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Abstract: During quenching heat treatment, the formation of high residual stress values and the
presence of distortion are phenomena which are difficult to control and accurately predict, their effects
being extremely important to the components or pieces of complex and robust geometry that are
commonly used in the industry. The latter is mainly due to the mixture of the high temperature levels
formed between the surface and the cores of the components and the martensitic transformation
during quenching. In this research, an experimental and simulated analysis of the process of the
quenching heat treatment of AISI 4340 steel, using geometrically complex components, was under-
taken with the objective of studying and understanding the effect of quenching process parameters
on distortion, stress generation, and mechanical properties. A model that applied the finite elements
method (FEM), in which entry data such as thermo-physical and mechanical properties were obtained
through experimental techniques that were reported in the literature, made it possible to simulate the
cooling process under different conditions, which helped to explain the origins of the distortion in the
quenched parts. The results show a close relationship between various quenching parameters such as
heat extraction speed, the immersion orientation in the liquid, and the component’s geometry. The
data obtained could contribute to accelerating the design process of the heat processing routes for
quenching components by taking into consideration both the classic process variables and, due to the
increased precision resulting from mathematical modeling, additional factors such as the geometry of
real applications.

Keywords: distortion; quenching; FEM; residual stresses

1. Introduction

The purpose of the quenching heat treatment is to modify the initial microstructure
of steel by means of cooling the heated parts through the austenitizing temperatures of
different liquid quenchants, such as brine, water, or oil. The high cooling rate achieved
during the quenching process suppresses diffusion-controlled phase transformations (fer-
rite, perlite, and bainite) and favors non-diffusional transformations such as martensite,
a desirable phase in quenched steel which is responsible for reaching optimum levels
of mechanical properties [1,2], followed by a complementary tempering heat treatment.
Quenching heat treatment on steel adequately meets the requirements that the modern
industry demands. This is mainly in the automotive and aerospace industries, where
the strict control of the specifications of mechanical properties and residual stresses are
required in order to reduce the possibility of failures and to increase the service life of
various components with differing complex geometries. For this reason, distortion control
plays a determining role in the dimensional precision of massive production parts when it
comes to reducing waste.
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Most of the rejection problems of hardened parts are related to the quenching process
and caused by poor heat treatment design; because of this, in the metal–mechanical industry,
optimal control of the quenching process becomes essential in reducing economic losses [3].
Quenching process design must consider the strict control of the involved process variables,
such as the cooling rate, the orientation of the component during immersion, the agitation
of the quenching media, the quenching bath temperature, and the component’s geometry,
all of which influence the dimensional accuracy of hardened parts [4]. The AISI 4340 alloy
is a widely used heat-treatable steel because of its high fatigue strength and toughness.
Therefore, this type of steel is widely used for the manufacturing of components with high
demands for mechanical properties; such components include gears, bolts, torsion bars,
and crankshafts, among others [5,6].

On an industrial level, the manufacturing of robust, long or geometrically complex
parts is traditionally sensitive to the distortion effects present in the manufacturing process.
Therefore, the control of distortion is a research topic widely studied by academics and
researchers. The development of distortion not only involves the effect of volumetric
expansion induced by the phase transformation (austenite–martensite) but also the complex
interaction between different variables such as the austenitizing temperature, immersion
velocity and direction, the temperature and agitation of the quenching media, and the
geometry of the treated components, among other factors, which results in a complex
phenomenon that is difficult to predict and control [7–10]. Due to the complex geometry
and the non-homogeneous temperature distribution, the uncontrolled variables of the
quenching process could cause the appearance of various undesirable phenomena such
as high residual stresses, variations in dimensional precision, cracking and fractures that
compromise the component’s integrity during its service life [11], and the many other types
of waste that can occur during the manufacturing process. Although a significant number
of studies have been conducted on this topic, and their results have helped to improve
processes in manufacturing industries, failures still occur in the quenching process when
the parts or components are heavy or have complex geometries, as is the case with gears,
molds, crankshafts, and springs, among many others [12].

