at the bottom of the MgO crucible with 18 mm inner diameter 
and 50 mm height, sample 2 was covered on sample 1. With this method, the melting 
process of the synthetic ore was accelerated and the equilibrium process was promoted. 
Finally, the MgO crucible was placed in the constant temperature zone inside the Al2O3 
casing of the elevated temperature tubular furnace. Figure 4 shows a schematic diagram 
of the elevated temperature vertical tubular furnace. 

Figure 3. Macroscopic morphology of cylindrical material block. (a) Front view, (b) top view.

Then, the cylindrical material block was placed on an Al2O3 sheet (50 × 22 × 6 mm) inside
a graphite boat, then the graphite boat was put into the ash fusibility tester (abbreviated as AFT;
Chang Sha U–Therm Instrument Manufacturing Co., Ltd.; Model YH–HRD 3000, Changsha,
Hunan, China). The AFT was sealed and then argon (99.999%, 3 L/min) was injected, the
cylindrical material block was heated (at a rate of 500 ◦C/h) to 1500 ◦C and then kept at constant
temperature. The pictures were taken and recorded every 10 s. Finally, the melting time of the
ore was determined by comparing the deformation and angle of the columnar blocks at 1500 ◦C
with Photoshop graphic processing software (2020, Adobe, San Jose, CA, USA).

2.3.2. Equilibrium Experiments

The weighed Fe, V2O5, and graphite powders were thoroughly mixed and denomi-
nated as sample 1, and CaO, SiO2, Al2O3, MgO, and TiO2 were mixed and labeled as sample
2. Sample 1 was placed at the bottom of the MgO crucible with 18 mm inner diameter and
50 mm height, sample 2 was covered on sample 1. With this method, the melting process of
the synthetic ore was accelerated and the equilibrium process was promoted. Finally, the
MgO crucible was placed in the constant temperature zone inside the Al2O3 casing of the
elevated temperature tubular furnace. Figure 4 shows a schematic diagram of the elevated
temperature vertical tubular furnace.

The synthetic ore was heated to 1500 ◦C at a heating rate of 300 ◦C/h under the pro-
tection of argon (3 L/min) and then maintained at constant temperature. The equilibrium
experiment entered the melting stage, the melting stage time is the synthetic ore melting
time in the melting pre–experiment.

Then the equilibrium experiment entered the equilibrium stage, and the argon flow
rate was quickly adjusted to 1 L/min and kept at a constant temperature for 1 h, 2 h and 3 h.
The 1 h, 2 h, and 3 h slag and metal samples were rapidly removed and quenched using
argon (99.999%) purging. The heating process for the melting and equilibrium experiment
is shown in Figure 5.
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3. Results and Discussion
3.1. Ore Melting Behavior

Figure 6 shows a photograph of the melting process for the cylindrical material block.
As shown in Figure 6, it can be observed that the shape of the column block in the initial
state was complete, and the contact angle between column block and the Al2O3 sheet was
90◦. When the AFT was heated up to 1500 ◦C, the column block had obvious melting and
deformation, the contact angle between the column block and the Al2O3 sheet decreased,
but still remained between 80–90◦. When the column block was heated at 1500 ◦C for
50 min, the contact angle between the column block and the Al2O3 sheet was reduced to
about 70◦, and the column block was completely melted into liquid droplets. Therefore,
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the column block was completely melted after being kept at 1500 ◦C for 50 min. To ensure
that the synthetic ore was completely melted, finally, the melting time was determined to
be 60 min.
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Figure 6. Melting process of column material block. (a) Sample at 25 ◦C, (b) sample at 1500 ◦C for
0 min, (c) sample at 1500 ◦C for 50 min.

3.2. Effect of Smelting Time on Element Distribution Behavior and Recovery

Table 4 shows the composition of slag and metal at different smelting times detected
by SEM–EDS. The content of FeO, V2O3, and TiO2 in the slag increased as the smelting time
was extended, which was because the atmosphere of the HIsmelt SRV furnace is weakly
oxidizing, and more Fe, V, and Ti elements in the hot metal are oxidized into the slag with
a longer smelting time. With the increase in smelting time, the V content in the hot metal
was reduced, which was consistent with the above findings.

Table 4. Composition of slag and metal at different smelting times.

Smelting Time
Slag (wt%) Hot Metal (wt%)

FeO CaO MgO Al2O3 SiO2 V2O3 TiO2 Si Ti V

1 h 1.86 16.77 13.33 11.05 19.20 0.53 37.24 0.07 0.18 0.81
2 h 2.71 15.55 12.36 10.16 17.53 1.59 40.10 0.14 0.31 0.53
3 h 2.93 15.55 12.37 9.94 16.05 1.81 41.35 0.36 0.36 0.36

The elemental distribution ratios were defined as follows:

LM =
w(MOx)

w[M]
(1)

where M is the V and Ti elements, w[M] and w(MOx) are the mass fraction of the element M
in metal and M oxides in slag individually, the LM is the distribution ratio of element M.

