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Abstract: An analytical model of a steel strip under alternate bending/reverse bending during a roller
leveling process is developed. A combined isotropic/kinematic hardening model is implemented
through a combined hardening parameter. A formulation of the change of the effective stress as a
function of the change of the effective strain under cyclic loading is combined with the developed
analytical model to predict the stress distributions and residual curvature of a steel strip under
roller leveling efficiently and accurately. Dissimilar to the commonly used assumption of one
contact point between the stripe and the rolls, an effective radius modelling the wrap-around contact
characteristics is proposed. An arc contact of the strip around a roll is described by the contact
model. An oscillatory behavior of the residual curvature is observed when a range of roll intermesh
setting is considered. The contact model added to the analytical model may enhance the accuracy in
predicting the oscillatory behavior of the residual curvatures. A range of the roll intermesh setting
can be suggested by the developed model to obtain a flat strip after roller leveling.

Keywords: roller leveling; steel strip; combined hardening; analytical model

1. Introduction

Steel strips after rolling and annealing may possess defects such as wavy edges, center
buckles, cambers, and twists. The flatness defects can be corrected by leveling in steel mills.
Amor et al. [1] reported that shape defects of metal strips after rolling process or coiling
operation can be removed by leveling in order to meet the quality requirement. Customers
may cut the as-received flat stripes in order to achieve end functionalities. Unacceptable
shape defects found after cutting the strips are serious issues of concern raised by the
customers of steel mills. Li et al. [2] reported that these flatness/shape defects are mainly
due to residual stresses generated from rolling, annealing, leveling, coiling, etc. Morris
et al. [3] classified the shape defects into two categories—latent and manifest. Shape defects
of the latent category appear flat prior to cutting operation, whereas manifest defects, such
as wavy edges and center buckles, are visible in the coiled form. Conventionally, tension
levelers are used upstream to remove manifest defects. Roller leveling with lower line
tension and smaller rolls has been the essential step to flatten metal strips and attenuate
the effects of inhomogeneous distribution of residual stress in strips. Roller leveling is a
complex forming process involving multiple, alternate bending and reverse bending cycles.
In order to achieve more effective leveling operation without resorting to on site trial and
error approach, a lot of efforts have been devoted to the development of efficient, accurate
simulation tools for roller leveling.

Finite element analyses and analytical modeling are two main approaches adopted
to investigate the roller leveling process. Hira et al. [4] developed an analytical model for
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calculation of curling and residual stress of a strip in longitudinal and width directions
after tension leveling. Isotopic material hardening was considered in their model. Doege
et al. [5] analyzed a levelling process using the Euler–Bernoulli beam theory and a combined
isotropic and kinematic hardening model. Contact points between the strip and the rolls
were computed iteratively assuming that only one contact point between the roll and
the strip exists. They calculated the range of roll intermeshes for zero strip curvature at
the exit roll for a seven-roll leveling system. Details of the verification of their analytical
modeling were not described. Behrens et al. [6] developed an analytical model to find
suitable settings of a leveler for flat strips. Contact points between the metal strip and the
rolls were calculated by assuming that the curve of the strip was composed of arcs and
common tangents between two rolls. Lengths of several segments dissected from the strip
longitudinally were equalized with different plastic deformations to eliminate wave defects
of the strip. Dratz et al. [7] also adopted this common tangent contact condition to develop
their roller leveling model. Residual stress and curvature results of the strip after levelling
were not reported. The common tangent assumption contradicts with the fact that the
curvature between two rolls exhibits a nonlinear distribution. Liu et al. [8] developed an
analytical model to analyze the residual stress and curvature of a plate subjected to roller
leveling. Isotropic hardening was adopted in their model and a single contact between
the plate and each roll was assumed. Chen et al. [9] developed an analytical model of a
roller leveler for the strip with transverse and longitudinal wave defects. They divided
the strip longitudinally in order to find a suitable bending amount of the rolls to attain
equal length of each longitudinal section. Higo et al. [10] presented a theoretical model
for a roller leveler based on Euler–Bernoulli beam theory and a single point contact model
between a strip and each roll. They examined the influence of the exit roll intermesh on the
residual curvature of the strip.