In recent years, an important number of numerical tools, such as the finite element
method (FEM), have been developed and can be used for the analysis and understanding of
the behavior of materials under different processing conditions, and which currently allow
a first approach in the design of new heat treatments, the evaluation of residual stress, and
the understanding of distortion [13–18]. These investigations have focused on studying
variables such as chemical composition, the heat transfer coefficient (HTC), austenitic grain
size, component geometry, the temperature of the quenching bath, the agitation of the
liquid quenchants, and the immersion direction and immersion velocity. However, despite
numerous studies’ attempts to understand the relationship between such variables, there
are still questions related to their influence on the distortion phenomenon.

Currently, there is little information in the literature on the experimental validation of
distortion formation during the quenching of geometrically complex steel parts [19], and
these studies have focused on small parts with simple geometries that can be simplified to
model and measure the generated distortion [20–25]. Some of these studies that used FEM
to predict distortion did not perform experimental measurements [10,26,27].

In the present investigation, a study of the quenching process of AISI 4340 steel
samples of complex geometry and also uses an FEM model is presented in order to predict
the dimensional behavior, the evolution of internal stresses, and the mechanical properties
obtained during the quenching heat treatment, in which the magnitude of the distortion was
experimentally measured. The study focuses on the relationships between the immersion
speed, the direction of immersion into the quenching media, the mechanical properties, the
microstructure, the thermal history, and the final stress profile and distortion.
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2. Materials and Methods
2.1. Materials and Experimentral Procedure

The material used in this research was an AISI 4340 steel of medium carbon content, of
which its main alloyings were Cr and Ni. The chemical composition of the steel is presented
in Table 1. For the quenching tests, probes were fabricated with a geometry similar to the
one shown in Figure 1. There was a dimensional control of the specimens prior to and after
the heat treatment with an interior gauge, a Starrett 700MA with a precision of 0.01 mm,
for the purpose of quantifying the dimensional changes in the A, B, and C gaps of the
specimens that were caused by the distortion during quenching; see Figure 1.

Table 1. Chemical composition of AISI 4340 steel.

Element C Cr Mo Ni Mn Si S P Fe

% wt. 0.4 0.89 0.25 1.80 0.7 0.3 0.021 0.005 Balance
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Figure 1. Geometry and dimensions of the part studied.

2.2. Heat Treatment Process

For all the quenching tests, the samples used were instrumented with type K thermo-
couples attached to their surfaces and connected to a data acquisition card with 10 channels:
OMB-DAQ 54. The pieces were heated at a rate of 5 ◦C/min in a Thermolyne 3500 muffle-
type furnace (Thermo Scientific, Waltham, MA, USA) until reaching an austenitization
temperature of 860 ◦C; once reached, it was kept for 45 min to achieve a homogeneous
austenitic microstructure. The quenching was performed in two liquid quenching media,
oil and water. The commercial quenching oil Equiquench 770 of Equimsa brand was used
at a temperature of 60 ◦C, while the aqueous media was tap water at a temperature of
25 ◦C. In both cases, the quenching media were kept in constant agitation by the action of a
peripheral pump of 1

2 HP, and the immersion speed used was 40 mm/s, controlled through
a robotic arm with stepper motor controls; the conditions of the process are summarized in
Table 2. The direction of the immersions occurred in the direction “-z” in the case of the
quenching probes in a vertical mode and in the “x” direction for the quenching probes in a
horizontal mode; see Figure 1.
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Table 2. Quenching process conditions for AISI 4340 steel.

Sample Temp.
(◦C)

Soaking
Time

Quenching
Media

Immersion
Rate (mm/s) Orientation

V-OQ 860 45 Oil 40 Vertical
H-OQ 860 45 Oil 40 Horizontal
V-WQ 860 45 Water 40 Vertical
H-WQ 860 45 Water 40 Horizontal

2.3. Microstructural Analysis

The microstructure of the heat-treated samples was analyzed using an optical micro-
scope (Velab, Ecatepec, Mexico) with a prior standard metallographic preparation according
to the norm ASTM E3 [28], while the microstructure was revealed using a 2% Nital etchant
according to ASTM E407 [29].

2.4. Hardness Evaluation

The hardness of the treated specimens was measured with a TIME TH-500 model
hardness tester (Time Group Inc., Beijing, China) in Rockwell C scale along an axial cut in
the “z” axis.

3. Modeling of the Quenching Process

The simulation of the finite elements in the quenching process involved three main
aspects: the heat transfer coefficient, the phase transformations, and the residual stresses
plus the deformations that had to be properly taken into account [14,16,30,31].

The mathematical model presented in this research considered the relationships be-
tween the thermal phenomena, the microstructural changes, mechanical properties, and
the residual stresses generated both by thermal origin stress and those due to the phase
transformations. The research considered a component of complex geometry through FEM
simulation; therefore, thermal gradients existed at the same instant in time. This temper-
ature distribution in the component depends on factors such as the quenching severity,
thermal conductivity, heat capacity and latent heat.

Modeling the phase transformations was considered through the evolution of the
phase volume fraction during its solid-state transformation as a function of the cooling time
and temperature; because of this, diagrams for time–temperature–transformation (TTT)
were necessary in modeling. On the other hand, internal stresses produced in the material
were calculated by elasto-plastic analysis that assumed small deformations in the part.

3.1. Heat Transfer

The quenching heat treatment can be defined as a transient heat conduction problem
that involves all possible means of heat extraction (conduction, radiation, and convection).
However, the effect of thermal radiation was not considered in the simulation model used
because the treated piece was exposed to the environment for an extremely short time, and
the loss of heat by radiation was not considerable; therefore, only the heat conduction and
convection equations are described below, using the law of Fourier [32] in Equation (1):

q = −k∇T (1)

where q is the heat flux, k is the thermal conductivity, and ∇T is the temperature gradient
field inside the part. According to Fourier´s law, the heat conduction equation of the tran-
sient problem that contains the phase transformation can be defined using the conservation
of energy balance in the rectangular coordinate system presented in Equation (2):

∂

∂x

(
k

∂T
∂x

)
+

∂
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(
k

∂T
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∂z
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k

∂T
∂z
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∂T
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where k is the thermal conductivity, T is the quenching part temperature, qv is the heat gen-
eration rate from the steel phase transformations, is the material density, Cp is the specific
heat capacity at a constant pressure, t is the time, and (x, y, z) are the rectangular coordinates.

To calculate the heat transmission by convection between the part’s surface and the
cooling media, the cooling equation of Newton is used, as described in Equation (3):

Q = hA∆T (3)

where Q is the heat flux density, h is the heat transfer coefficient, A is the surface area
of the part, and ∆T is the temperature difference between the part’s surface and the
quenching media.

3.2. Phase Transformation

Because phase transformations have a strong relationship with the thermal and me-
chanical behavior of the material, they should be considered when finite element simula-
tions are used. In the first place, the temperature ranges where the phase transformations
occur and which are limited by the critical temperatures must be defined. Commonly these
temperatures can be calculated using time–temperature–transformation (TTT) diagrams or
through analytical expressions.

TTT diagrams describe the relationship between the beginning and end of a transforma-
tion and indicate a transformed volume fraction during the isothermal process at different
temperatures. The isothermal kinetic equation, known as the Johnson–Mehl equation [33],
is a fundamental variable in the numerical simulation of thermal processes, although it
cannot be directly applied to calculate the volume fraction during non-isothermal processes.
Due to this restriction, the Avrami equation was proposed, which has been widely used in
these type of processes [34], Equation (4):

ξ = 1− exp(−btn) (4)

where ξ is the volume fraction of the new phase, t is the isothermal time duration, b is a
temperature, chemical composition of parent phase, and grain size dependent constant,
and n is a constant dependent on the type of phase transformation, varying from 1 to 4.

In the case of displacive transformation (martensite), there is a stage of nucleation and
growth; however, the growth rate is so high that the volume of transformation of the phase
is almost entirely controlled by nucleation, and as a result, its transformation kinetics are
not influenced by the cooling speed. Because of this, it cannot be explained by Avrami’s
equation. Therefore, the amount of martensite formed is calculated using the equation
established by Koistinen and Marburger [35], Equation (5):

ξ = 1− exp[−α(Ms − T)] (5)

where ξ is the martensite transformed volume fraction, T is the temperature, Ms is the
martensite transformations beginning temperature, and α is a constant that indicates the
transformation rate and depends on the chemical composition of steel. It is important to
mention that through the TTT and CCT diagrams it is possible to obtain the martensitic
transformation temperature at a critical cooling rate.

