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Abstract: Metallic materials have been widely used as orthopedic implants in clinics for their good
mechanical, physical, and chemical properties, but their slow osseointegration rate is still one of the
main issues causing implantation failure. Grain refinement has recently attracted wide attention for
its effective improvement of cell–material interaction for biometals. In this review, the surface and
bulk grain refinement mode and the influence of grain size reduction of various metallic materials
including titanium, stainless steel, magnesium, zirconium, tantalum, and their alloys as well as NiTi
shape memory alloys on the cell responses is summarized in detail. It is hoped that this review could
help biomaterials-related researchers to understand the grain refinement of metallic materials in a
timely manner, thus boosting the development of biomedical metals for clinical use.
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1. Introduction

Currently, metallic materials such as titanium, stainless steel, magnesium, etc. are
widely used in the fields of orthopedics and dentistry because of the superior mechanical
properties (e.g., high tensile strength, toughness, and fracture resistance) compared with
the ceramics and bio-glass [1,2]. Some typical applications of the metallic materials are
shown in Figure 1.
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Figure 1. Metallic biomaterials for orthopedic applications reprinted with permission from Ref. [1].
Copyright 2022, ELSEVIER.

However, for materials implanted into the body, it is important to ensure that they do
not have negative effects; Willams defined this idea of biocompatibility as “the ability of a
biomaterial to perform its desired function with respect to a medical therapy, without elicit-
ing any undesirable local or systemic effects in the recipient or beneficiary of that therapy,
but generating the most appropriate beneficial cellular or tissue response to that specific
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situation, and optimizing the clinically relevant performance of that therapy” [3]. In order
to improve biocompatibility, predecessors have used micro-arc oxidation, hydrothermal
synthesis, thermal spraying, electroless plating, and other methods to form a biologically ac-
tive surface layer (usually a ceramic surface layer) on the metal surface [4–6]. Nevertheless,
there is a problem: the interface between these heterogeneous coatings and the substrate
can easily peel off. In this regard, severe plastic deformation (SPD)—a technique which can
fabricate metals with ultrafine-grained (UFG) or nano-grained (NG) structure—shows great
potential in the field of biomedicine [7–10]. It has been reported that SPD-derived ultra-
/nano-structures possess a large fraction of grain boundaries and more lattice imperfections
such as dislocations, vacancies, stacking faults, and twins, which has the positive effect of
improving the mechanical properties (particularly the strength, according to the Hall-Petch
theory) and increasing the surface energy of the metals to mediate protein adsorption, thus
benefiting the subsequent cell response and tissue growth [11,12].

In general, the SPD method can refine the coarse-grained materials into UFG or
NG materials through two modes: one is applying high strain on the material’s surface to
generate surface grain refinement, and the other is using extremely high plastic deformation
to compel the whole grain size of the bulk materials to reduce into the UFG or NG regime.
In recent years, these two modes—including surface mechanical attrition treatment (SMAT),
ultrasonic shot peening (USSP), friction stir processing (FSP), and equal channel angular
pressing (ECAP)—have been used extensively to surface/bulk modify the metals in order
to avoid the interface bonding issue (shown in Figure 2) and improve biocompatibility.
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with permission from Ref. [13]. Copyright 2022, ELSEVIER.

For example, Agrawal et al. [14] used USSP to obtain a layer with an average grain size
of about 20 nm on the surface of pure titanium and found that human mesenchymal stem
cells (hMSCs) exhibited better cell viability on the nano-grained samples. Bahl et al. [15]
fabricated a nanocrystalline layer with an average size of about 40 nm on the cp-Ti by SMAT;
after 14 days of cell culture, the proliferation rate of hMSCs was observed to be higher on the
NC (nanocrystalline) surface compared with the MC (microcrystalline) surface. In addition,
the ECAP-treated titanium alloy was reported to not only possess better antibacterial
properties, but also promote the differentiation of human fetal osteoblast (hFOB) cells,
while the grain size reduced to 500–700 nm [16]. In view of the strong capability to endow
metallic materials with better biocompatibility, together with the coherence of substrate
and surface layers, these methods represent a potential route for developing new types of
implants to be used in clinics.

In this paper, the status of recent research on surface/bulk grain refinement of metal-
lic materials to improve the biological activity is summarized, and some opinions and
prospects are put forward in relation to this field. Through the summary, we hope the
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research progress of the development of biomaterials in this field can be accelerated, thereby
promoting wider clinical application of metallic materials in the near future.

2. Two Grain Refinement Modes for Treating Metallic Materials
2.1. Surface Grain Refinement
2.1.1. Surface Mechanical Attrition Treatment (SMAT)

Surface mechanical attrition treatment (SMAT) is a physical modification method for
obtaining new gradient nanometal materials [17]. It is an effective method for achieving
the surface nanocrystallization of many metals, such as titanium, aluminum, nickel, steel,
magnesium, and copper. The basic process is summarized as follows: Smooth spheres
made of steel or ceramic, with a diameter of 3–10 mm, are placed in a chamber which is
connected to a vibration generator. The vibration frequency of the chamber is 50 Hz and
20,000 Hz for I-type and II-type SMAT techniques, respectively [18]. The sample surface to
be treated is impacted by a large number of balls in a short period of time, with a velocity
of 1–20 m/s depending on the vibration frequency and the distance between the sample
surface and the balls [13]. The impact of each ball causes severe plastic deformation (SPD)
on the surface layer and facilitates the process of nanocrystallization. The thickness of the
nanostructured surface layer depends very much on the processing parameters (such as ball
size, vibration frequency, temperature, etc.) [13]. With flexibility and low cost, SMAT can
obtain localized nanostructured surface layers in bulk materials and is capable of treating
the surfaces of parts with complex shapes. In addition, this technique can produce surfaces
with low roughness because of the better quality of shots and a lower impact speed [11].
The SMAT process is illustrated in Figure 3.
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Figure 3. Schematic illustrations of the (a) SMAT setup and (b) localized plastic deformation in the
surface layer of the treated sample, caused by the impact of balls reprinted with permission from
Ref. [19]. Copyright 2022, ELSEVIER.