Morris et al. [11] built a finite element model to analyze the deformed shape and
surface residual stress of a steel strip after a three-roll leveling process. They concluded
that kinematic work-hardening can represent the loading condition experienced during
tension levelling more closely than that of isotropic work-hardening by comparing model
predictions of the deformed shapes with experiments. Schleinzer and Fischer [12] presented
a finite element model for roller leveling of rails. Combined isotropic/kinematic hardening
was assumed for the material. A friction coefficient of 0.2 was used between the rail and the
rolls. Park and Hwang [13] conducted finite element analyses and experiments to examine
the residual curvature and stress distribution of strips after roller leveling. They verified that
the strips with various initial curvatures can attain residual curvatures with small deviation
given an optimum entrance roll intermesh. Huh et al. [14] built a finite element model for a
roller leveler in order to study the effects of process parameters on the curvature solution
of roller leveling. They identified the parameters with significant effects on the residual
curvature through a design of experiment approach. Roberts et al. [15] carried out a finite
element study to compare modeled curvature distributions with experiments of a two-roll
stretch-bending process. Their results showed that a reduction in the wrap-around contact
length was caused by decreasing intermesh. Jin et al. [16] conducted a three-dimensional
finite element analysis of a roller leveler. They presented residual stress distribution in the
strip. Kim et al. [17] developed a finite element model for a roller leveling process. They
implemented an implicit stress integration procedure in a constitutive material model which
can capture the material yield behavior and the Bauschinger effect during reverse bending.
Grüber et al. [18] employed a finite element analysis of roller levelling to determine several
combinations of roll intermeshes to attain a flat strip after levelling. They identified that the
roll intermesh of the center load triangle and the last load triangle of a seven-roll leveler is
crucial to reach desired values of flatness and residual stress distribution.

Leveler operators have relied on parameter settings for strips with various yield
strengths and through-gauges provided by leveler suppliers. Due to degradation of the
leveler through years of usage, empirical methods were used to fine tune the settings
for production. Although manifest defects appeared to be invisible after leveling, latent
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defects may still exist and cause the end products to fail to satisfy customer requirements.
Analytical solutions of residual stress and curvature of the roller leveling process are
necessary to provide rapid parameter settings to aid in its operation. In this investigation,
an analytical model for a nine-roll roller leveler is developed. The nine-roll cold leveler was
installed at the plate mill plant of the Chinese Steel Company for leveling heavy gauge steel
plates. One of the motivations of this investigation is to provide operational parameters for
the leveler to improve the quality of steel plates. Solutions of stress distributions after each
bending/reverse bending and residual curvature of the strip are obtained based on the
Euler–Bernoulli beam theory within a two-dimensional geometric framework. The material
hardening is implemented through a combined isotropic/kinematic hardening parameter.
Finite element analyses are carried out to verify the accuracy of the developed model.
Results of the stress distributions and residual curvature of a steel strip are compared with
the results based on the analyses. Finally, a roll intermesh range to produce a flatness
condition of the strip is presented.

2. Analytical Model

Figure 1 is a schematic of a nine-roll leveler. The strip has the thickness t, the length L,
and the width W. The rolls have a radius of R and a roll spacing of D. A strip enters the
entry roll from the left, undergoes alternate bending and reverse bending, then leaves the
exit roll. Flatness defects can be removed by the plastic deformation under the leveler rolls.
Partial reduction in the flatness defect is ensued by insufficient plastic deformation. The
intermesh settings, usually in a linear, declining trend, provide for the gradual flattening
of the shape defects as the strip travels through the leveler. The roll intermeshes p2, p4,
p6, and p8 are indicated in Figure 1. The value of the roll intermesh is positive when the
gap between the top roll and the bottom roll is larger than the strip thickness. In this
investigation, the amount of the roll intermesh is defined by the inclination angle θ of
the upper roll carriage and the roll intermesh at the next-to-last roll p8 as indicated in
Figure 1. The bottom rolls are fixed, and the top rolls are moved downward to specified roll
intermeshes. The width of the strip is assumed to be sufficiently large. Therefore, the strain
in the width direction is neglected, and the plane strain condition is considered. Since the
leveling process can be viewed as a series of three-point bending/reverse bending actions
with groups of three rolls, the analytical model of the roller leveling process is conducted
based on the framework of Euler–Bernoulli beam theory.

Figure 1. A schematic of a nine-roll leveler.

2.1. Material Model

In development of the analytical model, friction forces at the roll/strip interface,
tension forces in the strip, and gravity are neglected. Figure 2 schematically shows a
differential element of the strip. The strip has a thickness of t and a width of W. A Cartesian
coordinate system is also shown in the figure. x represents the longitudinal direction,
and y is along the thickness direction. The neutral axis is assumed to coincide with the
mid-surface of the strip. The origin of the y coordinate is at the middle of the beam as
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shown in the figure. ρ is the radius of the curvature of the differential element under the
moment loading M. Longitudinal strain εx is expressed as

εx = −κy (1)

where εx and κ [1/m] are the longitudinal strain and the curvature, respectively. In the
elastic regime, the longitudinal stress σx [N/m2] is related to the longitudinal strain εx by

σx = Eεx (2)

where E [N/m2] is the Young’s modulus. The material hardening behavior is given by an
exponential law