3.3. Mechanical Interactions

The formation of residual stresses during quenching can occur in different manners—
high temperature gradients, martensitic transformations, or the combination of both. In the
first, the differences in temperature between the surface and the core of the part cause the
surface to cool faster than the core, and therefore a volume contraction of the part begins
on the surface with the presence of tension from the residual stresses, while in the core, to
balance the entire part state of the residual stresses, there should be compression. In the
second case, when a martensitic transformation is involved, stresses appear immediately
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after the martensitic transformation occurs on the surface of the piece, causing compressive
residual stresses and tension-types in the core. The end of the residual stress behavior
finishes as soon as the martensitic transformation occurs in the core of the part; at this point,
the surface of the part is completely transformed and has reached room temperature [36].
Assuming that steel behaves like a thermo-elasto-plastic material, the total strain rate on
the steel during quenching can be expressed in terms of the five deformation sources in
Equation (6).

.
εij =

.
ε

e
ij +

.
ε

p
ij +

.
ε

th
ij +

.
ε

pt
ij +

.
ε

tr
ij (6)

where
.
ε

e
ij,

.
ε

p
ij,

.
ε

th
ij ,

.
ε

pt
ij ,

.
ε

tr
ij terms are the elastic, plastic, thermal, phase transformation, and

plasticity transformation strain rates, respectively. Equations (7)–(11) are used individually
in the simulation model to calculate the addition of deformations due to the different
physical origins considered in this study.

.
ε

e
ij =

1
E
[
(1 + υ)σij − δijυσij

]
(7)

.
ε

p
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∂ϕ

∂σij
(8)

where E, υ, σij, dλ, δij, and ϕ are the elastic modulus, Poisson´s ratio, Cauchy stress tensor,
the plastic multiplier, Kronecker delta, and the yield functional using temperature, respectively.

.
ε

th
ij = ∑p

κ=1 ζκ

∫ T

0
ακdT (9)

where ακ is the termal expansión coefficient of the phase κ, and ζκ is the volume fraction of
phase κ.

.
ε

pt
ij = ∑p

κ=1
1
3

δij∆κζκ (10)

where ∆κ is the structural dilation due to the phase transformation.

.
ε

tr
ij =

3
2

Kκ

.
ζk(1− ζκ)Sij (11)

where Kκ is a constant due to the transformation-induced plasticity (TRIP),
.
ζk is the trans-

formation rate of the phase κ, and Sij is the stress deviator tensor.
Once the previous sources of deformation have been established, the internal stresses

can be reconstructed using Hooke’s law for isotropic materials.
Hardness values can be calculated using a simple rule of mixtures, assuming a constant

hardness value for each phase.

H = f1(H1) + f2(H2) + · · · fn(Hn) (12)

where H is the weighted average of hardness in any element of the simulated geometry,
H(1−n) are typical values of hardness for each phase, and f(1−n) values are the calculated
volume fraction for each present phase.

3.4. Finite Element Simulation Conditions

The quenching process was simulated using the finite elements method (FEM). Table 3
summarizes the simulation parameters used. The compute domain of geometry is shown
in Figure 2, representing a tridimensional model with 165,000 tetrahedral elements and
36,500 nodes, which was chosen so the results did not depend on the refinement degree of
the mesh. The input data of the thermal and transformation properties of the material can
be appreciated in Figure 3; these thermophysical properties of the material were the ones
available in the literature for AISI 4340 steel. The model considered the thermal interactions,
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the formation of internal stress, the elasto-plastic deformation, and the microstructural
evolution.

Table 3. Simulation parameters.