2.1.2. Ultrasonic Shot Peening (USSP)

The ultrasonic shot peening (USSP) process is a kind of shot peening. It can optimize
the characteristics of the material surface, modify the material properties, and improve the
wear and fatigue resistance. A power ultrasonic horn causes impacts with high frequency
(generally higher than 20 kHz) and low amplitude. The whole process is quiet because
it operates more frequently than the human ear can perceive. The high-frequency and
multi-directional shock acts on the surface randomly, creating a kind of microdimple shape
and forming a nanocrystalline surface layer. USSP treatment is an effective approach
for forming a nanostructure layer on the surface of metallic materials [20]. However,
the relatively high strain might result in residual porosities, impurities, and dimensional
issues [21]. The main structure of USSP is displayed in Figure 4.
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2.1.3. Laser Shock Peening (LSP)

Laser shock peening (LSP) is a surface modification process that uses laser beams to
generate shock waves on the surface of a material. As shown in the Figure 5, a high-energy
laser is emitted from the light source, reflected by the mirror, and irradiated on the surface
of the sample after being focused. The continued delivery of laser pulses rapidly heats and
ionizes the vaporized material, converting it into rapidly expanding plasma [22] while a
shock wave is created. If the amplitude of the shock wave is above the Hugoniot elastic
limit (HEL) of the target, the material deforms plastically during the passage of shock
waves, resulting in compressive residual stresses below the target surface [22]. However,
due to the thermal effect, LSP is less efficient in refining the surface grains compared to the
mechanical treatments. The LSP process is expensive and takes a long time to scan a large
area compared with other processes [23].
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2.1.4. Friction Stir Processing (FSP)

FSP provides great flexibility in terms of processing conditions to tailor the localized
microstructure in a material [24]. Its principle is similar to friction stir welding, which
uses frictional heat to treat materials. The tool shoulder is fastened to the sample, and
the tool pin is in close contact with the surface of material. As shown in the Figure 6, in
the process of FSP, the tool pin rotates at high speed and moves to the specified direction;
then, severe plastic deformation occurs on the surface of sample, which is called the
stir zone. Due to high frictional heat and dynamic recrystallization [25], fine grains will
be generated in the processing area. The main parameters influencing FSP are rotating
speed, advancing speed, plunging force, etc. In addition, microstructure and mechanical
properties will also be altered with respect to the geometry of tool and the materials it
uses [26]. The strict requirements of the processing conditions are a major disadvantage of
FSP, hindering extensive use of this technique. In addition, the relatively high temperature
during the process makes it difficult to adapt it to the production of grain structures in the
nanoscale regime [27].
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2.1.5. Ultrasonic Nanocrystal Surface Modification (UNSM)

The UNSM technique was developed and commercialized by Design Mecha Co., Ltd.
(Seoul, South Korea). It is a mechanical impact-based surface treatment applied by means
of high ultrasonic vibration frequency [28]. Its basic structure is shown in Figure 7. The
process includes the settings of parameters such as frequency, input amplitude, interval,
horn speed, and tip (ball) diameter. The spherical tip—made of hard Al2O3, WC, or Si3N4—
impacts the surface at a specific frequency. The superposition of ultrasonic low-frequency
vibration on static load causes severe plastic deformation on the surface of the material,
inducing grain size decreases to the nanoscale. During this process, the sample is clamped
on the gripper, which reciprocates up and down (Y direction) with a constant velocity.
After each Z direction scan, the silicon nitride or tungsten carbide prompts it to move a
constant distance in the Z direction [29]. After treatment, the coarse-grained structure in
the surface layer of the sample is refined to the nanometer level, which corresponds to
the characteristics of finer grains and more uniform dislocation distribution (Figure 8),
forming a gradient nanostructure layer with a depth of several hundreds of microns [30,31].
Moon et al. [32] found that specimens treated with the UNSM process exhibited much
higher tensile strength compared to untreated specimens.
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2.2. Bulk Grain Refinement
2.2.1. High-Pressure Torsion (HPT)

High-pressure torsion (HPT) refers to the processing of a metal which bears compres-
sive force and simultaneous torsion force. As shown in Figure 9, the sample in this process
is laid in the shape of a disc between two anvils. The sample is subjected to a squeezing
pressure P of several GPa at room temperature; at the same time, it bears a torsion force
generated by the rotation of the lower anvil [33,34]. Sometimes, in order to improve the
HPT processing efficiency, the process needs to be carried out at a higher temperature;
under this condition, the shearing and pressing speed should be controlled [35]. During
HPT, the strain is allowed to continuously change, and it is easy to achieve high shear
strains. Moreover, even materials that are relatively hard and brittle can undergo the severe
deformation in this method [36].
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The disadvantage of HPT is that the process usually requires high pressure and torque;
otherwise, it will cause a significantly inhomogeneous microstructure in the treated sample.
Therefore, HPT cannot be utilized to produce large bulk materials.

2.2.2. Equal Channel Angular Pressing (ECAP)

Equal channel angular pressing (ECAP) has been one of the most important machining
procedures in the past few decades. It was proposed by Segal in the 1970s at an institute in
Minsk in the former Soviet Union [37].Before the process, the sample needs to be lubricated; it
is then squeezed through two intersecting channels (equal section) and subjected to a shearing
force at the intersection of the channels [38], as shown in Figure 10. The cross section of
two equal-length channels is related to the angle ϕ (internal model/channel angle ϕ),
whilst the angle ψ is the curvature arc at the intersection (outer curvature arc/external
rotation angle ψ). The same sample is subjected to multiple extrusions, that is, repeated
shear deformation; this causes a large amount of cumulative plastic strain in the material,
resulting in obvious grain refinement [39]. Although the sample undergoes very strong
strain when it passes through the shear plane, the cross-sectional dimension of the sample
does not change, even when it finally comes out of the mold.

In the work conducted by R.Z. Valiev [40], the following routes of billets were con-
sidered: orientation of a billet is not changed at each pass (route A); after each pass, a
billet is rotated around its longitudinal axis through the angle 90◦ in the same direction
(route Bc) or inverse direction (route Ba); after each pass, a billet is rotated around its
longitudinal axis through the angle 180◦ (route C). This process is displayed in Figure 11.
Some researchers [41,42] have even pointed out that, compared with other pressing routes,
the route Bc is more advantageous for obtaining ultra-fine grain (UFG) materials with a
more uniform microstructure. ECAP is used to manufacture UFG structures among various
SPD technologies and can produce large bulk materials for various applications, such
as rod-shaped production for dental implants [43]. Additionally, ECAP can significantly
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economize raw materials [44]. The main disadvantage of ECAP is that the process usually
happens discontinuously, with limitations in scale-up potential [45].
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Based on ECAP, several variants have been developed to enhance its effect. A novel
method proposed the application of vibrations with ultrasonic frequencies on the plunger
to reduce the friction and forming load during ECAP; longitudinal ultrasonic vibrations
were imposed onto the billet [46], as shown in Figure 12.
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It was found that, when the plunger had ultrasound with a vibration amplitude of
2.5 µm at 20 kHz, much finer grains were achieved in the pure aluminum rods (as shown
in Figure 13), and the calculated grain refinement efficiency of this improved the ECAP
process increased by almost 25.8% [47].
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2.2.3. Accumulative Roll Bonding (ARB)

Accumulative roll bonding (ARB) was first proposed in 1999 by Y. Sato et al. [48].
Compared with other bulk grain refinement methods, such as ECAP and HPT, which
require large load capacities and many dies, its unique advantage is that it can be mass-
produced at a lower operating cost, which makes it applicable to industrial manufacture. Its
basic process is shown in Figure 14; in this process, the stacking of materials and traditional
seam welding are repeated. Firstly, place one strip aligned on top of the other, clean the
mating surfaces to remove layers of sediment, and then apply a wire brush to enhance the
bonding strength between the materials [49]. The two layers are joined together by rolling,
just as in a traditional rolling bonding process; then, the rolled material is cut in half. The
cut strip is once again surface treated, stacked, and seam welded, and the whole process is
repeated. The whole process should be conducted at an elevated temperature, but below
recrystallization temperature because recrystallization will cancel out the accumulated
strain. Low temperature would result in insufficient ductility and bond strength [48].
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Figure 14. Diagrammatic representation of the accumulative roll-bonding (ARB) process reprinted
with permission from Ref. [49]. Copyright 2022, ELSEVIER.