σ = σs + Qi

(
1− e−biε

)
(3)

where σ [N/m2] and ε are the effective stress and the effective plastic strain, respectively. σs
[N/m2] is the initial yield stress. Qi [N/m2] and bi are the isotropic hardening parameters,
where Qi specifies the maximum change in the size of the yield surface, and bi defines the
rate at which the size of the yield surface changes as plastic straining develops. For uniaxial
loadings as the strip bending case, σ and ε can be taken as σx and εx, respectively. Relatively
large plastic deformation is considered for the roller levelling. This simplification of ε ≈ εx
contributes to a very small fraction of error to the results. Values of (Q1, b1) and (Q2, b2)
are obtained by fitting experimental stress–strain curve with Equation (3) for the first half
cycle and the second half cycle of the loading, respectively. Therefore, Q1 and b1 are used
to model the material hardening behavior in the first half loading cycle. Q2 and b2 are
adopted for the subsequent loadings. The bending moment M [N·m] of the cross section of
the strip is given as

M = −2W
∫ t/2

0
σxydy (4)

Figure 2. A schematic of a differential element of the strip.

The sign convention for the moment M and the curvature κ is related to the orientation
of the coordinate axes.

During the first bend loading, the material of the strip exhibits isotropic hardening
behavior. In the subsequent bend loadings, the material hardening of the strip is taken as a
combined isotropic/kinematic type. Zhang et al. [19] formulated the change of the effective
stress ∆σ [N/m2] as a function of the change of the effective strain ∆ε under cyclic bend
loading as

|∆σ| =

 E|∆ε| , |∆ε| < |∆σ|lim
E

σs + Qi

(
1− e−bi(|∆ε|− |∆σ|lim

E )

)
, |∆ε| ≥ |∆σ|lim

E
(5)
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where |∆σlim| [N/m2] is the elastic limit of the effective stress change at the stress reversal
point and can be written as

|∆σlim| = (1 + m)|σr|+ (1−m)(2σs − |σr|) (6)

where |σr| [N/m2] is the magnitude of the effective stress at the point of stress reversal.
m is the combined hardening coefficient. m = 1 and m = 0 correspond to the isotropic
hardening case and kinematic hardening case, respectively, and 0 < m < 1 is for the case
of combined hardening. The value of m for each bending during the roller leveling is
calibrated by matching the stress–strain curves based on the model of Equations (1)–(6) to
the experimental measurements in the corresponding cycles over a strain range expected in
the roller leveling process. Kotov et al. [20] experimentally demonstrated the validity of a
kinematic hardening model of a steel strip under roller leveling.

2.2. Contact Model

Contact points between the strip and the rolls can be computed iteratively assuming
that only one contact point between the roll and the strip exists [5,10]. Behrens et al. [6]
and Dratz et al. [7] adopted the common tangent contact condition to develop their roller
leveling model. The single point contact and common tangent contact assumptions render
a simple means to model the contact between the strip and rolls. A line contact between the
strip and each roll is assumed in the initial modeling work here. In the two-dimensional
model considered in this investigation, the strip contacts with each roll tangentially as
shown in Figure 3. The expanded radius of the roll Re [m] is given as

Re = R +
t
2

(7)

Figure 3. Tangential contact condition of the strip with the rolls.

The tangent of the contact angle λi [rad] is the gradient of the longitudinal axis of the strip

tanλi =
dy
dx

∣∣∣∣
xi

(8)

where y(x) is the deflected curve of the longitudinal axis of the strip, (xi,yi) is the ith contact
point, and λi is the ith contact angle. The contact point (xi, yi) [m] is

xi = xc + Resinλi
yi = yc − Recosλi

(9)
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where (xc, yc) [m] is the coordinates of the center of the roll. Müller et al. [21] also used
the expanded radius of the roll to calculate the contact point between a strip and a roll
in a leveler.

A recursive scheme is adopted to calculate the curvature, bending moment, deflected
curve of the strip, and the contact points. Initially, the location of the contact points and the
curvature κi of the strip curve at the ith contact point are assumed. The bending moment
Mi at the ith contact point is computed using Equations (1)–(6). Based on the assumption
of a linear distribution of the moment between the contact points, the curvature of the
deflected strip curve is estimated. Using the curvature distribution κ(x), the deflected strip
curve y [m] is calculated by

y(x) = κ(x)dx + C1x + C2 (10)

where C1 and C2 are the integration constants, and can be determined by the known contact
points. A Newton–Raphson algorithm is used to obtain converged solutions of the deflected
strip curve, moment distribution, curvature distribution, and contact points that satisfy
both the Euler–Bernoulli beam theory and the geometrical constraints. Guan et al. [22]
adopted a similar curvature integration approach to find the contact points for a roller
leveler. They verified their model by comparing the deflection curves calculated by their
model with those from experiments.