Simulation Parameters Value (s)

Number of simulation steps 800
Number of elements 165,000

Number of nodes 36,500
Initial temperature of the nodes (◦C) 860

Environment temperature (◦C) 25
Quenching oil temperature (◦C) 55
Cooling water temperature (◦C) 25

Immersion rate (mm/s) 40
Immersion direction −Z and X

Iteration method Newton–Raphson
Heat transfer coefficient ƒ(T), shown in Figure 3e,f
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4. Results and Discussion
4.1. Thermal Analysis

In Figure 4, the experimental results of the temperature evolution during the cooling
on the surface of the quenched parts from 860 ◦C until reaching the quenching media
temperature are shown; oil and water with temperatures of 55◦ and 25◦, respectively, in the
two directions of immersion, vertical and horizontal.
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At the beginning of the cooling for all the studied cases, it was observed that there
was a downfall in the cooling curve temperature of 860 ◦C until 770 ◦C, and this downfall
was related to the stage of convection cooling followed by a severe cooling caused by the
immersion into the used liquid. Just as expected, the water-quenched samples showed an
extremely rapid decrease in temperature, quickly reaching the martensitic transformation,
as shown in Figure 4b, while the time required for the samples to reach thermal equilibrium
with the quenching media was 70 s in the case of the quenching in oil, with the time
extending asymptotically until 400 s, as shown in Figure 4a. Additionally, it could be
observed that the relative cooling times of the oil immersion mode were reduced when
the specimen was submerged in a vertical position (V-OQ), which is explained by the
austenite–martensite transformation beginning before expected and by the transformation
being completed in a shorter span of time for all the specimens. However, for the horizontal
immersion (H-OQ), this timing was delayed for an approximated period of 30 s to begin
the martensite transformation (see Figure 4a). Figure 5 shows the thermal history and
the maximum cooling rates reached in each stage until the completion of cooling for
all the studied conditions. Figure 5a,b represents the oil immersion conditions of the
tested specimens, the maximum cooling rates of 55◦ and 45 ◦C/s for the vertical direction
immersion (V-OQ) and horizontal (H-OQ), respectively. On the other hand, the maximum
cooling rate was observed in the vertical immersion position, with water as the cooling
medium. The maximum cooling rates were 150 and 250 ◦C/s for the vertical direction
immersions (V-WQ) and horizontal (H-WQ), respectively; see Figure 5c,d. Cooling rates in
that order of magnitude typically cause problems such as cracking or fracture of the samples
because of the high temperature gradient formed at different points in the component.
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along the component is a critical condition. Because of this, it becomes an issue of great 
interest to evaluate the temperature gradient intensity formed between the surface and 
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the mathematical model at the end of the heat treatment and in the presence of the diverse  
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cooling stage for all the simulated cases, and the results are presented in Figure 6. The 
results show that the highest thermal gradients were present when water was used as the 
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During the cooling of the quenched samples, it was desirable that the temperature
changes along the samples occured in a uniform way between the surface and the core in
order to avoid the formation of high thermal gradients, which can be the origin of high
stress of thermal origin. Even though the formation of residual stresses depends on a
complex interaction among the diverse thermal–physical–mechanical phenomena, for the
specific case of the quenching treatment, the homogeneous distribution of temperature
along the component is a critical condition. Because of this, it becomes an issue of great
interest to evaluate the temperature gradient intensity formed between the surface and
core zones during the cooling, which can partially inform the stress profiles found through
the mathematical model at the end of the heat treatment and in the presence of the diverse
unwanted phenomena of excessive distortion and the occurrence of fractures. These
thermal gradients were evaluated in six positions (surface and core) during the whole
cooling stage for all the simulated cases, and the results are presented in Figure 6. The
results show that the highest thermal gradients were present when water was used as the
quenching medium; see Figure 6c,d. Values of ∆T ≈ 650 ◦C were found between the surface
and the core of the piece, showing non-homogeneous temperature profile behavior due to
the fast heat extraction in its surface and a heat extraction slower in the core, increasing
the possibility of the presence of cracks and subsequent fractures. Figure 6a,b shows the
thermal gradients in the samples quenched in oil as the quenching medium. It can be
observed that the lowest thermal gradients, ∆T ≈ 350 ◦C, are found on the points (P3
vs. P6) which corresponded to the thinnest zone of the piece, while in the other studied
points, the maximum values of ∆T were ≈ 440 ◦C, increasing the probability of a major
concentration of thermal origin stresses and the presence of distortions that compromised
the dimensional precision of the pieces and caused the generation of cracks and fractures
in real quenched components.
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way, the implemented model overestimated the cooling rates in the oil cases and 
underestimated the cooling rates in the water quenched case estimations.  
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Figure 6. Temperature gradient (∆T) between surface and core points during cooling of AISI 4340:
(a) VOQ; (b) H-OQ; (c) V-WQ; and (d)H-WQ.
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The cooling profiles obtained experimentally were compared with the simulation
results and are presented in Figure 7. It is evident that the model could predict the
necessary time for the piece to reach the thermal balance with the quenching media;
however, the model needs to be perfected to obtain the same cooling rates in the inferior
parts of the cooling curves corresponding to the convection cooling stage. In a general way,
the implemented model overestimated the cooling rates in the oil cases and underestimated
the cooling rates in the water quenched case estimations.
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different quenching media and immersion modes: (a) V-OQ; (b) H-OQ; (c) V-WQ; and (d) H-WQ.

4.2. Microstructure and Hardness

Figure 8 shows images through optical microscopy of the obtained microstructure
from the quenched AISI 4340 steel in oil and water and two immersion directions. In all
studied cases, an almost complete martensite transformation could be observed, which
was expected according to the steel chemistry and the used quenching conditions.

After the microstructural characterization, a simulation analysis through FEM model-
ing was made to compare the results of the austenite–martensite transformation during
the cooling stage. According to the results shown in the histograms in Figure 9a,b, which
represents the martensite distribution in all the 36,500 nodes of the model, 93% transformed
martensite was obtained for the quenching condition in oil; these results are similar for the
vertical immersion condition (V-OQ) and horizontal condition (H-OQ). Moreover, with the
quenching treatment using water as the quenching medium, the martensite transformation
reached 97% in both vertical immersion (V-WQ) and horizontal immersion modes (H-WQ).
In addition to the histograms in Figure 9, for the distribution of martensite in the pieces
studied at the end of the modeled cooling for the different studied conditions of immersion,
see Figure 10. It can be seen that despite the similarities in the amount of final martensite
transformation for both immersion cases, the most homogeneous distribution was found in
the vertical immersion cases without consideration of the quenching media, indicating a
more uniform cooling under this condition when compared to the cooling in a horizontal
position that generates less symmetrical martensite distributions.



Metals 2022, 12, 759 12 of 21

Metals 2022, 12, x FOR PEER REVIEW 12 of 23 
 

 

0 10 20 30 40 50 60 70

0

100

200

300

400

500

600

700

800

900

Te
rm

pe
ra

tu
re

 (°
C

)

Time (s)

 T1 simulated
 V-WQ T1

 

0 10 20 30 40 50 60 70

0

100

200

300

400

500

600

700

800

900

Te
m

pe
ra

tu
re

 (°
C

)

Time (s)

 T1 Simulated
 H-WQ T1

 

(c) (d) 

Figure 7. Comparison between simulated cooling curves and those measured with thermocouples 
in different quenching media and immersion modes: (a) V-OQ; (b) H-OQ; (c) V-WQ; and (d) H-WQ. 
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Figure 8. Obtained microstructure after quenching treatment of AISI-4340 steel at 500×: (a) V-OQ;
(b) H-OQ; (c) V-WQ; and (d) H-WQ.
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Figure 10. Martensite distribution in samples: (a) vertical oil quench; (b) horizontal oil quench;
(c) vertical water quench; and (d) horizontal water quench.

The difference between the results lies mainly in the quenching media; when water
was used, the quenching severity was more aggressive and a major cooling rate was
obtained, promoting the austenite–martensite phase transformation to occur early in most
nodes in the simulation model. By contrast, for the oil quenched cases, the cooling rate was
minor, and the martensite complete transformation was affected by variables such as the oil
temperature, agitation of the liquid, and the rate and the immersion direction of the pieces.