Ye et al. [50] used Ni, Ti, Al, and Cu as experimental objects and studied their mi-
crostructure evolution and mechanical properties during the ARB process. As revealed in
Figure 15, with the increasing number of ARB passes, the thickness of the layers decreased
gradually. It was reported that grain sizes decreased significantly with rolling reduction,
and the grains in the layers near the surface possessed smaller grain sizes [51]. Further-
more, the corrosion resistance of the treated sample increased even when processed in the
lower cycles [52]. Multi-layer composite metal materials can also be prepared using this
method [53]. The shortcoming of ARB is that the process requires high precision and a long
time; in addition, the quality of the final product is usually affected by the adhesion of
the interlayers.
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2.2.4. Hydrostatic Extrusion (HE)

The HE method was first proposed in the 1960s to improve the cold workability of
brittle materials. Figure 16 shows a schematic diagram of the structure of the hydrostatic
extrusion; the billet is packed into a container which is sealed and filled with pressure
medium by a plunger, and then the sample is pressed/forced through the die when high
pressure is supplied [54]. To ensure the tightness of the pressure chamber, special high-
pressure seals are provided between the die and container as well as between the ram and
container [55]. Since there is no metallic contact between the ram/vessel and the billet, and
the uniform pressure can be applied to the product through the medium (such as castor oil),
this method is optimal for fabricating products with complex shapes [54]. Compared with
other SPD methods, one drawback of HE is that it can reduce the diameter of the product
to avoid causing extremely high plastic deformation during the process. In addition, the
limitations of HE include energy loss during compaction of the liquid medium, stringent
requirements on the sealing structure, the need for fluid injection and fluid removal in
each extrusion cycle, and some further complications that arise when it is performed at
higher temperatures [56].
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2.2.5. Multi-Directional Forging (MDF)

Multi-directional forging is a plastic deformation process that was proposed in the
mid-1990s for the preparation of bulk ultrafine-grained metal materials. Its working
principle is that the direction of the applied force is continuously changing during operation,
and the multiple forgings in different directions of the billet are equivalent (as shown in
Figures 17 and 18). Since its operating temperature is usually in the recrystallization
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temperature range of the alloy and the load is relatively low, the MDF process can be
used to prepare nanostructured/ultrafine-grained materials. During the MDF process,
the change of the loading direction has a great influence on the rheological behavior and
microstructure evolution of the material. With the applied pressure on the material in three
vertical directions changing continuously, the relationship between flow stress and strain
as well as the evolution process of the microstructure of the materials can be systematically
studied [57]. The advantage of this method is that nanostructures can be obtained in rather
brittle materials, since the process starts at high temperatures and the specific loads applied
to the product are relatively low.
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3. Grain Refinement of Different Metallic Materials to Modulate Cell Response

The response of cells to biomaterials is very important, as it directly affects the osseoin-
tegration of the biomaterials after implantation and ultimately determines the success ratio
of implantation surgery and the service life of the implants. Since the human bone matrix
is mainly composed of nanoscale collagen and HA particles, surface/bulk nanostructuring
metallic materials to mimic the nanostructure of the bone is obviously conducive to enhanc-
ing cellular responses. Cell behaviors such as adhesion, proliferation, differentiation, and
mineralization on the various surface/bulk grain-refined metals are summarized below.

3.1. Titanium and Its Alloys

Titanium is the ninth most abundant element on earth, and its main source is rutile
ore [60]. Titanium and its alloys have been widely used as implant materials because of
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their excellent corrosion resistance, mechanical properties, and biocompatibility. Com-
pared with coarse-grained counterparts, fine-grained titanium materials have been re-
ported to exhibit better toughness, hardness, wear resistance, fatigue strength, etc. [61–63].
Cell responses to surface and bulk grain-refined titanium-based substrates are listed in
Tables 1 and 2, respectively.

Table 1. Cell response to titanium and its alloys after surface grain refinement.

Material Process Grain Size Cell Type Cellular Behavior Ref.

Ti-Nb alloy SMAT, 5 min, 20 kHz <100 nm hMSC Adhesion is enhanced [61]
CpTi USSP, 30–120 s, 20 kHz 20.23–23.80 nm hMSC Viability and proliferation are enhanced [14]

CpTi (Grade 2) SMAT, 30 min, 25 Hz 40 ± 15 nm hMSC Adhesion and proliferation are enhanced [15]

CpTi plates Ultrasonic-assisted SMAT,
20 min, 20 kHz ~56 nm hMSC Adhesion, proliferation, and osteogenic

differentiation are enhanced [17]

TLM alloy
(Ti-25Nb-3Mo-

2Sn3Zr)
SMAT, 30 min, 50 Hz 30–40 nm Rabbit bone marrow

mesenchymal stem cell
Adhesion, proliferation, osteogenic

differentiation, and mineralization are enhanced [64]

TLM alloy SMAT, 60 min, 50 Hz 26 ± 5 nm hFOB1.19 Adhesion, proliferation, osteogenic
differentiation, and mineralization are enhanced [65]

TLM alloy SMAT, 20 kHz 29.7 nm Osteoblastic cell Adhesion, spreading, viability, and osteogenic
differentiation are enhanced [66]

TNTZ alloy
(Ti-29Nb-13Ta-4.6Zr) UNSM, 20 kHz 40–200 nm Murine pre-osteoblast

(MC3T3 cell)
Adhesion, spreading, and proliferation

are enhanced [62]

Pure Ti USSP, 30 min, 50 kHz 57–88 nm Human osteoblast-like
cell (MG63)

Adhesion, proliferation, ALP activity, and calcium
deposition are enhanced [67]

CpTi SMAT, 60 min 10 nm Osteoblast cell (MG63
cell)

Adhesion, proliferation, and osteogenic
differentiation are enhanced [68]

CpTi Ultrasonic-assisted SMAT,
20 min, 20 kHz <100 nm MG63 cell Enhanced cell adhesion and proliferation, and

alleviated cell apoptosis [69]

CpTi SMAT, 50 Hz 25.2 nm Saos-2 cell Enhanced adhesion and viability, and promotion
of the progression of cells into the S phase [70]

Table 2. Cell response to titanium and its alloys after bulk grain refinement.

Material Process Grain Size Cell Type Cellular Behavior Ref.

CpTi (Grade 2
and Grade 4)

ECAP, pressing at 300 ◦C
with a 90◦ angle channel 230 nm

Primary human
adipose-derived

mesenchymal stem cell
Mineralization and viability are enhanced [71]

CpTi (Grade 2) ECAP, pressing at 350 ◦C with
a 90◦ angle channel, 8 passes 170–200 nm hMSC Adhesion and spreading are enhanced [72]

CpTi (Grade 2) ECAP, pressing at 400 ◦C with
a 120◦ angle channel, 3 passes

500–700 nm Human fetal osteoblast
cell (hFOB1.19) Adhesion, spreading, and viability are enhanced [16]

CpTi (Grade 2) MDF <100 nm MC3T3-E1 cell Proliferation is enhanced [73]

Ti-31.5Nb-3.1Zr-
3.1Ta-0.9Fe-
0.16O alloy

HPT, 1–2 GPa, 100–2000 rpm <1000 nm MC3T3-E1 cell Adhesion, proliferation, and osteogenic
differentiation are enhanced [74]

TNTZ alloy HPT
285 nm × 35 nm
α needle and

12 nm β particle

Human osteoblast
cell (hOB) Attachment and proliferation are enhanced [75]

CpTi HPT, 6 GPa 10–50 nm MC3T3-E1 cell Attachment and spreading are enhanced [76]

CpTi (Grade 2)
ECAP (pressing at 450 ◦C with
a 90◦ angle channel, 4 passes)

+ SMAT (2 h, 6 Hz)
~420 nm

Homo sapiens human
osteosarcoma cell

(G292 cell)

Attachment, viability, and ALP activity
are enhanced [77]

CpTi (Grade 2
and Grade 4)

ECAP, pressing at 300 ◦C
with a 90◦ angle channel 230 nm Human osteosarcoma

cell (Saos-2 cell) Viability is enhanced [71]

CpTi (Grade 2) HE, 10 stages 87 nm Saos-2 cell Adhesion and proliferation are enhanced [78]

CpTi (Grade 2) ECAP, Route Bc 0.238 ± 0.05 µm Mouse fibroblast cell Adhesion and proliferation are enhanced [79]

CpTi (Grade 2) HE, 4 stages ~0.60 µm
Human umbilical vein

endothelial
cell (HUVEC)

(101(__)0) crystallographic plane favors
cell attachment [80]

3.2. Stainless Steel

Stainless steel is one of the most commonly used implant materials because of its low
cost, good biocompatibility, and mechanical properties [81]. Medical stainless steel (mainly
austenitic and martensitic) possessing low biological toxicity [82], representing a large
category of medical metal materials, is widely used in human bone replacement, dentistry,
cardiac surgery, coronary stent placement, and other fields. The common failures of medical
stainless steel in a body fluid environment are largely caused by local corrosion (such as
pitting, crevice, fatigue, and stress corrosion); in view of this, grain refinement has been
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reported to be capable of enhancing its corrosion resistance effectively [83]. Cell responses
to surface and bulk grain-refined stainless steel are listed in Tables 3 and 4, respectively.

Table 3. Cell response to stainless steel after surface grain refinement.

Material Process Grain Size Cell Type Cellular Behavior Ref.

316L stainless steel FSP, 1800 rpm 0.9 µm Primary human dermal fibroblast Spreading and proliferation
are enhanced [84]

316L stainless steel FSP, 388 rpm 0.6 µm Primary human dermal fibroblast Viability is decreased [85]

316L stainless steel FSP, 1800 rpm 0.8 µm MDCK-1 cell and HepG2
Enhanced cell attachment and
proliferation, and restrained

platelet and fibrinogen adhesion
[24]

316L stainless steel SMAT, 50 Hz, 15 min <50 nm MC3T3-E1 cell Viability and spreading
are enhanced [86]

Table 4. Cell response to stainless steel after bulk grain refinement.

Material Process Grain Size Cell Type Cellular Behavior Ref.

316L stainless steel Rolling, several passes <1000 nm Mouse fibroblast cell Adhesion, viability, and
proliferation are enhanced [87]

316L stainless steel Rolling, several passes <1000 nm MC3T3-E1 cell
Enhanced vinculin signals

and actin stress fibers in the
outer region of the cells

[88]

Austenitic stainless steel MDF 200–400 nm Pre-osteoblast cell Adhesion and growth
are enhanced

[89]

316L stainless steel
ECAP, pressing at 400 ◦C
with a 120◦ angle channel,

8 passes
176 ± 10 nm Multipotent mesenchymal

stromal/stem cell (MMSC)
Enhanced cell proliferation

and suppressed cell apoptosis [90]

From Tables 1–4, we can deduce that surface grain refinement is capable of fabricating
surface layers on titanium and stainless metals with a grain size that is usually in the
nanometer regime (<100 nm), whereas bulk grain refinement normally refines the grains of
these two kinds of biometals into the ultrafine-grained regime (100~1000 nm). Although
with different grain-size scales, the surface and bulk grain-refined titanium and stainless
metals both promote the viability, spread, and proliferation of fibroblasts (such as the L-929
and HGF cell lines); enhance the adhesion, proliferation, osteogenic differentiation, and
mineralization of osteoblastic cells (including the hFOB1.19, MC3T3, MG63, and Saos-2 cell
lines); and promote the differentiation of mesenchymal/stromal stem cells into osteoblasts.
Since the interaction of the three types of cells (fibroblasts, osteoblasts and stem cells) with
biometals is critical for successful osseointegration after implantation, the information
shown in the Tables would be helpful for researchers in selecting the appropriate means to
improve the clinical performance of implanted metallic materials.

3.3. Magnesium and Its Alloys

Magnesium-based metals were first introduced as orthopedic implant materials in the
first half of the last century, when Lambotte used pure magnesium steel plates and gold-
plated steel nails to fix calf fractures in 1907. Magnesium has a lower density and elastic
modulus, and the modulus is very close to human’s bone [91]. Furthermore, magnesium
has excellent biocompatibility and degradability—properties which are difficult to acquire
from other metallic materials. Although the main drawbacks in the practical usage of
magnesium in the field of biomedicine are low strength and relatively rapid corrosion
rate [35], grain-refined magnesium alloys have been found to have better mechanical
properties and corrosion resistance [92,93]. Cell responses to surface/bulk grain-refined
magnesium-based metals are summarized in Table 5.
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Table 5. Cell response to magnesium and its alloys after surface/bulk grain refinement.