Figure 7 shows the change of vanadium and titanium distribution ratios (LV, LTi) with
smelting time. As the smelting time was extended from 1 to 3 h, the LV rose from 0.66 to 5.02
and LTi declined from 206.90 to 114.86. The reason for this is that extending the smelting
time increases the FeO content in the slag under a weakly oxidizing atmosphere, element
V is oxidized to V2O3 by FeO. However, at the current FeO content, the restrictive step
of titanium distribution behavior was the smelting time rather than the oxygen potential,
therefore, the titanium distribution ratio decreased with increasing smelting time.

The elemental recovery ratios were defined as follows

εV =
mV metal

mV metal + mV slag
(2)

εTi =
mTi slag

mTi metal + mTi slag
(3)

where mV metal and mTi metal are the mass of V and Ti in the metal, mV slag and mTi slag
are the mass of V and Ti in the slag individually, the εV and εTi are the recovery ratio of V
and Ti.
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In order to obtain more valuable data for industrial production, the effect of smelting
time on the recovery of vanadium and titanium (εV, εTi) was investigated. As shown in
Figure 8, both εV and εTi were reduced with a longer smelting time. Therefore, there is no
doubt that the shorter smelting time is favorable to increase the recovery ratio of vanadium
in hot metal and titanium in slag. Currently, according to actual production data from
a Chinese blast furnace for vanadium and titanium magnetite smelting, the vanadium
recovery is 74.3% and the titanium recovery is 95.4%. As a result, under the current research
conditions, HIsmelt has higher vanadium and titanium recoveries than the blast furnace.
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3.3. Effect of Smelting Time on Slag Viscosity Properties

The ironmaking process is also a slag refining process, and the slag properties are
critical to the process of HIsmelt smelting of vanadium–titanium magnetite. As a result,
the changes in slag viscosity with temperature at different smelting times were calculated
using FactSage, and the slag viscosity was corrected using the Einstein–Roscoe Equation,
as shown in Equation (4).

ηsolid+liquid ≈ ηliquid · (1 − solid fraction)−2.5 (4)

where ηliquid is the viscosity of liquid slag, ηsolid+liquid is the viscosity for solid–liquid mixed
slag. The original Einstein–Roscoe equation used ‘volume fraction of solid’ instead of ‘solid
fraction’ and a correction term for morphology; we can simply use the solid fraction (wt%)
for this equation as an approximation.

Figure 9 demonstrates that the slag viscosity reduced with increasing smelting temper-
ature at different smelting times, and the appearance of the inflection point showed a clear
basic slag characteristic. The inflection point in the figure was about 1300 ◦C. However, as
the smelting time was extended, the slag viscosity showed a tendency to decline, although
the tendency was weak. It could be explained by the fact that the smelting time promotes
the increase of FeO content in the slag, FeO has the basic oxide properties that could
depolymerize the Al–O and Si–O tetrahedral structure in the slag, resulting in the reduction
of slag viscosity [29–31].
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Figure 10 shows the microscopic morphology and phases of slag with a smelting time
of 3 h. As shown in the red box in Figure 10a,b, the main phase in the slag was the rod–like
CaTiO3 phase. As shown in Figure 10c, the titania spinel and CaTiO3 phases started to
precipitate from liquid slag when the temperature dropped below 1300 ◦C. As a result,
the significant increase in slag viscosity at 1300 ◦C in Figure 9 could be attributed to the
precipitation of the high melting point CaTiO3 phase from the liquid slag.
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Figure 10. (a) Microscopic morphology and physical phases of slag with smelting time of 3 h, (b) SEM
image of the high titanium slag, (c) changes in the solid phase precipitation during equilibrium
cooling of the slag as calculated using the Factsage software, (d) EDS spectrum obtained for the
CaTiO3 inclusions shown in (b).

4. Conclusions

In this paper, the effect of smelting time on element distribution and slag viscosity
properties when smelting vanadium–titanium magnetite in HIsmelt was investigated by
experimental and thermodynamic calculations.

(1) Extending the smelting time increases the FeO content in the slag, element V is
oxidized to V2O3 by FeO, the LV rose from 0.66 to 5.02. However, at the current FeO
content, the restrictive step of titanium distribution behavior is the smelting time rather
than the oxygen potential, the LTi declined from 206.90 to 114.86. The shorter smelting
time is favorable for increasing the recovery ratio of vanadium and titanium in the metal
and slag.

(2) As the smelting time is extended, FeO depolymerizes the Al–O and Si–O tetrahedral
structure in the slag, resulting in the reduction of the slag viscosity. The precipitation of high
melting point titania spinel and CaTiO3 phases is responsible for the significant increase in
slag viscosity at 1300 ◦C.
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