2.3. Residual Curvature

The flatness of the strip after exiting the leveler is related to the residual curvature.
The bending and reverse bending cycle is repeated until the material reaches the last roll
in the leveler. The strip is free to rotate at the last roll where the bending moment applied
to the strip can be considered as zero. The internal stress distribution of the cross section
of the strip at the last roll should result in a zero-bending moment. This condition can be
enforced by imposing an artificial bending moment of the same magnitude but opposite
sign to the moment at the last roll before unloading. Assuming no reverse yielding during
unloading, the residual curvature κ′ [1/m] of the strip at the last roll can be expressed as

κ′ = κ − M
EI

(11)

where κ and M are the curvature and moment, respectively, before unloading, and I is the
second moment of inertia of the cross section of the strip. Hosford and Caddell [23] and
Guan et al. [24] also adopted this approach to calculate the residual curvature for beam
bending problems.

3. Finite Element Analysis

In order to examine the accuracy of the developed analytical model, a two-dimensional
finite element analysis of a roller leveler is carried out. A quasi-static condition is assumed
in the finite element analyses. Due to the sufficiently large width, the strain in the width
direction can be neglected, and the plane strain condition is considered in the finite element
analysis. Both the upper and lower rolls are modeled as rigid bodies. A strip and a nine-roll
leveler are shown in Figure 1. A Cartesian coordinate system is also shown in the figure.
The direction of the z axis is given by the right-hand rule. In this investigation, the strip is
moved forward by a displacement boundary condition and the bottom rolls are assumed
to be fixed in the x and y directions and free to rotate with respect to the z axis. The
displacements in the −y direction of the upper rolls are specified to represent the amount
of roll intermeshes, while their displacements in the x direction are constrained. As shown
in Figure 1, a uniform displacement is applied in the +x direction to the right edge surface
of the strip, and the displacement in the y direction for the right edge surface is constrained
to represent the strip travel horizontally along the +x direction.
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The commercial software, Abaqus (6.14, Dassault Systemes, Walthem, MA, USA), is
adopted to compute the stress and deformation of the strip during the leveling process.
Mises yield surface is used with the nonlinear isotropic/kinematic hardening model in
Abaqus. The nonlinear kinematic hardening component is modeled through the back
stress to describe the translation of the yield surface. The isotropic hardening component
is modeled through the equivalent stress as a function of the equivalent plastic strain to
define the size of the yield surface. The hardening law for the back stress α [N/m2] is

·
α =

C
σt
(σx − α)

·
ε

pl
− γα

·
ε

pl
(12)

where C [N/m2] and γ are kinematic hardening parameters that are calibrated from

symmetric strain, cyclic test data. σt and
·
ε

pl
are the current size of the yield surface and the

plastic strain rate, respectively. Figure 4 schematically shows a stabilized cycle. The plastic
strain εpl is determined by

εpl = εx −
σx

E
− ε0 (13)

where ε0 is the strain value of the intercept of the left half of the stabilized cycle with the
strain axis as shown in Figure 4. The value of α [N/m2] is given as

α = σx − σt (14)

where σt = (σ1 + σn)/2 is the current size of the yield surface. The stresses σ1 and σn are
marked in Figure 4. To solve the back stress hardening law of Equation (12) over this stabilized
cycle, with the first data point of σx = σ1 and εpi = 0, the expression of α [N/m2] is

α =
C
γ

(
1− e−γεpl

)
+ (σ1 − σt)ε

−γpl (15)

Figure 4. A schematic of a stabilized cycle.

Data pairs of
(

α, εpl
)

extracted from the stabilized stress–strain curve are used to
calibrate values of the kinematic hardening parameters C and γ.

The isotropic hardening model of the Abaqus is defined as

σt = σs + Q∞

(
1− e−bεpl

)
(16)
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where σt [N/m2] and σs [N/m2] are the current size and the initial size of the yield surface,
respectively, and εpl is the equivalent plastic strain. Q∞ [N/m2] and bi are the isotropic
hardening parameters of the finite element model. The isotropic hardening parameters are
calibrated from the data of the current size of the yield surface σt-equivalent plastic strain
εpl relation based on a symmetric strain-controlled cyclic experiment with strain range ∆ε
as shown schematically in Figure 4. For the ith cycle, the current size of the yield surface σt
[N/m2] is calculated by

σt = σ
p
i − αi (17)

where σ
p
i [N/m2] and αi [N/m2] are the peak tensile stress and the back stress, respectively,

in the ith cycle. αi [N/m2] is calculated by

αi =
σ

p
i + σn

i
2

(18)

where σn
i [N/m2] is the compressive stress with the same εpl value as the peak tensile stress

σ
p
i in the ith cycle. Since the value of the back stress αi in each cycle at a particular strain

level is nearly the same based on the model, αi is approximated by the values of σ
p
1 and σn

1 .
The equivalent plastic strain εpl corresponding to the ith cycle is

εpl =
4i− 3

2
∆εpl (19)

where ∆εpl can be approximated by ∆ε− 2σ
p
1 /E.