The hardness of the quenched pieces was measured in a longitudinal section along
the axis “z” in the coordinate system. Figure 11 shows the average hardness in three zones
in the studied samples of AISI 4340 steel under different immersion modes in oil and
water. The water-cooled pieces showed more hardness in both immersion modes in the
three analyzed zones, and the hardness levels obtained were 57.3–59.1 HRC. By contrast,
for the oil cooling and the vertical immersion conditions, a major hardness was obtained
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with hardness magnitudes between 51.9 and 54 HRC. On the other hand, the quenching
condition in oil and horizontal immersion showed the lowest hardness magnitude for
the experiments performed. The hardness results gobtained through FEM showed a
more uniform distribution compared with the experimental results for all the types of
immersion and quenching media, and the latter can be observed in Figure 12, which shows
the hardness distribution of the 36,500 nodes that formed the mesh through histograms.
These hardness fluctuations could be explained by the variations in the transformation
kinetics used in the model in addition to the HTC used, which could be optimized using
the experimental data collected in this research for future works.
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Figure 11. Measured and calculated hardness in quenched samples: (a) measured zones and (b) ex-
perimental hardness results.
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Figure 12. Nodal hardness distribution in entire FEM model: (a) V-OQ; (b) H-OQ; (c) V-WQ; and
(d) H-WQ.
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4.3. Distortion

Figure 13 shows the distortion generated the studied samples after the quenching
treatment measured in a quantitative way in three zones identified as: A, B, and C, which
correspond to the nominal 25 mm gaps prior to the heat treatment (see Figure 1).
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Figure 13. (a) Measured distortion after quench and (b) measured gaps in geometry.

It can be seen that the major distortion was presented in the water-quenched samples
in the direction of horizontal immersion (H-WQ), and the magnitude of the measured
distortion was ≈ 0.48 mm, while the minor distortion was found for the case of the oil-
quenchied samples and when the piece enters the quenching media in a vertical direction
(V-OQ), with a magnitude of just |0.005| mm. In both cases, these values occurred in the
thinnest region of the piece, identified as zone C. Furthermore, it was observed that for the
quench in water and in the direction of the vertical immersion (V-WQ), a distortion was
obtained in the range of 0.23–0.31 mm for the gaps B and C, while for A it corresponded
to the thickest region of the piece and presented the lowest distortion levels, regardless
the cooling media used. In a general way, the tendency to increase the magnitude of the
distortion was presented when using the direction of horizontal immersion and using
water as the quenching medium, while when using oil, which is the less severe quenching
medium, and a vertical direction immersion, the decrease of the distortion effect is favored.

In contrast, the distortion values obtained in the simulation presented in Figure 14 are
in good agreement with the experimental results in the V-OQ and H-OQ specimens. Less
consistent values are found with specimen V-WQ due to the difference found in the gap “A”
that shows an inverted distortion with respect to the corresponding experimental result.
Finally, the H-WQ specimen was the one with the worst concordance with the experimental
results. This difference between results shows the difficulty in modeling processes with
many variables, and in this case, even the slightest deviation during immersion in the
quenching medium creates an inadequate value for the heat transfer coefficient due to the
different convection conditions generating such resultant discrepancies.

The austenite to martensite phase transformation is accompanied by a volumetric
expansion and promotes the formation of internal stresses, and similarly, the thermal
gradients during the cooling process produce the correspondent thermal origin stresses.
In such a way, the dimensional change in the geometry of the studied pieces was related
to the combined effect of these phenomena. Both are difficult to avoid; however, these
are possible to predict and control through the design of a quenching system that allows
the manipulation of each one of the critical variables along with numeric techniques, such
as FEM models, which make the design of heat treatments as efficient and controllable
as possible.
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4.4. Simulated Residual Stresses and Precense of Cracks

The accumulation of internal stresses of thermal origins due to the high temperature
gradients is added to the stresses generated by the volumetric expansion during the
martensitic transformation, generating not only a decrease in the dimensional precision due
to distortion but also, if these stresses overcome the yield stress, cracks or fractures in the
material may occur. That is the reason why it becomes important to study the evolution of
these stresses to know their magnitude and distribution related to cooling time. Figure 15
shows the stress distribution in the pieces at the end of the simulation, pointing out the
residual stress concentrators obtained in each case studied.

Figure 15 shows the stress concentration along the geometry of the piece for all the
studied cases. It can be appreciated that the vertical quenching modes produced more
minor stress values than the corresponding horizontal quenching cases. Showing the mode
V-OQ, Figure 15a shows minor stresses at the end of the quenching. The mode H-WQ, in
Figure 15d, is the sample that reached stress values on the order of 530 MPa. This last value
was far from overcoming the elastic limit of AISI 4340 steel; however, analyzing the stress
history along the cooling time, peak values can be found very close to the yield limit of the
material, at least in the water-quenched simulated samples.