Material Process Grain Size Cell Type Cellular Behavior Ref.

Mg-3Zn alloy Rolling, 10 passes <40 µm MG63 Viability is decreased [94]

AZ31B Mg alloy UNSM, 20 kHz <(40–100) µm Adipose-derived
stem cell (ADSC) Adhesion is not compromised [95]

ZM21 Mg alloy ECAP, pressing at 220 ◦C with
a 90◦ angle channel, 4 passes ~5.4 µm MG63 cell Viability is not compromised [96]

3.4. NiTi Shape Memory Alloys

NiTi alloys are smart materials which possess the unique properties of shape mem-
ory effect and super elasticity [97]; as such, they have been widely used in biomedical
applications, including in dentistry, orthopedics, and interventional therapy. Surface/bulk
grain refinement was adopted for this kind of alloy to improve its corrosion resistance and
biocompatibility [98,99]. Cell responses to surface/bulk grain-refined NiTi shape memory
alloys are summarized Table 6.

Table 6. Cell response to NiTi shape memory alloys after surface/bulk grain refinement.

Material Process Grain Size Cell Type Cellular Behavior Ref.

Ni50.8Ti49.2 alloy ECAP, 8 passes 150–250 nm Murine fibroblast cell line (L-929)
Viability, adhesion, proliferation,
ALP activity, and mineralization

are promoted
[97]

Ni50.3Ti49.7 alloy LSP, laser with a wavelength of
1064 nm and intensity of 4 GW/cm2 <1000 nm Adipose-derived stem cell (ADSC) Viability, growth, and spread

are enhanced [98]

Ni50.8Ti49.2 alloy ECAP 200–300 nm MG63 cell Attachment and proliferation
are boosted [99]

3.5. Other Metals

Other metallic materials which are also frequently used as implant materials include
tantalum, zirconium, etc. The effects of grain refinement of these metals on cell response
are summarized in Table 7.

Table 7. Cell response after surface/bulk grain refinement.

Material Process Grain Size Cell Type Cellular Behavior Ref.

Pure Zr Rolling, 1 pass ~240 nm Saos-2 cell and hMSC

Attachment, spreading, viability of
Saos-2 cells, and ALP activity,

mineralization nodule formation of
hMSC are all unchanged

[100]

Nb-1Zr alloy Accumulative Roll
Bonding, 5 cycles ~800 nm

Mouse fibroblast (L-929),
primary gingival fibroblast

(HGF), and human
osteoblast-like cell (U-2 OS)

Survival is not compromised [101]

Pure Ta Sliding Friction
Treatment, 100 cycle ≤20 nm hFOB1.19

Adhesion, proliferation, osteogenic
differentiation, and maturation

are enhanced
[102]

4. Discussion

SPD-induced surface and bulk grain refinement have been demonstrated in the above
experiments as effective ways to improve cell response to biometals. However, grain-
refined magnesium-based alloys exhibit comparable or even decreased cytocompatibility
compared to coarse counterparts. As proposed by Nayak et al., grain size reduction could
lead to accelerated corrosion of the magnesium alloy, release of H2, and alteration of pH,
constituting possible reasons for the discomfort of seeded cells [94]. For stainless steel,
titanium, and NiTi alloys, studies on the surface and bulk grain refinement of these metals
all affirm an effect on the enhancement of different cellular adhesion and functional ex-
pressions. Since bulk grain-refined metals usually undergo a mechanical polishing process
before the seeding of cells, the enhanced cell response to the metals subjected to bulk grain
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refinement can be mainly ascribed to three aspects: First, as proposed by Estrin et al. [72],
when the grain size of the metals is decreased to the micro/nano regime, there will be a
greater number of and more densely spaced nanopeaks as well as focal sites on the surface,
facilitating cell adhesion and functions. Second, grain size reduction in metals usually
leads to an increase in surface energy and an improvement in surface wettability [71,79,89].
Kiran et al. [16] reported that osteogenic cells tend to adhere and migrate on hydrophilic
surfaces (high surface energy) rather than hydrophobic materials. Sun et al. [68] also
believed that cells tend to adhere on material surfaces which display excellent wettability.
In addition, it has also been proven that superior surface wettability can cause much larger
lamellipodia structures along with a remarkably higher number of filopodia protrusions
around the cells, thereby promoting the attachment and spreading of cells [75] as well as
obliging the cells to extend their actin and myosin cytoskeletal fibers to reduce interfacial
reactions [103]. Most importantly, grain refinement-induced better wettability can improve
the protein adsorption capacity of treated biometals [65,69,70,104]. As is known, when a
biometal is implanted into the body, it will soon absorb a large amount of proteins onto its
surface, and through this adsorbed protein layer, cells interact with the biometal [105]. In
other words, biomaterials regulate cells indirectly through their adsorbed proteins rather
than their own direct signal [106]. Previously, it was reported that HPT-processed nano-
grained titanium exhibited much better surface wettability compared to untreated titanium,
displaying an obvious increase in absorption of fibronectin (a key protein involved in cell
attachment, growth, and diffusion) on its surface, thereby greatly improving the cell attach-
ment of pre-osteoblast cells [76]. As shown in Figure 19, after severe plastic deformation, an
SPD-derived nano-grained surface has a higher proportion of grain boundaries and a larger
number of small grooves and nanopeaks; these characteristics are conducive to increasing
surface wettability and providing more adsorption and adhesion sites for the adsorption of
proteins, consequently promoting cell adhesion and subsequent functional expression.
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Third, some studies [86,107] have noticed that the SPD process can generate an ox-
ide layer of a certain thickness on the treated biometals, or change the physicochemical
properties of its original oxide layer [78]. The surface oxide layer has been proven to
be capable of improving hydrophilicity [76], and the related changes in physicochemical
and electronic properties were found to be able to modulate protein adsorption [15,86].
Wang et al. [17] used the SPD method to treat titanium samples and obtained a gradient
nanostructured surface (GNS) structure; the grain size of the material gradually increased
from the surface to the inside, as shown in Figure 20. The authors inferred that the oxide
layer formed on the GNS sample was much thicker and the ionic bond was more polar,
which caused the adsorbed water on its surface to produce more hydroxyl groups, bene-
fiting cell behavior [108]. Some studies have even pointed out that the formed thick and
uniform oxide layer on an SPD-derived surface could enhance the binding of calcium
ions and phosphate, and promote the effective adsorption of proteins from the biological
medium, ultimately boosting cell proliferation and differentiation [109–112].
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As for metals subjected to surface grain refinement, besides the above-mentioned
factors, another reason accounting for the enhanced cell response is the SPD-generated
surface roughness. Surface grain refinement causes obvious processing marks on the
metal’s surface, as reported in [14,16,80,113]. Greater surface roughness increases the
surface area of biometals, thereby providing a larger contact region or bonding site for the
cells to adhere to and ultimately influencing subsequent cell functions.