Figure 5a is a mesh of the finite element model. Two-dimensional plane strain 4-noded
CPE4R element is employed in the model. The total number of elements is 8188. Figure 5b
is a close-up view of the mesh near a work roll. Ten elements are used in the thickness
direction of the strip in order to obtain an accurate solution of the stress–strain distribution.
The “analytical rigid surface” in Abaqus is used to model the rolls. Frictionless contact is
assumed at the interface between the strip and the rolls.

Figure 5. (a) A finite element model. (b) A close-up view of the mesh near a roll.

4. Analyses, Results, and Discussions
4.1. Analysis and Results of the Analytical Model

Figure 6 shows the stress–strain curves of a mild steel under a uniaxial, symmetric
strain-controlled, cyclic test. The strain range ∆ε is 0.015. Based on the first half of the
stress–strain curve of the first cycle, the calibrated values of the Young’s modulus E and the
initial yield stress σs are 219.8 GPa and 329.7 MPa, respectively, and Q1 and b1 have values
of 66.3 MPa and 742.7, respectively. The values of Q2 and b2 are calibrated as 128.3 MPa
and 604.7, respectively, based on the second half of the stress–strain curve of the first cycle.
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Figure 6. Stress–strain curves of a uniaxial, symmetric strain-controlled, cyclic test.

By specifying the combined hardening coefficient m, computational stress–strain
curves based on the analytical model of Equations (1)–(11) with the strain range ∆ε of
0.0015 can be obtained. For a nine-roll roller leveler, the total number of bends equals seven.
The values of the combined hardening coefficient m for the seven bends can be calibrated by
comparing the computational stress–strain curves with the stress–strain curves of the mild
steel shown in Figure 6 for the first seven bend loadings. Figure 7 shows the computational
stress–strain curves and the stress–strain curves of Figure 6. The computational curves
agree with those of the mild steel. The calibrated m values for the second to the seventh
bending are 0.0784, 0.2, 0.3, 0.4, 0.45, and 0.5, respectively. The hardening behavior of the
material for the first bending is taken as isotropic.

Figure 7. Stress–strain curves for calibration of the combined hardening coefficients.

Consider the case where the strip has the thickness t (=20 mm), the length L (=2480 mm),
and the width W (=100 mm). The radius R of the rolls is 85 mm. The roll spacing D is 150 mm.
The strip is taken as flat and free of residual stress. The upper roll carriage has an inclination
angle θ of 0.1◦ and the roll intermesh at the next to the last roll p8 ranges from −1.2 mm to
0.8 mm. Note that the value of the roll intermesh is positive when the gap between the top
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roll and the bottom roll is larger than the strip thickness. Therefore, a negative value of the
intermesh means the work roll plunges into the strip.

With p8 = −0.70 mm and the upper roll carriage inclined at the angle θ of 0.1◦, p2, p4,
and p6 have values of −2.32 mm, −1.78 mm, and −1.24 mm, respectively. Sixty divisions
are taken along the thickness direction of the strip for calculation of the stress and strain
distributions. Figure 8 shows the deformed strip between roll 1 and roll 9 based on the
analytical model. Figure 9a–c shows the distribution of the bending moment per unit
width, the curvature, and the deformed center line of the strip, respectively, between roll
1 and roll 9. The contact points between the strip and the rolls are marked by circles in
the figure. One hundred nodes are used between the contact points in the computations.
Figure 9a shows the linear distribution of the bending moment between the contact points.
At the entry roll and the exit roll, the values of the bending moment are zero. Figure 9b
shows the curvature distribution. Values of the curvatures are nearly two orders smaller
than the roll curvature 1.176× 10−2 mm−1. The curvature of the strip at the exit roll has a
value of 3.054× 10−5 mm−1. The positive value of the curvature indicates that the strip
is bent upward. Higo et al. [10] pointed out that the abrupt increase in magnitude of
the curvature near all contact points except the final one is due to the nonlinear material
hardening behavior. This is evidenced by the nonlinear sections of the moment–curvature
curves during the leveling process plotted in Figure 10. The moment and the curvature
are normalized by the maximum bending moment M0 and the maximum curvature C0 for
which elastic conditions hold, respectively.

Figure 8. The deformed strip between roll 1 and roll 9.

Figure 9. Distributions of (a) bending moment per unit width, (b) curvature, and (c) deformed center
line of the strip between roll 1 and roll 9.
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Figure 10. Normalized moment as a function of normalized curvature during leveling.

