# An Analytical Model for Stress and Curvature Prediction of a Strip Leveling Process

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Analytical Model

#### 2.1. Material Model

#### 2.2. Contact Model

#### 2.3. Residual Curvature

## 3. Finite Element Analysis

## 4. Analyses, Results, and Discussions

#### 4.1. Analysis and Results of the Analytical Model

#### 4.2. Analysis and Results of the Finite Element Model

#### 4.3. Residual Curvature

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Amor, A.; Rachik, M.; Sfar, H. Combination of finite-element and semi-analytical models for sheet metal leveling simulation. Key Eng. Mater.
**2011**, 473, 182–189. [Google Scholar] [CrossRef] - Li, S.-Z.; Yin, Y.-D.; Xu, J.; Hou, J.-M.; Yoon, J. Numerical simulation of continuous tension leveling process of thin strip steel and its application. J. Iron Steel Res. Int.
**2007**, 14, 8–13. [Google Scholar] [CrossRef] - Morris, J.W.; Hardy, S.J.; Lees, A.W.; Thomas, J.T. Some fundamental considerations for the control of residual flatness in tension levelling. J. Mater. Processing Technol.
**2002**, 120, 385–396. [Google Scholar] [CrossRef] - Hira, T.; Abe, H.; Azuma, S. Analysis of sheet metal bending deformation behavior in processing lines and its effectiveness. Kawasaki Steel Eng. Rep.
**1988**, 19, 54–62. [Google Scholar] - Doege, E.; Menz, R.; Huinink, S. Analysis of the levelling process based upon an analytic forming model. CIRP Ann. Manuf. Technol.
**2002**, 51, 191–194. [Google Scholar] [CrossRef] - Behrens, B.-A.; El Nadi, T.; Krimm, R. Development of an analytical 3D-simulation model of the levelling process. J. Mater. Processing Technol.
**2011**, 211, 1060–1068. [Google Scholar] [CrossRef] - Dratz, B.; Nalewajk, V.; Bikard, J.; Chaste, Y. Testing and modelling the behavior of steel sheets for roll levelling applications. Int. J. Mater. Form.
**2009**, 2, 519. [Google Scholar] [CrossRef][Green Version] - Liu, Z.; Wang, Y.; Yan, X. A new model for the plate leveling process based on curvature integration method. Int. J. Mech. Sci.
**2012**, 54, 213–224. [Google Scholar] [CrossRef] - Chen, W.-H.; Liu, J.; Cui, Z.-S.; Wang, Y.-J.; Wang, Y.-R. A 2.5-dimensional analytical model of cold leveling for plates with transverse wave defects. J. Iron Steel Res. Int.
**2015**, 22, 664–671. [Google Scholar] [CrossRef] - Higo, T.; Matsumoto, H.; Ogawa, S. Influence of delivery-side roll position of roller leveler to plate flatness. In Proceedings of the 2016 AISTech Conference, Pittsburgh, PA, USA, 16–19 May 2016; pp. 2129–2137. [Google Scholar]
- Morris, J.W.; Hardy, S.J.; Lees, A.W.; Thomas, J.T. Formation of residual stresses owing to tension levelling of cold rolled strip. Ironmak. Steelmak.
**2001**, 28, 44–52. [Google Scholar] [CrossRef] - Schleinzer, G.; Fischer, F.D. Residual stress formation during the roller straightening of railway rails. Int. J. Mech. Sci.
**2001**, 43, 2281–2295. [Google Scholar] [CrossRef] - Park, K.-C.; Hwang, S.-M. Development of a finite element analysis program for roller leveling and application or removing blanking bow defects of thin steel sheet. ISIJ Int.
**2002**, 42, 990–999. [Google Scholar] [CrossRef][Green Version] - Huh, H.; Heo, J.H.; Lee, H.W. Optimization of a roller levelling process for Al7001T9 pipes with finite element analysis and Taguchi method. Int. J. Mach. Tools Manuf.
**2003**, 43, 345–350. [Google Scholar] [CrossRef] - Roberts, I.; Wang, C.; Mynors, D.; Adams, P.; Lane, K.; Unwin, P. Numerical analysis of strip-roll conformity in tension levelling. In Proceedings of the 10th International Conference of Technology of Plasticity (ICTP 2011), Aachen, Germany, 25–30 September 2011; pp. 315–319. [Google Scholar]
- Jin, H.-R.; Yi, Y.-L.; Han, X.-Y.; Liang, Y. Roller straightening process and FEM simulation for stainless steel clad plate. Open Mech. Eng. J.
**2014**, 8, 557–561. [Google Scholar] - Kim, J.; Park, K.-C.; Kim, D.-N. Investigating the fluting defect in v-bending due to the yield-point phenomenon and its reduction via roller-leveling process. J. Mater. Processing Technol.
**2019**, 270, 59–81. [Google Scholar] [CrossRef] - Grüber, M.; Kümmelb, L.; Hirt, G. Control of residual stresses by roller leveling with regard to process stability and one-sided surface removal. J. Mater. Processing Technol.
**2020**, 280, 116600. [Google Scholar] [CrossRef] - Zhang, D.; Cui, Z.; Ruan, X.; Li, Y. An analytical model for predicting springback and side wall curl of sheet after U-bending. Comput. Mater. Sci.
**2007**, 38, 707–715. [Google Scholar] [CrossRef] - Kotov, K.A.; Bolobanova, N.L.; Nushtaev, D.V. