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Abstract: In the steel industry, the optimization of production processes has become increasingly
important in recent years. Large amounts of historical data and various machine learning methods
can be used to reduce energy consumption and increase overall time efficiency. Using data from
more than two thousand electric arc furnace (EAF) batches produced in SIJ Acroni steelworks, the
consumption of electrical energy during melting was analysed. Information on the consumed energy
in each step of the electric arc process is essential to increase the efficiency of the EAF. In the paper, four
different modelling approaches for predicting electrical energy consumption during EAF operation
are presented: linear regression, k-NN modelling, evolving and conventional fuzzy modelling. In
the learning phase, from a set of more than ten regressors, only those that have the greatest impact
on energy consumption were selected. The obtained models that can accurately predict the energy
consumption are used to determine the optimal duration of the transformer profile during melting.
The models can predict the optimal energy consumption by selecting pre-processed training data,
where the main steps are to find and remove outlier batches with the highest energy consumption
and identify the influencing variables that contribute most to the increased energy consumption.
It should be emphasised that the electrical energy consumption was too high in most batches only
because the melting time was unnecessarily prolonged. Using the proposed models, EAF operators
can obtain information on the estimated energy consumption before batch processing depending
on the scrap weight in each basket and the added additives, as well as information on the optimal
melting time for a given EAF batch. All models were validated and compared using 30% of all data,
with the fuzzy model in particular providing accurate prediction results. It is expected that the use
of the developed models will lead to a reduction in energy consumption as well as an increase in
EAF efficiency.

Keywords: electric arc furnace; energy consumption; profile optimization; modelling; machine
learning; steelmaking; regression; fuzzy modelling; evolving modelling

1. Introduction

Current market demands for steel quality, price and production times require the
introduction of several technological innovations in electric arc furnace (EAF) steelmaking.
Electric Arc Furnaces (EAF) are improving very rapidly. Twenty years ago, the performance
of today’s EAFs would have seemed impossible. Thanks to an impressive number of
innovations, the melting time in the most efficient furnaces (with a capacity of 100–130 t)
has been reduced to 30–40 min. Electrical energy consumption was decreased by 1.8 times,
from 630 to 340 kWh/t and hourly productivity increased by six times, from 40 to 240 t/h.
The share of electrical energy in total energy consumption per melt fell to 50%. Electrode
consumption was reduced by about six times [1,2]. It can be assumed that such performance
should be normal for most steelworks in the near future.

In modern furnaces, the fundamental processes are melting the solid scrap and heating
the liquid bath. The productivity of today’s furnaces therefore depends mainly on these
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high-energy processes. To set these processes in motion, heat must be obtained from electri-
cal or chemical energy and then passed to the regions of the solid charge or liquid bath [3,4].
The heating technology, furnace designs and other EAF equipment are evolving very fast.
Every year, new technical solutions are offered and widely advertised. Steelmakers are
struggling to find their way through the flood of innovations. According to the latest trends,
modern steelworks should meet four essential requirements in the following way:

• By producing different types of steel in the desired quality, the specified process
requirements are met.

• By reducing the manufacturing costs, the specified economic requirements are met,
which means that the profitability and competitiveness of the products can
be increased.

• By limiting excessive pollution, which is regulated by government regulations, the spec-
ified environmental requirements are met.

• By limiting physically and mentally demanding work that is unacceptable for the
population of a given country above a certain level of social development, the specified
health and safety requirements are met.

The total costs of the EAF can be divided into the cost of scrap and ferroalloys, which
account for about 70%, and the so-called operating costs, which account for the remaining
30% of the total cost. The operating costs can be further divided into the costs of electrical
energy, fuel and electrodes, which account for about 40% of the operating costs [1,5,6].
The total costs can be reduced in the following ways:

• By reducing the consumption of loaded materials, refractory materials, energy sources,
etc. per ton of product;

• By speeding up and increasing production and thus reducing the costs of maintenance,
personnel and other specific production costs;

• By finding cheaper input materials and energy sources.

Over the last fifty years, the main objective of EAF development has been to increase
productivity. During this period, almost all innovations introduced were dedicated to
this problem. Apart from the cost of scrap, productivity represents a crucial factor on
which the overall steelmaking economy depends to a large extent [7]. When productivity
increases, labour and maintenance costs usually decrease, as do the costs of electrodes,
energy sources, refractory materials, electrical energy and other operating costs [8,9].
The proposed EAF innovations, in addition to their positive contributions, also bring some
drawbacks. For example, the use of oxygen-gas burners and the introduction of carbon
injection for slag foaming enable a drastic reduction in electrical energy consumption, but,
on the other hand, increase carbon dioxide emissions [5,6]. Due to environmental protection,
the use of biomass (and biofuel produced from renewable biomass) as a renewable energy
source in the electric arc furnace is also becoming increasingly important [10,11].

The electrical energy consumption can be controlled by the electrical mode, which
is determined by the programme for changing the electrical parameters (current, voltage,
arc power, etc.) of the EAF’s circuit during the melting process. These parameters can be
changed over a wide range due to the special design of the furnace transformer. The control
of the transformer voltage levels during the melting process (“on-load”) can be done either
manually by the operator or fully automatically. The biggest challenge in EAF operation,
i.e., determining the optimum melting programmes, times and batch quantities, is thus still
left to the operator and his experience. Since the control of the melting process is based
on indirect measurements (e.g., arc stability, energy consumption, power-on time, etc.)
and not on the actual conditions in the EAF (e.g., bath temperature, melting stage, bath
composition), EAF operation is suboptimal (lower raw material and energy efficiency, lower
steel quality and increased CO2 emissions), which consequently means higher operating
costs [2,11,12].

With extensive use of oxygen and carbon during the melting process, chemical heat
plays a major role in reducing electrical energy consumption and increasing EAF productiv-
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ity as the bath absorbs a large amount of chemical heat, which is released during oxidation
of carbon, iron and its alloys such as Mn, Si, etc [2,6].

Higher oxygen consumption usually occurs during bath blowing, as it depends on
the use of carbon powder, which is added into the bath at the same time as oxygen.
The impressive results achieved by the additional oxygen consumption cannot be achieved
without the carbon injection. The latter reduces the iron oxides and thus prevents an
undesirable reduction in yield. Otherwise, the amount of oxidised iron increases drastically
the more oxygen is blown into the bath. In addition, the injected carbon leads to the release
of CO and CO2, which causes the slag to foam. Immersing the arc in foamy slag provides a
large increase in efficiency in the use of electrical energy [2,13].

This study addresses the optimization of electric arc furnace (EAF) to increase its
efficiency and thus reduce electrical energy consumption. This can be achieved by defining
optimal control profiles for the EAF, i.e., transformer power, oxygen balancing, and carbon
addition [13,14]. The optimization is based on a data-driven approach where different
models (from linear models to evolving fuzzy models) [15–17] and statistical analyses [12]
have been performed. The models can be run online in parallel with the actual EAF process
and help the operator to control the EAF. Many authors have shown through simulations
that optimised operating profiles allow significant reductions in production times and
operating costs [2,13,18,19].

Advanced technological solutions such as post-combustion, off-gas [20] and slag [21]
heat recovery, oxygen lancing [22], gas burners [23], bottom stirring, adjustable alternating
current transmission systems and high-power transformers [24], have reduced energy
consumption. Nevertheless, additional process improvements can be made in EAF through
heat recovery systems [25], various additives [5,26] and optimal control with operating
profiles [2].

The melting profiles are usually selected in advance by the operator based on the
maximum energy input. The predefined profiles have the disadvantage that they do not
take into account the variations in EAF conditions. Therefore, adaptive control of the
EAF (via oxygen and carbon input) is required to achieve suitable conditions and also
slag properties. The latter enables to protect the water-cooled panels and walls, reduce
energy consumption and contribute to the correct steel composition [2]. Due to the lack
of measurements, the operator has limited insight into the EAF process. Consequently,
the predefined timed inputs (charging, oxygen lancing and carbon injection) may differ
from the optimal times that ensure higher EAF efficiency. Many authors [2,13,18] have
conducted studies to investigate EAF efficiency through optimised control. However, very
few of them have considered the optimisation of energy sources over the entire tap-to-tap
interval. The reason for this could be insufficiently defined optimisation objectives and
rough EAF models that are not accurate enough to be used in the optimisation procedure.

The aim of this study is to find key influential factors from which energy consumption
in EAF is estimated using the proposed predictive models. These can be used in a simulator
to improve the EAF process in such a way that less electrical energy is consumed and the
production of a certain type of steel is possible in a shorter time than with the existing pro-
cess. The total energy (electrical and chemical) consumed in the EAF process is distributed
between the three products (steel, slag and off-gas) and the various losses. Only the energy
that is delivered to the steel bath can be considered as useful energy.

The paper is organised as follows: Section 2 describes, first, the dataset used and
the preprocessing steps applied on it; second, the procedure for selecting the key input
variables; and, third, four different modelling approaches (based on machine learning
and fuzzy methods) for predicting the electrical energy consumption of EAF. Section 3
discusses the experimental results, comparing all the developed models. A discussion and
concluding remarks are given in Sections 4 and 5.
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2. Materials and Methods

This section presents the methods needed to build models for predicting electrical
energy consumption. These models will be used as part of the operator advisory system
to assist the operator in managing the EAF. This prevents the operator from frequently
selecting suboptimal settings in the semi-automatic furnace control mode that result in
lower steel yield and quality and higher energy and material consumption.

2.1. Data Description and Pre-Processing

The operation of the EAF is monitored by measuring all variables and parameters that
could affect energy consumption and overall efficiency. All parameters and variables are
stored and organised separately for each batch. Some of the measurements are recorded
event-based at specific times, while others are recorded continuously. All important
variables from the charging and melting phases are listed in Table 1. The charging recipe
is determined by the scrap weight in each basket and the hotheel at the beginning. These
data are aggregated for all baskets used. In the melting phase, there are several parameters
that affect the total energy consumption and the overall efficiency of the process. The most
important criterion and the focus of this article is the electrical energy consumption per
total weight of scrap (kWh/t), which is presented in this article as a percentage of the
maximum electrical energy consumption per total weight of scrap.

Table 1. List of input variables at the charging and melting phase of the EAF process.

Charging Melting

Description Unit Description Unit

Total scrap weight [kg] Melting time [s]
Hotheel start [kg] Delays [s]
Scrap weight in basket 1 [kg] Temperature [°C]
Scrap weight in basket 2 [kg] Total oxygen

[
Nm3]

Scrap weight in basket 3 [kg] Total carbon [kg]
Type of charged scrap Hotheel end [kg]

Slag weight [kg]

In the development of the electrical energy consumption prediction models, the first
required step is the preprocessing and filtering of data (removal of a part of the data). Since
the data are stored in different databases and with different sampling times during the
operation of the EAF, it is necessary to resample and synchronise the data before starting
the analysis phase. Since historical data from completed batches are often incomplete,
these batches must be removed from the modelling process during filtering. The data
cleaning procedure to eliminate all corrupted data should also be applied to efficiently
identify and remove outliers (e.g., unusually long tap-to-tap time spans, i.e., more than four
hours, extremely high power consumption, etc.). The steps of data pre-processing cannot
be performed completely automatically, since in some special cases the knowledge and
experience of the staff (especially the EAF operator) must also be taken into the account.
Each batch may consist of two, three, or four baskets of raw material. Since in the available
database the melting process was most frequently performed with three baskets, only these
batches were used in all further analyses. After filtering the data, the first, the second,
and the third baskets have an average capacities of 46 t, 36 t, and 18 t, respectively. Each
individual charge takes about three minutes. The melting of the scrap after charging with
the first, second, and third baskets takes about 17 min, 11 min, and 20 min on average,
and the average delay per batch is 13 min.

2.2. Selection of the Key Input Variables

The operation of the EAF is a subject to several factors that affect the final product
quality and energy consumption. Deviations from potentially optimal performance can
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be influenced by all parameters and settings during the charging and melting phases.
Therefore, the most influential independent variables must be identified from historical
data, as this information is necessary for the development of the models for energy con-
sumption prediction. In the study of Glavan et al. [27], it has been shown that the input
variable selection (IVS) approach can efficiently find the most important input variables
from a big database for modelling and prediction purposes. The IVS approach is based
on the analysis of historical data and combines a data mining approach with various se-
lection criteria [28]. The selection of input variables has a great impact on the prediction
performance, the effectiveness of the model and the better understanding of the system.
Therefore, the IVS represents an important step for model identification. The authors in [27]
tested and compared different methods from the literature for variable selection. They also
evaluated each method to find out the most suitable methods for model-based prediction
problems. Finally, the authors selected the following methods as the most effective: partial
correlation measure (Pcorr) [29], partial mutual information (PMI), linear-in-the-parameters
(LIP) [30], non-negative Garrote (NNGarr) [31], variable importance in projection (PLS
VIP) [32], distance correlation (dCorr) [33], and least absolute shrinkage and selection
operator (LASSO) [34]. All of these methods, briefly discussed in [27], were used in this
study. The influential factors from all methods were averaged to determine the order of the
most influential variables. In the following, all the machine learning methods that were
used to obtain the predictive models for estimation of the electrical energy consumption
are briefly described.

2.3. Machine Learning Methods
2.3.1. Linear Regression

The linear model has been a mainstay of statistics for the past 30 years and remains
one of the most important tools [35,36]. Linear regression is a linear approach for modelling
the relationship between a scalar response and one or more explanatory variables (also
known as dependent and independent variables). In linear regression, the relationships
are modelled using linear predictor functions, whose unknown model parameters are
estimated from the data. Such models are called linear models. Using linear regression,
the single output of the model ŷj can be determined in the following way:

ŷj = β̂0 +
p

∑
i=1

xi β̂i, (1)

where xT
j = [x1, x2, . . . , xp]j is a regression vector (where j = 1, . . . , m; m is the total number

of test samples and p is the total number of independent variables) and β̂T = [β̂1, β̂2, . . . , β̂p]

is the vector of linear coefficients. The term β̂0 is the intercept, which in machine learning
is also called the bias [35]. It is often convenient to include the constant variable 1 in the
vector xj and include β̂0 in the vector of coefficients β̂, and then write the linear model in
vector form as an inner product:

ŷj = xT
j β̂. (2)

There are many different methods of fitting the linear model to a set of training data.
By far the most popular is the least squares method. In this approach, the coefficients β are
chosen to minimise the residual sum of squares:

RSS(β) =
n

∑
i=1

(yi − xT
i β)2, (3)

where n is the total number of training samples. RSS(β) is a quadratic function of the
parameters, and hence its minimum always exists but may not be unique. The solution is
most easily characterised in matrix notation:

RSS(β) = (y− Xβ)T(y− Xβ), (4)
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where X is an n× p matrix with each row an input vector xT
i , and y is an n-vector of the

outputs in the training set. Differentiating w.r.t. β the normal equations can be written
as follows:

XT(y− Xβ) = 0. (5)

If XTX is non-singular, then the unique solution is given by:

β̂ = (XTX)−1XTy, (6)

and the fitted value at the i-th input xi is ŷi = xT
i β̂.

2.3.2. K-Nearest Neighbour Method

K-nearest neighbours (k-NN) algorithms [37,38] are non-parametric supervised ma-
chine learning algorithms commonly used in the field of pattern recognition. The k-NN
algorithms can be used for both classification and regression. In both cases, the input to the
algorithm consists of the labelled training dataset:

D = {(xi, yi)} for i = 1, . . . , n, (7)

where n is the number of samples in the dataset, xi is the regression vector and yi is the
class label or a continuous output variable. To make a prediction (class label or continuous
target variable), the k-NN algorithms find the k nearest neighbours of a query point x̂j and
compute the class label (i.e., classification) or continuous target variable (i.e., regression)
based on the k nearest (most “similar”) points. Since the prediction is based on a comparison
of a query point with data points (regression vectors) in the training dataset, k-NN is also
categorised as an instance-based (or “memory-based”) method.

In k-NN regression, the output prediction is based on the labels of the k nearest
neighbours. The output value ŷ is usually the average of the values of k nearest neighbours:

ŷj =
1
k

k

∑
i=1

yi. (8)

For both classification and regression, a distance-weighted k-NN algorithm [38] can
also be used, which assigns weights to the contributions of the neighbours, so that the
closer neighbours contribute more to the average than the more distant ones. For example,
a common weighting scheme is to assign a weight of wi = 1/di to each neighbour, where
di is the distance to the i-th nearest neighbour.

ŷj =
∑k

i=1 wiyi

∑k
i=1 wi

. (9)

The best choice of k depends upon the data. In general, larger values of k reduce the
effects of noise on classification but make the boundaries between classes less clear. A good
k can be selected by various heuristic techniques. By changing the value of k, the complexity
of a k-NN model is affected. In practise, a good trade-off must be found between high bias
(the model is not complex enough to fit the data well when k is too large) and high variance
(the model fits the training data too closely when k is too small).

For k-NN algorithms, many distance metrics or measures can be used to select k
nearest neighbours. There is no “best” distance measure, and the choice is highly context-
or problem-dependent. For continuous features, the most common distance metric is the
Euclidean distance. Another popular choice is the Manhattan distance, which puts less
emphasis on the differences between “distant” feature vectors or outliers than the Euclidean
distance. The Mahalanobis distance would be another good choice for a distance metric,
as it takes into account the variance of the different feature vectors as well as the covariance
among them.
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One of the main advantages of k-NN is that it is relatively easy to implement and
interpret. Moreover, with its approach to approximate complex global functions locally,
it can be a powerful predictive “model”. Another advantage is that k-NN has some
strong consistency results. As the amount of data approaches infinity, the two-class k-NN
algorithm is guaranteed to yield an error rate no worse than twice the Bayes error rate
(the minimum achievable error rate given the distribution of the data). The drawback is
that k-NN is very sensitive to the curse of dimensionality [38] and is expensive to compute
with an O(n) prediction step. Therefore, various data structures have been developed to
improve the computational performance of k-NN in prediction. In particular, the idea is
to identify the k nearest neighbours more intelligently. Instead of matching each training
sample in the training set to a given query point vector, various approaches have been
developed to partition the search space as efficiently as possible and reduce the number of
distance evaluations actually performed. Data structures such as KD-trees and Ball-trees
are often used for this purpose, as they can make k-NN substantially more efficient.

2.4. Takagi–Sugeno Fuzzy Modeling

Fuzzy logic was developed in 1965 as an extension of the classical (Boolean) logic.
The classical logic assigns to a variable or a statement the value of 1 for “true” or the
value of 0 for “false”, fuzzy logic allows the value assignment at an interval between
[0, 1]. The reason for this can be found in the observation of the way of human thinking
when deciding on the very approximate estimates of various facts that they present to
themselves in the form of rules. To address such a concept, a mechanism for recording
knowledge based on rules in the form of approximate reasoning based on fuzzy logic has
been introduced. First, some basic concepts of fuzzy logic and approximative reasoning,
which are necessary for the understanding of fuzzy models, are introduced. Fuzzy logic
records relationships, knowledge and decisions in the form of rules. For conjunction of the
linguistic statements, the conjunction operator (t-norm) “min” is used. The combination
of the affiliation of all linguistic expressions determines degree of rule fulfillment or rule
firing strength because it expresses how well the premise matches the given values of
input variables. For the entire fuzzy system, only fulfillment degrees greater than zero
are important. It must be guaranteed that the rules complete the entire possible input
space to avoid situations where no rule gets activated for certain input values. In the
case of non-explicit local affiliation functions, this problem does not exist because all rules
are always fulfilled, although with very small values. After the degree of fulfillment of
an individual rule is calculated, the contributions of individual consequent parts have
to be determined and assembled to obtain the output of the fuzzy system. This is called
accumulation. Usually, the output of the fuzzy system is a fuzzy set that needs to be
transformed into a sharp form for further work. This is called the process of defuzzification.
Of course, this is not necessary if a sharp value is chosen for the consequent part, or if the
result is used for qualitative estimations. In general, three basic types of fuzzy systems exist,
i.e., a linguistic or Mamdani, a special fuzzy system or a singleton, and a Takagi–Sugeno
Fuzzy System. In our case, the focus is on the Takagi–Sugeno (TS) Fuzzy approach, which
provides excellent interpretability and the best fuzzy modelling results [39]. The first step
of fuzzy modelling is the fuzzification, where the degree of membership for all linguistic
statements µij(xj) (i = 1, . . . , M and j = 1, . . . , p) is calculated, where M is the number of
fuzzy system rules and p is the number of inputs xj. The TS fuzzy ruleRi can be written
as follows:

Ri : IF x1 = Ai1 AND . . . AND xp = Aip THEN y = fi(x1, x2, . . . , xp) (10)

where Aij represents a fuzzy set for the variable xj and y is the output. By aggregation, the
individual linguistic statements into the level of activation of the rule (with respect to the
operators between them) are composed. The output of the TS fuzzy model is defined as:
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ŷ =

M
∑

i=1
fi(x) µi(x)

M
∑

i=1
µi(x)

(11)

where x is the input vector and fi(x) = wi0 +wi1x1 +wi2x2 + . . .+wipxp is linear regression
function. If the fuzzy model is written in a conjunctive form and min function is used for
the t-norm, then the degree of fulfillment of the rule is:

µi(x) = min(µij(xj)) . (12)

In this study, Gaussian membership functions were used:

µij(xj) = exp

(
−1

2
(xj − cij)

2

σ2
ij

)
, (13)

where σ2
ij is variance and cij is expected value of the Gaussian function (belonging to Aij

fuzzy set).
In fuzzy models, the nonlinear parameters in the premise (i.e., the parameters in the

causal part of the rule that define the membership functions, their positions and widths) and
the linear parameters (wip) in the consequent part of the rules can be optimized. The latter
can be easily estimated using the least squares method. The parameters in the causal part
of the rule correspond to the parameters on a hidden layer of neural networks and are non-
linear. The optimization of the rule structure is a combination problem that can be solved
by a selection of linear subsets or by a nonlinear global optimization, for example, by an
optimization with a genetic algorithm (GA) or a particle swarm optimization (PSO) [40].

2.5. Evolving the Cloud-Based Prediction Model

Due to the refinement of the technological process of melting in the EAF, the data
collected from the new batches are increasingly different and the consequently developed
models are predicting electrical energy consumption worse and worse. The evolving
modelling approach is appropriate for the purpose of constantly updating models also
during the process of melting. In this paper, an online evolving fuzzy identification method
(based on data clouds) [41], which represents an upgrade according to the Takagi–Sugeno
fuzzy modelling, is used. By upgrade means the ability to evolve the structure of the model
online and to adapt the parameters of each local model during the process.

In evolving modelling, the structure of the fuzzy model is identified online using the
evolving mechanisms, i.e., principles for adding and removing fuzzy rules. The rule-based
form of i-th rule is defined as:

Ri : IF (x f (k) ∼ Xi) THEN yi(k) = fi(x f (k)) (14)

where x f (k) =
[
u1(k), u2(k) . . . , up(k)

]
represents the input (regression) vector, Xi stands

for the i-th data-cloud, yi(k) represents the output of that fuzzy rule, and fi(x f (k)) repre-
sents an arbitrary function. In our case, the NARX model is used and therefore the output
function is defined as:

fi(k) = θT
i ψ(k) (15)

where ψ(k) =
[

x f (k), 1
]T

stands for the extended regressor and θT
i is vector of local

parameters of i-th fuzzy rule, which are calculated using the recursive Weighted Least
Squares method (rWLS) as presented in [41]. The final value of the output is calculated
as follows:

y(k) =
c

∑
i=1

βiθ
T
i ψk (16)
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where c is the number of data-clouds (fuzzy rules), and βi stands for normalized relative
density, which is defined as relation between the current data sample x f (k) and the i-th
fuzzy rule Xi. Normalized relative density is calculated as follows:

βi(k) =
γi(k)

c
∑

j=1
γj(k)

, i = 1, . . . , c (17)

where γi(k) stands for the local density of the data x f (k) and is calculated as:

γi(k) =
1

1 + ‖x f (k)− µi(k)‖2 + σi(k)− ‖µi(k)‖2 (18)

In Equation (18), µi(k) and σi(k) denote mean value vector and mean-square length
of the data vector from i-th cloud, respectively. Please refer to [41] for more details about
the whole evolving algorithm including the evolving mechanisms of adding and removing
(data-clouds) fuzzy rules.

3. Results

The data used within the methods for key input variables selection and for the val-
idation of the developed models were collected from the actual EAF in the SIJ Acroni
company. From the collected database, 577 different batches were selected with the filtering.
In the stage of predictive models development, the whole dataset was divided into training
(404 batches) and testing (173 batches) subsets (70% of the data for training and 30% for
testing). For each batch, 13 input variables were recorded, which are listed in Table 1.
For each batch, the loading recipe (marked from 1 to 12) and melting program (marked
from 1 to 15) are also selected according to the required properties of the steel produced.

3.1. Results of the Selection of Key Input Variables

Using the methods presented in Section 2.2 (Pcorr, PMI, LIP, NNGarr, PLS VIP,
and LASSO), the most influential variables for predictive models were found. Since the re-
sults vary widely from one method to another, average influential factors were calculated to
be more generally usable regardless of modelling method. Figure 1 shows the sorted results
of finding the most influential variables considering all data in the database. The boxes in
the figure show the average values, the median values and the intervals within the 25th
and 75th percentiles.

0 0.5 1

Total oxygen

Tapping temperature

Total carbon 

Mean temperature

Scrap weight in basket 1

Total scrap weight

Scrap weight in basket 3

Scrap weight in basket 2

Influential factor

Figure 1. The average influential factors for all independent input variables.
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Table 2 shows the average values for each influential factor. According to the obtained
results, it is reasonable to include the following variables in further consideration: total
scrap weight, scrap weight in individual baskets, total carbon, average temperature during
melting, tapping temperature and total oxygen. The significance of the individual input
variables can also be partially inferred from Figure 2, where linear models describe the
relationships between the various input variables and the total electrical energy consump-
tion (as a percentage of the maximum value (kWh/t)). In determining the most influential
variables, the dispersion or data distribution plays a major role. Figure 2 shows one of the
most influential variables and one of the least influential variables in each case. The simul-
taneous use of multiple independent variables to predict electrical energy consumption
can change the influential factor of a single variable (due to the interconnectedness of the
variables). Therefore, it is difficult to conclude from Figure 2 why total scrap weight is more
important than the total carbon variable.

Figure 2. Linear models of electrical energy consumption (as a percentage of the maximum value)
as a function of total scrap weight (top left), total oxygen (top right), total carbon (bottom left),
and tapping temperature (bottom right), respectively.

Table 2. The average influential factors for all independent input variables.

Variable Influential Factor

Total scrap weight 0.8571
Scrap weight in basket 1 0.7679
Total carbon 0.6429
Scrap weight in basket 2 0.5714
Scrap weight in basket 3 0.5357
Mean temperature 0.5179
Tapping temperature 0.4286
Total oxygen 0.1786

When modelling electrical energy consumption, reducing the dimensionality of the
input space is also very important; otherwise, the (fuzzy) model structure may become
too complex and the large number of model parameters may be difficult to determine.
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If the modelling method also includes an optimization phase of the model parameters,
the modelling process can become very slow and inefficient. On the other hand, considering
only a limited number of the most influential variables can lead to worse prediction results
as some of the information is lost. Therefore, different variations of combined input
variables were also considered. Using the methods presented in Section 2.2, the following
combined input variables (Figure 3) were selected as the most influential: the quotient of
tapping temperature and total scrap weight, the quotient of mean temperature and scrap
weight in the first two baskets, chemical energy (calculated from total carbon and total
oxygen as proposed in [42]), the quotient of total oxygen and total carbon, scrap weight
in the third basket. The average influential factors for all combined input variables are
listed in Table 3. Figure 4 shows that the use of only one combined input variable does
not drastically improve the prediction of electrical energy consumption, but as mentioned
earlier, the main advantage of selecting the most influential variables is shown only when
all input variables are used together in the exact combination.