Figure 11a–c shows the stress distributions in the strip thickness direction when the
strip travels through the leveler. The results computed by the analytical model are displayed
by lines in the figure. Significant plastic deformations appear in the first three bends as seen
in Figure 11a. The fractions of the plastic deformation are nearly 40%, 50%, and 60% for the
first, the second, and the third bend, respectively. As the strip traverses through the fifth
roll and the sixth roll, the region of plastic deformation stays at 60% as seen in Figure 11b.
Figure 11c shows the stress distributions in the strip thickness direction at the eighth roll
and the exit roll. The stress distribution at the exit roll can be taken as the residual stress
distribution since the total moment applied to the strip at the exit roll is nearly zero. The
stress at the ith roll is calculated based on a linear superposition assumption. The remnant
stress of the cross section of the strip at the (i− 1)th roll and the loading stress at the ith
roll are superimposed to obtain the stress distribution at the ith roll. Guan et al. [25] also
adopted this stress inheritance law in their roller leveling model. Yonetani [26] reported
that the stress of a microscopic segment at the cross section in a uniaxial stress state satisfies
the linear superposition assumption. The uniaxial stress loading condition is also assumed
in the model considered in this investigation.

4.2. Analysis and Results of the Finite Element Model

Finite element analyses are carried out to verify the accuracy of the analytical model.
The material properties for the mild steel used in the finite element analyses are listed
in Table 1. The isotropic hardening parameters, Q∞ and b, and the kinematic hardening
parameters, C and γ, are calibrated from the uniaxial, symmetric strain-controlled, cyclic
test with the strain range ∆ε of 0.015 as shown in Figure 6. The calibration procedure is
described in Section 3.

Table 1. Material properties employed in the finite element analyses.

Property E (Gpa) σs (MPa) Poisson’s
Ratio C (Mpa) γ

Q∞
(Mpa) b

Value 219.8 329.7 0.3 44,600.6 673.1 96.9 12.7

The strip is taken as flat and free of residual stress in the beginning of the leveling
process. Smith [27] reported that the initially flat condition is useful in the leveling analysis
since the incoming flatness defects of a strip may vary from one location to another, and
a strip generally has some initially flat area. Figure 12a shows the initial configuration
of the finite element model. A Cartesian coordinate system is also shown in the figure.
A displacement of 1200 mm in the +x direction is given to the right edge surface of the
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strip. The displacement equals the distance from the center of roll 1 to the center of roll 9.
Therefore, the cross-section A (marked in Figure 12a) travels from roll 1 at the beginning
of the analysis to roll 9 at the end of the analysis. The y-displacement of the nodes at the
right edge surface is constrained to represent the horizontal motion of the strip. Figure 12b
shows the deformed shape of the mesh when the cross-section A reaches roll 9. Then, the
constraints at the right edge surface of the strip are released for the strip to spring back.
Figure 12c shows the deformed shape of the mesh after spring-back.

Figure 11. Stress distributions of the strip at (a) rolls 2, 3, and 4; (b) rolls 5, 6, and 7; (c) rolls 8 and 9.
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Figure 12. (a) The initial configuration, (b) a deformed configuration before spring-back, and (c) a
deformed configuration after spring-back of the finite element model.

The stress distributions of the cross-section A at rolls 2–4, rolls 5–7, and rolls 8–9 based
on the finite element analyses are shown in Figure 11a–c, respectively. The results based
on the finite element analyses (FEA) are plotted with the markers in the figure. As shown
in the figure, the analytical results agree with the results of finite element analyses. The
discrepancy can be attributed to different contact conditions between the analytical model
and the finite element model. Multiple contact points between the strip and each roll are
observed in the finite element model. However, a single contact point between the strip
and each roll is assumed in the analytical model.

4.3. Residual Curvature

Flatness is an important factor to evaluate the strip quality after roller leveling pro-
cesses. The residual curvature of the strip at the exit roll can be used as a metric to evaluate
the strip flatness after leveling. Figure 13 shows the residual curvatures κ′ of the strip as a
function of the averaged intermesh based on the analytical model and the finite element
analyses. The averaged intermesh is the averaged value of the roll intermeshes, p2, p4, p6,
and p8, where p8 ranges from −1.2 mm to 0.8 mm. The residual curvature κ′ is an indicator
of the deviation of the strip from an initially flat surface at the entry roll. The curve with
the dash-dot line and the markers represent the results based on the analytical model and
the finite element analyses, respectively. The analytical predictions generally agree with
the finite element analyses for the averaged intermeshes ranging from −1.71 mm to 0.
As the averaged intermesh decreases from zero, the values of κ′ decreases. κ′ appears to
exhibit an oscillatory behavior when the averaged intermesh is less than −0.11 mm based
on the analytical model. As the averaged intermesh decreases further, the amplitude of
the oscillation of κ′ grows. When the averaged intermesh is less than −1.41 mm (analytical
predictions), κ′ has positive values of increasing magnitude. Five crossover points are
observed at the averaged intermesh of −0.36 mm, −0.61 mm, −0.86 mm, −1.11 mm, and
−1.41 mm (analytical predictions). Smith [27] reported that the several crossover points
with zero residual curvature underlie the reason why successful leveling can be achieved
by the series roll leveling process in practice.

In the analytical model, a point contact is assumed between the strip and each roll,
which means the strip does not wind around the work rolls. This contradicts with the
fact that multi-point contact between the strip and the roll predicted in the finite element
analyses. Morris et al. [3] reported that the wrap angle near the exit roll has a significant
influence on the flatness of the strip. Wrap-around contact length between the strip and
the roll may depend on the intermesh and roll spacing. In describing the arc of contact
of the strip around a roll, an effective radius can be assumed to model the wrap-around
contact characteristics. The concept of the effective radius is illustrated schematically in
Figure 14. Figure 14a shows the original contact model, where the strip contacts with roll i
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tangentially. Re is the expanded radius of the roll, which is defined by Equation (7). (xi,yi)
is the ith contact point, and λi is the ith contact angle. Figure 14b shows that the strip makes
contact elastically with roll i when subjected to an external force Fi. The circumferences of
the deformed roll and the original roll are represented by the solid line and the dashed line,
respectively, in Figure 14b. (x′ i,y′ i) is the ith contact point, and λ′ i is the ith contact angle
for the Hertz contact model. A local deformation is ensued to cause a reduction in the local
radius of roll i. The effective radius of the roll Rs is given as

Rs = Re − sFi (20)

where s is the contact compliance of roll i. The external force Fi is computed from the
moment distribution in the analytical model. Based on the Hertz contact model, the contact
point (x′ i, y′ i) is

x′ i = xc + Rssinλ′ i
y′ i = yc − Rscosλ′ i

(21)

where (xc, yc) is the coordinates of the center of the roll. As shown in Figure 14b, the
deformed center line of the strip based on the analytical model with the Hertz contact
compliance may be thought to have an arc segment bounded by the two virtual contact
points, U and V, wrapped around the circumference of the original roll i, shown as a
dashed circle in Figure 14b. When the contact angle λ′ i is very small which is the case in
the roller leveler, the line segment and the arc segment bounded by the two end points U
and V are approximately equal. The contact compliance of the rolls is taken as a fitting
parameter in the analytical model with the Hertz contact compliance to fit the analytical
predictions with the finite element computations. Yi et al. [28] considered the wrap angle
on a roll during a roller leveling process by fitting an arc curve around a roll. A parameter
determined by experiments is needed for curve fitting.

Figure 13. Residual curvature as a function of the averaged intermesh.

The residual curvatures κ′ of the strip calculated by the analytical model with the
Hertz contact compliance are plotted in Figure 13. The curves with the compliance s = 0
and 4× 10−7 mm/N appear to envelop the results based on the finite element analyses.
The curve with the compliance s = 2× 10−7 mm/N may be able to predict the general trend
of the results based on the finite element analyses for the averaged intermesh ranging from
0 mm to −2 mm. The wrap-around contact condition between the strip and the rolls can be
manifested by the analytical model with the Hertz contact compliance within an acceptable
accuracy, compared with the results of the finite element analyses.
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Figure 14. Illustration of (a) the original contact model; (b) the Hertz contact model.

A series of simulations was run to calculate the residual curvatures κ′ of the strip with
an initial curvature κ0 based on the analytical model with the Hertz contact compliance
s = 2× 10−7 mm/N. The initial stress in the strip is neglected without losing generality of
the residual curvature predictions. Mathieu et al. [29] considered initial flatness defects
in their finite element analyses of a leveling process. They introduced the flatness defects
in the strip which was free of stress. Figure 15 shows the residual curvature as a function
of the averaged intermesh for the strip with the initial curvature κ0 varying between
−1× 10−4 mm−1 to 1× 10−4 mm−1. As shown in Figure 15, at low levels of roll intermesh
(averaged intermeshes greater than −0.1), the residual curvatures κ′ for the three cases
of κ0 = −1× 10−4 mm−1, 0, and 1× 10−4 mm−1 deviate from each other significantly.
For the averaged intermesh in this level, the curve for the case of κ0 = −1× 10−4 mm−1

oscillates mostly in the positive-curvature region (κ′ > 0), in contrast to the cases of κ0 = 0
and 1× 10−4 mm−1, which oscillate between the positive κ′ region and the negative κ′

region. The initially bowed-down defect for the strip with κ0 =−1× 10−4 mm−1 exits the
leveler with the residual curvature in the same direction for the averaged intermesh greater
than −0.71. As the extent of the averaged intermesh increases, the residual curvatures
for the three cases of κ0 = −1× 10−4 mm−1, 0, and 1× 10−4 mm−1 gradually converge
to the same values. For the values of the averaged intermesh less than −1.1, the curves
for the three cases appear identical, where two cross over points with the interpolated
averaged intermesh values of −1.46 and −1.13 were found. For the values of the averaged
intermesh less than −1.46, positive residual curvatures were produced. For the averaged
intermesh values within the interval of−1.46,−1.13, the minimum of the residual curvature
is −0.27× 104 mm−1. In this region of the leveler settings, the residual curvatures of the
strip seem to be insensitive to its initial curvatures. This result can serve to the advantage
of leveler operators to obtain nearly zero residual curvature for strips with various initial
curvatures. Grüber et al. [18] also demonstrated robustness of the roll intermesh settings for
a roller leveler regarding a change in the initial curvature. In this investigation, the plane
strain condition is considered in the finite element analyses. The width-to-thickness ratio
of the strip considered in the analyses is 5. Carvalho et al. [30] reported that, in order to
develop near plain strain conditions, it is important to maintain a ratio of width-to-thickness
greater than 5.

A combined isotropic/kinematic hardening is implemented to describe the mate-
rial hardening of the strip in this investigation. Doege et al. [5] also adopted combined
isotropic/kinematic hardening for their leveling model, where mathematical formulations
of their hardening model were not presented. Detailed formulations of the hardening
model are provided in this investigation. Doege et al. [5] presented analysis results of their
model. Results of the stress distributions and residual curvature of a steel strip based on
our analytical model are verified by the finite element analyses. Doege et al. [5] computed
the contact points between the strip and the rolls by assuming only one contact point
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between the strip and each roll. An effective radius modelling the wrap-around contact
characteristics by the Hertz contact compliance is proposed to describe the arc of contact of
the strip around a roll. A roll inter-mesh range to produce a flatness condition of the strip
is presented based on the analytical model with the Hertz contact compliance.

Figure 15. Residual curvature as a function of the averaged intermesh for the strip with an initial curvature.

Indeed, the initial curvature considered in the model is the longitudinal wave defect
of a strip. Behrens et al. [6] sectioned a strip longitudinally and showed that the length
of all sections after leveling should be the same in order to remove a transverse wave
defect. Therefore, bendable rolls, as practiced in the industry, can be applied into a leveler
to cause various degree of plastic deformation in each longitudinal section to achieve equal
length. Chen et al. [9] developed an analytical model of a roller leveler with consideration
to the bending of the rollers to eliminate transverse wave defects. This approach can be
implemented in the analytical model to extend its applicability. Park and Hwang [13] slit a
strip longitudinally to calculate the initial curvature of each longitudinal section. Given
proper roll intermesh settings, the longitudinal sections with various initial curvatures can
reach similar values of residual curvature after leveling based on finite element analyses
and experiments. The results shown in Figure 15 based on the developed model also
provide evidence that the residual curvatures of the strips with different initial curvatures
can converge to the same value given enough amount of roll intermesh.

Given the multiple forming processes and complex machine settings involved in the
roller leveling, tradeoffs between a simple, efficient model and an elaborate, detailed model
should be balanced. Baumgart et al. [31] described that the effects of parts of the leveler,
such as support rolls, frames, posts, and adjustment screws, should also be considered in
order to obtain a more accurate leveler model. Wang and Li [32] reported that stiffness
of roll cassettes and leveler housing are important factors of the leveling process. In this
study, a relatively simple analytical model was developed based on the assumptions of
two-dimensional geometry, pure bending of the strip, and the uniaxial loading condition.
Compared to previously reported models, the Hertz contact compliance implemented in
the model relaxed the single point contact condition between the strip and the roll, and a
relatively accurate prediction of the residual curvature can be attained. The model could
serve as a guide in the development of strategies for effective adjustment of roller levelers.

5. Conclusions

An analytical model for analyzing the residual stress distribution and residual curva-
tures of a strip during roller leveling is developed. The model verified by the finite element
analyses is based on a simplified, two-dimensional geometric framework. The combined
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isotropic and kinematic material hardening model is implemented through a combined
hardening parameter. The stress distributions after each bending/reverse bending and the
residual curvature at the exit roll subjected to various leveler settings can be obtained by
the developed model. The model was further enhanced by considering a Hertz contact
model to eliminate the discrepancies between the model predictions and the finite element
analyses. Based on the analytical model with the Hertz contact compliance, a range of the
leveler settings can be determined to robustly obtain a strip with a nearly zero curvature at
the exit roll.

Analytical models with combined isotropic/kinematic material hardening for roller
leveling have been reported previously. A formulation of the change of the effective stress
as a function of the change of the effective strain under cyclic bend loading is adopted
in the developed analytical model with the combined hardening. The model is efficient
and accurate in predicting the stress distributions and residual curvature of a steel strip.
Unlike the assumption of a single contact point between the strip and the rolls, an effective
radius modelling the wrap-around contact characteristics by the Hertz contact compliance
is proposed in this investigation. An arc contact of the strip around a roll is described by
the Hertz contact model. A roll intermesh range to produce a flatness condition of the strip
can be obtained by the analytical model with the Hertz contact compliance.
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