In Figure 16 are shown the maximum values of residual stresses related to the sim-
ulation time in different zones of the studied pieces in both directions of immersion for
water-quenched samples. Figure 16a represents the vertical immersion condition when
the maximum effective stresses were reached at 10 s after beginning the quenching pro-
cess, while, for the horizontal direction, the average time after the immersion started was
7 s; see Figure 16c. This difference in times is caused by the fact that in the horizontal
immersion mode, the time for the total immersion of the sample is less than that for the the
horizontal way, exposing a greater heat transfer area that accelerates the cooling process
of the entire piece in relation to the vertical immersion, and reaching major cooling rates;
see Figure 16c,d. In Figure 16a,b (V-WQ), it can be observed that there are a few critical
zones that can compromise the integrity of the entire piece, and the magnitudes of the
stresses in these zones are found between 800 and 1100 MPa; in contrast, observe zone P4,
where even though it underwent a quick cooling process, it was not exposed to a sustained
thermal gradient such as that in zones P1–P3, which developed high values for stress. On
the contrary, the horizontal mode immersion in Figure 16c,d, shows a major number of
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zones with elevated stress values along the whole piece due to the immersion condition.
The magnitudes of such stresses are in the range of 750–1100 MPa and are found in all the
geometrical concentrators (sharp edges corners), unlike the vertical immersion case.
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Most of the steels are susceptible to fragilization when they are exposed to severe
temperature changes, such as those in the quenching process. In this research, the formation
of cracks in the water-quenched samples was detected for both modes of immersion, and
this effect was not observed in the oil-quenched samples. In Figure 17 are shown some
images of fractures found in a full section cut along the “z” axis during the metallographic
preparation of the pieces; in both cases, they were of the intergranular type, finding their
origins in the surface with a propagation direction towards the core of the samples.

The appearance and location of the cracks could be explained from the previously
exposed results in which the evolution of the residual stresses are related to the occurrence
time, therefore reaching values close to the yield limit of AISI 4340 steel in the quenched
condition, as reported by Li [41]. It is possible that the real stresses in the pieces are bigger
than the calculated values by the FEM model; however, such simulated stresses predict the
zones of the piece where the material is prone to fail and correspond to the zones of high
thermal gradients and geometric concentrators. Because of this, the accuracy of the model
is able to be improved in future works, including the experimental measurement data of
residual stresses, the mechanical properties, and heat transference coefficient optimization.
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Figure 16. Stress evolution during quenching: (a) internal stress vs quenching time in V-WQ sample;
(b) stress profile at 10 s after quenching starts in V-WQ sample; (c) internal stress vs. quenching time
in H-WQ sample; (d) stress profile at 7 s after quenching starts in H-WQ sample.
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5. Conclusions

Quenching heat treatment was characterized under controlled conditions relying on
an FEM model which is able to reproduce the thermal history, phase transformations,
hardness, and the formation of residual stresses during the simulated quenching process
of a geometrically complex piece of AISI 4340 steel. The direction of immersion and the
cooling media used were the studied variables. Considering the obtained results, it can
be concluded:

• The highest magnitude of thermal gradients was present when using water as the
cooling medium and the direction of horizontal immersion, increasing the presence of
high values of stress with thermal origin and decreasing the dimensional precision
and its mechanical properties;

• There are favorable conditions during the quenching process to reduce those phenom-
ena that affect the quality of the quenched pieces. The condition of vertical immersion
and the employment of oil at 60 ◦C presented a lower magnitude of effective stresses ac-
cording to the FEM model used, as well as more minor distortion and higher hardness
values when compared with the horizontal immersion in both quenching media;

• The present research allowed us to analyze the distortion behavior in a geometrically
non-conventional piece under two different quenching media using FEM modeling,
becoming a potent tool in the design of heat treatments for real engineering elements
with complex geometries;

• Once certain variables have been defined, such as the immersion direction and the
quenching media, in which a low level of residual stresses and distortion can obtained,
it is advisable to continue researching other critical conditions in the process that
contribute to reducing and predicting the distortion and cracking in quenched steels.
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