0 0.5 1

Chemical energy

Influential factor

Tapping temperature / total scrap weight

Mean temperature / scrap weight in baskets 1 and 2

Total oxygen / total carbon 

Scrap weight in basket 3

Figure 3. The average influential factors for the five most influential combined input variables.

Figure 4. Linear models of electrical energy consumption as a function of the quotient of tapping
temperature and total scrap weight (left) and the quotient of total oxygen and total carbon (right).

Table 3. The average influential factors for the five most influential combined input variables.

Variable Influential Factor

Tapping temperature/total scrap weight 0.9143
Mean temperature/scrap weight in baskets 1 and 2 0.6000
Chemical energy 0.5143
Total oxygen/total carbon 0.5143
Scrap weight in baskets 3 0.4571
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3.2. Analysis of Models for Energy Consumption Prediction

This subsection presents the comparative results of predicting electrical energy con-
sumption with the static models explained in Section 2. Each model is used to predict the
total electrical energy consumption of the current batch as a function of the key input vari-
ables listed in Table 3. All models are compared using the root–mean–square error (RMSE),
which is a measure of the differences between the values (electrical energy consumption in
percentages) predicted by a model ŷi and the observed values yi:

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi)2, (19)

where m is the number of all test batches.
Figure 5 shows the results of predicting electrical energy consumption with the k-

NN model (left) and the linear regression model (right) compared to the electrical energy
consumption measurements. In the figure, the line shows the ideal (completely accurate)
prediction of electrical energy consumption according to the test samples. The k-NN
model was constructed to consider Mahalanobis distance and the six nearest neighbours.
The output of the k-NN model is calculated according to Equation (9), which means
that the nearer neighbour has more influence on the output than the farther neighbour.
Compared to the prediction results of the k-NN model, the linear regression model achieves
slightly better results (see Table 4) in terms of R2 (coefficient of determination) and RMSE,
although this model is simpler.

Figure 5. Prediction of electrical energy consumption with the k-NN model (left) and the linear
regression model (right) compared to measurements of electrical energy consumption.

Artificial intelligence algorithms, i.e., evolving and fuzzy modelling approaches pro-
posed in this work, achieve better prediction results than machine learning methods (k-NN
and linear regression), as expected. Figure 6 shows the results of predicting electrical
energy consumption with the evolving model (left) and the fuzzy model (right) compared
to the electrical energy consumption measurements. When looking at Figures 5 and 6, it is
difficult to decide which model is the best because the differences are quite small. Therefore,
all RMSE and R2 results for each method are presented in Table 4. From the table, it can be
concluded that the best results were obtained with the conventional fuzzy method and the
evolving method proposed in this paper. In the conventional fuzzy modelling, the PSO
optimization method was used to determine the optimal structure (number, distribution
and width of Gaussian membership functions) of the fuzzy logic system that gives the best
prediction results.
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Figure 6. Prediction of electrical energy consumption with the evolving model (left) and fuzzy model
(right) compared to measurements of electrical energy consumption.

Table 4. Comparison of RMSE results for the prediction models.

Method RMSE (%) R2

k-NN method 3.177 0.443
Linear regression 3.171 0.445
Evolving model 3.118 0.464
Fuzzy model 2.910 0.533

All the developed models can also be compared with the calculation of the cumulative
distribution functions, which are shown in Figure 7. From this graph, for example, it is easy
to see that 90% of all errors are less than 5% (of the maximum electrical energy consumption)
when the k-NN model is used. Thus, a steeper curve represents a better model.
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Figure 7. Cumulative distribution functions for the electrical energy prediction errors.

The comparison between the results considering all input variables and only the most
influential variables (selected variables) shows that reducing the independent variables
can improve the fitting results by at least 20% according to the RMSE of linear regression.
The effect of reducing the input space is even more evident when evolving or a fuzzy
modelling approach is used, since in these cases model complexity translates into more
challenging optimization conditions due to the large number of input variables. The larger
number of optimization parameters slows down the training process and may lead to
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suboptimal results. Fuzzy membership functions may not be optimally defined and dis-
tributed, and consequently the model may be over-fitted to the training dataset. However,
over-fitted models fail quickly when applied to new batches that differ slightly from those
in the past.

The prediction results of all developed models can be drastically improved (by at
least 20% according to the RMSE of linear regression) if melting time is also used as an
independent input variable. Although up to 80% of authors of all published papers dealing
with the EAF energy consumption prediction have used melting time as an input variable to
achieve better results, this approach is completely incorrect as the melting time is not known
in advance. If melting time was known in advance, advanced models would actually be
unnecessary because the melting time is almost entirely proportional to electrical energy
consumption (see Figure 8). In Figure 8, two different linear models are shown according
to the maximum transformer tap level (in the profile), which is either seven or eight for
all melting programmes. The linear models show that the melting programmes with the
maximum transformer tap level eight have a slightly higher energy consumption than the
melting programmes with the maximum transformer tap level seven, but the slope is almost
the same in both cases. The obtained models, shown in Figure 8, are used to predict the
melting time from the electrical energy consumption prediction (obtained with the fuzzy
model). This information is essential for the EAF operator as he can try different scenarios
in the simulator and determine the optimal time to complete the batch. This is one of the
possible ways to partially reduce the electrical energy consumption without intervening in
the EAF itself because until now, in most cases, electrical energy consumption was only too
high due to an unnecessary prolongation of the melting time. This is because it is difficult
for the operator to determine exactly when the material is completely melted.
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Figure 8. Electrical energy consumption as a function of melting time for two different maximum
transformer tap levels in the profile.

4. Discussion

Technological processes in the steel industry have improved greatly in recent decades.
Further optimization of the processes is possible by introducing digital tools that advise
operators on setting parameters and help control production (also in terms of equipment
maintenance). In this study, the focus is on the optimization of electrical energy consump-
tion through the analysis of existing historical data and the construction of prediction mod-
els. The latter allows the operator to perform preliminary simulations through an advisory
tool that determines the electrical energy consumption according to the selected conditions.
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The operator can thus test the optimal values for the materials added, the amount of carbon
and oxygen added, the melting temperature and, above all, the final melting time. From all
of the influential variables, total melting time is the one that total energy consumption
depends the most on it but should not be considered as an input variable, which is a
common mistake. Although the transformer profiles (in historical data) that define the
EAF electrical parameters (current, voltage, arc power) have two different final values for
the power levels in the existing melting programs (7 and 8), these values have an almost
negligible impact on the final consumption compared to the final melting time (which is
also defined with the transformer profiles). The developed models can predict the electrical
energy consumption quite accurately since the error is less than 5% (of the maximum
energy consumption) for 90% of all errors. Converting the electrical energy consumption to
the final melting time is also very straightforward since consumption and melting time are
proportional to each other. The choice of input variables is critical to developing applicable
models, especially when a large number of variables are available. Without algorithms to
analyze influential factors, the types of charged materials would certainly be chosen as
input variables, as well as the amount of slag or delays during the process. As the results
show, the total mass has the greatest influence on the prediction of energy consumption,
although the consumption is normalized with respect to the total mass (in kWh/t). When
determining the key variables, their simultaneous consideration is crucial because the influ-
ential factors are distributed differently than when only one input variable is considered at
a time. For successful model construction, it is also critical to eliminate bad measurements
(outlier filtering) that occur in batches with many interruptions and extended melting time
due to faults at the EAF. Poor measurements are also possible due to incorrectly recorded
charged materials (quantities and types), but not all such anomalies in the measurements
can be detected. All the developed models are comparable with each other in terms of
the prediction error (RMSE) and the coefficient of determination R2, which means that, if
the combined variables are chosen appropriately, the linear methods also work effectively.
Each of the methods has its advantages and disadvantages. For example, the evolving
method, although it does not give the best results, may be best suited for online updating
of models during the process itself, which may improve the prediction for the current
batch. The conventional fuzzy method is computationally the most demanding because it
involves a PSO optimization, but it provides the best prediction results. On the other hand,
linear regression is the simplest since it does not require parameter adjustments, while the
k-NN method is the fastest since it does not require a training phase.

5. Conclusions

This paper presents the results of a study in which preprocessed historical data from
the real EAF process were used to identify the influential variables that have the greatest
impact on electrical energy consumption during melting. The results show that the root
mean square error in predicting electrical energy consumption can be reduced by at least
20% with proper selection of the influential variables. Four different prediction models
were constructed from the filtered data, using linear regression, k-NN, evolving, and fuzzy
modelling methods. When comparing the errors in the prediction of electrical energy
consumption, the fuzzy model was found to be the most accurate, as the root mean square
error has the lowest value and the coefficient of determination has the highest value.
The developed models will be used within the advisory tool, which will help the EAF
operator to adjust the parameters correctly during the melting process and, in this way,
improve the efficiency of the EAF.
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4. Kovačič, M.; Stopar, K.; Vertnik, R.; Šarler, B. Comprehensive Electric Arc Furnace Electric Energy Consumption Modeling: A

Pilot Study. Energies 2019, 12, 2142. [CrossRef]
5. Sung, Y.; Lee, S.; Han, K.; Koo, J.; Lee, S.; Jang, D.; Oh, C.; Jang, B. Improvement of Energy Efficiency and Productivity in an

Electric Arc Furnace through the Modification of Side-Wall Injector Systems. Processes 2020, 8, 1202. [CrossRef]
6. Echterhof, T. Review on the Use of Alternative Carbon Sources in EAF Steelmaking. Metals 2021, 11, 222. [CrossRef]
7. Ahmed, W.; Moazzam, M.; Sarkar, B.; Ur Rehman, S. Synergic Effect of Reworking for Imperfect Quality Items with the Integration

of Multi-Period Delay-in-Payment and Partial Backordering in Global Supply Chains. Engineering 2021, 7, 260–271. [CrossRef]
8. Mahapatra, A.S.; N Soni, H.; Mahapatra, M.S.; Sarkar, B.; Majumder, S. A Continuous Review Production-Inventory System with

a Variable Preparation Time in a Fuzzy Random Environment. Mathematics 2021, 9, 747. [CrossRef]
9. Bhuniya, S.; Pareek, S.; Sarkar, B. A supply chain model with service level constraints and strategies under uncertainty. Alex. Eng.

J. 2021, 60, 6035–6052. [CrossRef]
10. Sarkar, B.; Mridha, B.; Pareek, S. A sustainable smart multi-type biofuel manufacturing with the optimum energy utilization

under flexible production. J. Clean. Prod. 2022, 332, 129869. [CrossRef]
11. Yadav, D.; Kumari, R.; Kumar, N.; Sarkar, B. Reduction of waste and carbon emission through the selection of items with

cross-price elasticity of demand to form a sustainable supply chain with preservation technology. J. Clean. Prod. 2021, 297, 126298.
[CrossRef]

12. Carlsson, L.S.; Samuelsson, P.B.; Jönsson, P.G. Using Statistical Modeling to Predict the Electrical Energy Consumption of an
Electric Arc Furnace Producing Stainless Steel. Metals 2020, 10, 36. [CrossRef]

13. Logar, V.; Fathi, A.; Škrjanc, I. A Computational Model for Heat Transfer Coefficient Estimation in Electric Arc Furnace. Steel Res.
Int. 2016, 87, 330–338. [CrossRef]

14. Meier, T.; Logar, V.; Echterhof, T.; Škrjanc, I.; Pfeifer, H. Modelling and Simulation of the Melting Process in Electric Arc
Furnaces—Influence of Numerical Solution Methods. Steel Res. Int. 2016, 87, 581–588. [CrossRef]

15. Núñez, A.; De Schutter, B.; Sáez, D.; Škrjanc, I. Hybrid-fuzzy modeling and identification. Appl. Soft Comput. 2014, 17, 67–78.
[CrossRef]

16. Dovžan, D.; Logar, V.; Škrjanc, I. Implementation of an Evolving Fuzzy Model (eFuMo) in a Monitoring System for a Waste-Water
Treatment Process. IEEE Trans. Fuzzy Syst. 2015, 23, 1761–1776. [CrossRef]

17. Škrjanc, I.; Iglesias, J.A.; Sanchis, A.; Leite, D.; Lughofer, E.; Gomide, F. Evolving fuzzy and neuro-fuzzy approaches in clustering,
regression, identification, and classification: A Survey. Inf. Sci. 2019, 490, 344–368. [CrossRef]

18. Fathi, A.; Saboohi, Y.; Škrjanc, I.; Logar, V. Comprehensive Electric Arc Furnace Model for Simulation Purposes and Model-Based
Control. Steel Res. Int. 2017, 88, 1600083. [CrossRef]

19. Hay, T.; Visuri, V.V.; Aula, M.; Echterhof, T. A Review of Mathematical Process Models for the Electric Arc Furnace Process. Steel
Res. Int. 2021, 92, 2000395. [CrossRef]

20. Lee, B.; Sohn, I. Review of Innovative Energy Savings Technology for the Electric Arc Furnace. JOM 2014, 66, 1581–1594.
[CrossRef]

21. Barati, M.; Esfahani, S.; Utigard, T. Energy recovery from high temperature slags. Energy 2011, 36, 5440–5449. [CrossRef]
22. Lee, B.; Ryu, J.W.; Sohn, I. Effect of Hot Metal Utilization on the Steelmaking Process Parameters in the Electric Arc Furnace. Steel

Res. Int. 2015, 86, 302–309. [CrossRef]
23. Kirschen, M.; Risonarta, V.; Pfeifer, H. Energy efficiency and the influence of gas burners to the energy related carbon dioxide

emissions of electric arc furnaces in steel industry. Energy 2009, 34, 1065–1072. [CrossRef]
24. Bisio, G.; Rubatto, G.; Martini, R. Heat transfer, energy saving and pollution control in UHP electric-arc furnaces. Energy 2000,

25, 1047–1066. [CrossRef]

http://doi.org/10.1007/978-3-642-36273-6_1
http://dx.doi.org/10.1109/TIE.2018.2883247
http://dx.doi.org/10.3390/met9090959
http://dx.doi.org/10.3390/en12112142
http://dx.doi.org/10.3390/pr8101202
http://dx.doi.org/10.3390/met11020222
http://dx.doi.org/10.1016/j.eng.2020.07.022
http://dx.doi.org/10.3390/math9070747
http://dx.doi.org/10.1016/j.aej.2021.03.039
http://dx.doi.org/10.1016/j.jclepro.2021.129869
http://dx.doi.org/10.1016/j.jclepro.2021.126298
http://dx.doi.org/10.3390/met10010036
http://dx.doi.org/10.1002/srin.201500060
http://dx.doi.org/10.1002/srin.201500141
http://dx.doi.org/10.1016/j.asoc.2013.12.011
http://dx.doi.org/10.1109/TFUZZ.2014.2379252
http://dx.doi.org/10.1016/j.ins.2019.03.060
http://dx.doi.org/10.1002/srin.201600083
http://dx.doi.org/10.1002/srin.202000395
http://dx.doi.org/10.1007/s11837-014-1092-y
http://dx.doi.org/10.1016/j.energy.2011.07.007
http://dx.doi.org/10.1002/srin.201400157
http://dx.doi.org/10.1016/j.energy.2009.04.015
http://dx.doi.org/10.1016/S0360-5442(00)00037-2


Metals 2022, 12, 816 17 of 17

25. Meier, T.; Hay, T.; Echterhof, T.; Pfeifer, H.; Rekersdrees, T.; Schlinge, L.; Elsabagh, S.; Schliephake, H. Process Modeling and
Simulation of Biochar Usage in an Electric Arc Furnace as a Substitute for Fossil Coal. Steel Res. Int. 2017, 88, 1600458. [CrossRef]

26. Gandt, K.; Meier, T.; Echterhof, T.; Pfeifer, H. Heat recovery from EAF off-gas for steam generation: Analytical exergy study of a
sample EAF batch. Ironmak. Steelmak. 2016, 43, 581–587. [CrossRef]
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