5. Conclusions

This review represents an attempt to summarize the methods of grain refinement and
its effects on cell response to metallic materials commonly used in clinics. Recent studies
have focused on alkali/acid etching, SPD, sol-gel, hydrothermal growth, thermal spraying,
and electrochemical deposition methods, etc., to improve cell–material interactions for
biometals. Among these methods, grain refinement achieved by the SPD process stands out
for its unique advantage of escaping from the substrate-coating bonding issue. Surface and
bulk grain refinement have been successfully realized for many biometals, such as titanium,
stainless steel, magnesium, zirconium, tantalum, and their alloys as well as NiTi shape
memory alloys. In general, these processes have exhibited positive effects on cell adhesion
and subsequent functions, including proliferation; osteogenic differentiation; migration;
and mineralization of different cellular types such as fibroblasts, osteoblasts, and stem cells
during the culture time (from several hours to 21 days). The mechanism is related to the
alteration of the surface nanotopography and the oxide layer state as well as the increase in
surface energy, wettability, and protein adsorption capability. Nonetheless, more studies
are needed to further characterize the relationship between process parameters and the
grain scale of different biometals, and to disclose the critical grain size after SPD which
could effectively influence cell response. Furthermore, surface/bulk grain refined metals
should be implanted into different animal models to ensure their future use in clinics.

Author Contributions: Conceptualization, Y.G., R.H. and Y.H.; methodology, Y.G., R.H. and Y.H.;
validation, Y.G., R.H. and Y.H.; formal analysis, Y.G., R.H. and Y.H.; investigation, Y.G., R.H. and Y.H.;
resources, Y.G., R.H. and Y.H.; data curation, Y.G., R.H. and Y.H.; writing—original draft preparation,
Y.G., R.H. and Y.H.; writing—review and editing, Y.G., R.H. and Y.H.; visualization, Y.G., R.H. and
Y.H.; supervision, Y.G., R.H. and Y.H.; project administration, Y.G., R.H. and Y.H.; funding acquisition,
R.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Research Projects of Anhui Universi-
ties, grant numbers KJ2020A0304 and KJ2019A0127, and the Research Foundation of the Institute
of Environment-friendly Materials and Occupational Health of Anhui University of Science and
Technology (Wuhu), grant number ALW2021YF07.

Data Availability Statement: Not applicable.



Metals 2022, 12, 829 16 of 20

Conflicts of Interest: The authors declare no conflict of interest. The authors would like to disclose the
following relationships: Y.G. and Y.H. are two masters of Anhui University of Science and Technology,
and R.H.is the supervisor of these two masters. None of the above relationships has influenced the
representation or interpretation of reported data or the collection, analysis, and interpretation thereof.

References
1. Misra, S.; Raghuwanshi, S. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic

applications. In Fundamental Biomaterials: Metals; Woodhead Publishing: Duxford, UK, 2018; pp. 355–370.
2. Kaur, G.; Kumar, V.; Baino, F.; Mauro, J.C.; Pickrell, G.; Evans, I.; Bretcanu, O. Mechanical properties of bioactive glasses,

ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater. Sci. Eng. C Mater. Biol. Appl. 2019,
104, 109895. [CrossRef] [PubMed]

3. Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [CrossRef] [PubMed]
4. Kuo, T.-Y.; Chin, W.-H.; Chien, C.-S.; Hsieh, Y.-H. Mechanical and biological properties of graded porous tantalum coatings

deposited on titanium alloy implants by vacuum plasma spraying. Surf. Coat. Technol. 2019, 372, 399–409. [CrossRef]
5. Lo, Y.S.; Chang, C.C.; Lin, P.C.; Lin, S.P.; Wang, C.L. Direct growth of structurally controllable hydroxyapatite coating on Ti-6Al-4V

through a rapid hydrothermal synthesis. Appl. Surf. Sci. 2021, 556, 149672. [CrossRef]
6. Lv, Y.; Sun, S.; Zhang, X.; Lu, X.; Dong, Z. Construction of multi-layered Zn-modified TiO2 coating by ultrasound-auxiliary

micro-arc oxidation: Microstructure and biological property. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 131, 112487. [CrossRef]
[PubMed]

7. Estrin, Y.; Kim, H.E.; Lapovok, R.; Ng, H.P.; Jo, J.H. Mechanical strength and biocompatibility of ultrafine-grained commercial
purity titanium. Biomed. Res. Int. 2013, 2013, 914764. [CrossRef]

8. Parfenov, E.V.; Parfenova, L.V.; Dyakonov, G.S.; Danilko, K.V.; Mukaeva, V.R.; Farrakhov, R.G.; Lukina, E.S.; Valiev, R.Z. Surface
functionalization via PEO coating and RGD peptide for nanostructured titanium implants and their in vitro assessment. Surf.
Coat. Technol. 2019, 357, 669–683. [CrossRef]

9. Zheng, C.Y.; Nie, F.L.; Zheng, Y.F.; Cheng, Y.; Wei, S.C.; Valiev, R.Z. Enhanced in vitro biocompatibility of ultrafine-grained
titanium with hierarchical porous surface. Appl. Surf. Sci. 2011, 257, 5634–5640. [CrossRef]

10. Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryła, K.; Čížek, J.; Divinski, S.;
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25. Węglowski, M.S. Friction stir processing—State of the art. Arch. Civ. Mech. Eng. 2018, 18, 114–129. [CrossRef]
26. Merah, N.; Abdul Azeem, M.; Abubaker, H.M.; Al-Badour, F.; Albinmousa, J.; Sorour, A.A. Friction Stir Processing Influence on

Microstructure, Mechanical, and Corrosion Behavior of Steels: A Review. Materials 2021, 14, 5023. [CrossRef]
27. Mironov, S.; Sato, Y.S.; Kokawa, H. Friction-stir processing. In Nanocrystalline Titanium; Elsevier: Amsterdam, The Netherlands,

2019; pp. 55–69.
28. Maleki, E.; Unal, O.; Guagliano, M.; Bagherifard, S. The effects of shot peening, laser shock peening and ultrasonic nanocrystal

surface modification on the fatigue strength of Inconel 718. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Processing 2021,
810, 141029. [CrossRef]

29. Liu, R.Y.; Yuan, S.; Lin, N.M.; Zeng, Q.F.; Wang, Z.H.; Wu, Y.C. Application of ultrasonic nanocrystal surface modification (UNSM)
technique for surface strengthening of titanium and titanium alloys: A mini review. J. Mater. Res. Technol. JmrT 2021, 11, 351–377.
[CrossRef]

30. Liang, Y.; Qin, H.F.; Mehra, N.; Zhu, J.H.; Yang, Z.N.; Doll, G.L.; Ye, C.; Dong, Y.L. Controllable hierarchical micro/nano patterns
on biomaterial surfaces fabricated by ultrasonic nanocrystalline surface modification. Mater. Des. 2018, 137, 325–334. [CrossRef]

31. Amanov, A.; Cho, I.S.; Pyoun, Y.S.; Lee, C.S.; Park, I.G. Micro-dimpled surface by ultrasonic nanocrystal surface modification and
its tribological effects. Wear 2012, 286, 136–144. [CrossRef]

32. Moon, J.H.; Baek, S.M.; Lee, S.G.; Seong, Y.; Amanov, A.; Lee, S.; Kim, H.S. Effects of residual stress on the mechanical properties
of copper processed using ultrasonic-nanocrystalline surface modification. Mater. Res. Lett. 2018, 7, 97–102. [CrossRef]

33. Edalati, K.; Horita, Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 2016, 652, 325–352. [CrossRef]
34. Azushima, A.; Kopp, R.; Korhonen, A.; Yang, D.Y.; Micari, F.; Lahoti, G.D.; Groche, P.; Yanagimoto, J.; Tsuji, N.; Rosochowski, A.; et al.

Severe plastic deformation (SPD) processes for metals. Cirp Ann. Manuf. Technol. 2008, 57, 716–735. [CrossRef]
35. Figueiredo, R.B.; Langdon, T.G. Processing Magnesium and Its Alloys by High-Pressure Torsion: An Overview. Adv. Eng. Mater.

2019, 21, 1801039. [CrossRef]
36. Faraji, G.; Kim, H.S.; Kashi, H.T. Severe Plastic Deformation Methods for Bulk Samples. In Severe Plastic Deformation; Elsevier:

Amsterdam, The Netherlands, 2018; pp. 37–112.
37. Sadasivan, N.; Balasubramanian, M.; Rameshbapu, B.R. A comprehensive review on equal channel angular pressing of bulk

metal and sheet metal process methodology and its varied applications. J. Manuf. Processes 2020, 59, 698–726. [CrossRef]
38. Yamashita, A.; Horita, Z.; Langdon, T.G. Improving the mechanical properties of magnesium and a magnesium alloy through

severe plastic deformation. Mater. Sci. Eng. A 2001, 300, 142–147. [CrossRef]
39. Zhang, Q.; Li, Q.A.; Chen, X.Y. Research progress of ultrafine grained magnesium alloy prepared by equal channel angular

pressing. Mater. Res. Express 2021, 8, 022001. [CrossRef]
40. Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci.

2000, 45, 103–189. [CrossRef]
41. Suo, T.; Li, Y.; Deng, Q.; Liu, Y. Optimal pressing route for continued equal channel angular pressing by finite element analysis.

Mater. Sci. Eng. A 2007, 466, 166–171. [CrossRef]
42. Stolyarov, V.V.; Zhu, Y.T.; Alexandrov, I.V.; Lowe, T.C.; Valiev, R.Z. Influence of ECAP routes on the microstructure and properties

of pure Ti. Mater. Sci. Eng. A 2001, 299, 59–67. [CrossRef]
43. Elias, C.N.; Meyers, M.A.; Valiev, R.Z.; Monteiro, S.N. Ultrafine grained titanium for biomedical applications: An overview of

performance. J. Mater. Res. Technol. 2013, 2, 340–350. [CrossRef]
44. Mora-Sanchez, H.; Sabirov, I.; Monclus, M.A.; Matykina, E.; Molina-Aldareguia, J.M. Ultra-fine grained pure Titanium for

biomedical applications. Mater. Technol. 2016, 31, 756–771. [CrossRef]
45. Verlinden, B. Severe plastic deformation of metals. Metal. J. Metall. 2005, 11, 165–182. [CrossRef]
46. Ahmadi, F.; Farzin, M. Finite element analysis of ultrasonic-assisted equal channel angular pressing. Proc. Inst. Mech. Eng. Part C

J. Mech. Eng. Sci. 2013, 228, 1859–1868. [CrossRef]
47. Ahmadi, F.; Farzin, M.; Meratian, M.; Loeian, S.M.; Forouzan, M.R. Improvement of ECAP process by imposing ultrasonic

vibrations. Int. J. Adv. Manuf. Technol. 2015, 79, 503–512. [CrossRef]
48. Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. Novel ultra-high straining process for bulk materials—development of the

accumulative roll-bonding (ARB) process. Acta Mater. 1999, 47, 579–583. [CrossRef]
49. Rao, G.N.M.; Kumar, V.R.M. A review on recent advances in accumulative roll bonding of similar, dissimilar and metal matrix

composites. Mater. Today Proc. 2021, 56, A13–A18. [CrossRef]
50. Ye, N.; Ren, X.; Liang, J. Microstructure and mechanical properties of Ni/Ti/Al/Cu composite produced by accumulative roll

bonding (ARB) at room temperature. J. Mater. Res. Technol. 2020, 9, 5524–5532. [CrossRef]
51. McCabe, R.J.; Nizolek, T.J.; Li, N.; Zhang, Y.F.; Coughlin, D.R.; Miller, C.; Carpenter, J.S. Evolution of microstructures and

properties leading to layer instabilities during accumulative roll bonding of Fe-Cu, Fe-Ag, and Fe-Al. Mater. Des. 2021,
212, 110204. [CrossRef]

52. Kadkhodaee, M.; Babaiee, M.; Manesh, H.D.; Pakshir, M.; Hashemi, B. Evaluation of corrosion properties of Al/nanosilica
nanocomposite sheets produced by accumulative roll bonding (ARB) process. J. Alloy. Compd. 2013, 576, 66–71. [CrossRef]

http://doi.org/10.1021/acsami.7b11064
http://www.ncbi.nlm.nih.gov/pubmed/28972737
http://doi.org/10.1016/j.acme.2017.06.002
http://doi.org/10.3390/ma14175023
http://doi.org/10.1016/j.msea.2021.141029
http://doi.org/10.1016/j.jmrt.2021.01.013
http://doi.org/10.1016/j.matdes.2017.10.041
http://doi.org/10.1016/j.wear.2011.06.001
http://doi.org/10.1080/21663831.2018.1560370
http://doi.org/10.1016/j.msea.2015.11.074
http://doi.org/10.1016/j.cirp.2008.09.005
http://doi.org/10.1002/adem.201801039
http://doi.org/10.1016/j.jmapro.2020.10.032
http://doi.org/10.1016/S0921-5093(00)01660-9
http://doi.org/10.1088/2053-1591/abe062
http://doi.org/10.1016/S0079-6425(99)00007-9
http://doi.org/10.1016/j.msea.2007.02.068
http://doi.org/10.1016/S0921-5093(00)01411-8
http://doi.org/10.1016/j.jmrt.2013.07.003
http://doi.org/10.1080/10667857.2016.1238131
http://doi.org/10.30544/380
http://doi.org/10.1177/0954406213514961
http://doi.org/10.1007/s00170-015-6848-1
http://doi.org/10.1016/S1359-6454(98)00365-6
http://doi.org/10.1016/j.matpr.2021.11.608
http://doi.org/10.1016/j.jmrt.2020.03.077
http://doi.org/10.1016/j.matdes.2021.110204
http://doi.org/10.1016/j.jallcom.2013.04.090


Metals 2022, 12, 829 18 of 20

53. Shakouri, S.; Eghbali, B. Characterization of Microstructure and Mechanical Properties of Multilayer Al/Cu/Mg/Ni Composite
Produced through Accumulative Roll Bonding. Phys. Met. Metallogr. 2019, 120, 796–805. [CrossRef]

54. Lee, J.; Jeong, H.; Park, S. Effect of extrusion ratios on hardness, microstructure, and crystal texture anisotropy in pure niobium
tubes subjected to hydrostatic extrusion. Trans. Nonferrous Met. Soc. China 2021, 31, 1689–1699. [CrossRef]

55. Sillekens, W.H.; Bohlen, J. Hydrostatic extrusion of magnesium alloys. In Advances in Wrought Magnesium Alloys; Woodhead
Publishing: Duxford, UK, 2012; pp. 323–345.

56. Garbacz, H.; Topolski, K.; Motyka, M. Hydrostatic extrusion. In Nanocrystalline Titanium; Elsevier: Amsterdam, The Netherlands,
2019; pp. 37–53.

57. Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and
severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [CrossRef]

58. Wang, W.; Lin, F.; Zhang, L.; Wang, X. Experimental study and finite element analysis on the frame of multi-directional forging
press. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 231, 2112–2122. [CrossRef]

59. Shahriyari, F.; Shaeri, M.H.; Dashti, A.; Zarei, Z.; Noghani, M.T.; Cho, J.H.; Djavanroodi, F. Evolution of mechanical properties,
microstructure and texture and of various brass alloys processed by multi-directional forging. Mater. Sci. Eng. A 2022, 831, 142149.
[CrossRef]

60. Perks, C.; Mudd, G. Titanium, zirconium resources and production: A state of the art literature review. Ore Geol. Rev. 2019,
107, 629–646. [CrossRef]

61. Weiss, L.; Nessler, Y.; Novelli, M.; Laheurte, P.; Grosdidier, T. On the Use of Functionally Graded Materials to Differentiate the
Effects of Surface Severe Plastic Deformation, Roughness and Chemical Composition on Cell Proliferation. Metals 2019, 9, 1344.
[CrossRef]

62. Kheradmandfard, M.; Kashani-Bozorg, S.F.; Lee, J.S.; Kim, C.-L.; Hanzaki, A.Z.; Pyun, Y.-S.; Cho, S.-W.; Amanov, A.; Kim, D.-E.
Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal
surface modification. J. Alloy. Compd. 2018, 762, 941–949. [CrossRef]

63. Valiev, R.Z.; Parfenov, E.V.; Parfenova, L.V. Developing Nanostructured Metals for Manufacturing of Medical Implants with
Improved Design and Biofunctionality. Mater. Trans. 2019, 60, 1356–1366. [CrossRef]

64. Huang, R.; Liu, L.; Li, B.; Qin, L.; Huang, L.; Yeung, K.W.K.; Han, Y. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate
fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal
stem cells and kill bacteria. J. Mater. Sci. Technol. 2021, 73, 31–44. [CrossRef]

65. Huang, R.; Zhang, L.; Huang, L.; Zhu, J. Enhanced in-vitro osteoblastic functions on beta-type titanium alloy using surface
mechanical attrition treatment. Mater. Sci. Eng. C Mater Biol. Appl. 2019, 97, 688–697. [CrossRef]

66. Zhao, C.; Cao, P.; Ji, W.; Han, P.; Zhang, J.; Zhang, F.; Jiang, Y.; Zhang, X. Hierarchical titanium surface textures affect osteoblastic
functions. J. Biomed. Mater. Res. A 2011, 99, 666–675. [CrossRef] [PubMed]

67. Guo, Y.; Hu, B.; Tang, C.; Wu, Y.; Sun, P.; Zhang, X.; Jia, Y. Increased osteoblast function in vitro and in vivo through surface
nanostructuring by ultrasonic shot peening. Int. J. Nanomed. 2015, 10, 4593–4603. [CrossRef]

68. Sun, J.; Yao, Q.T.; Zhang, Y.H.; Du, X.D.; Wu, Y.C.; Tong, W.P. Simultaneously improving surface mechanical properties and
in vitro biocompatibility of pure titanium via surface mechanical attrition treatment combined with low-temperature plasma
nitriding. Surf. Coat. Technol. 2017, 309, 382–389. [CrossRef]

69. Luo, X.; Liang, C.; Li, N.; Zhu, Y.H.; Cao, N.J.; Wang, J.; Liu, K.D.; Zhao, H.W.; Wang, Z.B.; Wang, W. Effect of Gradient
Nanostructured Ti on Behaviours of MG63 Cells In Vitro. J. Nanomater. 2020, 2020, 1–11. [CrossRef]

70. Zhao, C.; Han, P.; Ji, W.; Zhang, X. Enhanced mechanical properties and in vitro cell response of surface mechanical attrition
treated pure titanium. J. Biomater. Appl. 2012, 27, 113–118. [CrossRef] [PubMed]

71. Medvedev, A.E.; Neumann, A.; Ng, H.P.; Lapovok, R.; Kasper, C.; Lowe, T.C.; Anumalasetty, V.N.; Estrin, Y. Combined effect of
grain refinement and surface modification of pure titanium on the attachment of mesenchymal stem cells and osteoblast-like
SaOS-2 cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 483–497. [CrossRef] [PubMed]

72. Estrin, Y.; Ivanova, E.P.; Michalska, A.; Truong, V.K.; Lapovok, R.; Boyd, R. Accelerated stem cell attachment to ultrafine grained
titanium. Acta Biomater. 2011, 7, 900–906. [CrossRef]

73. Ito, Y.; Hoshi, N.; Hayakawa, T.; Ohkubo, C.; Miura, H.; Kimoto, K. Mechanical properties and biological responses of ultrafine-
grained pure titanium fabricated by multi-directional forging. Mater. Sci. Eng. B 2019, 245, 30–36. [CrossRef]

74. Gurau, C.; Gurau, G.; Mitran, V.; Dan, A.; Cimpean, A. The Influence of Severe Plastic Deformation on Microstructure and In
Vitro Biocompatibility of the New Ti-Nb-Zr-Ta-Fe-O Alloy Composition. Materials 2020, 13, 4853. [CrossRef]
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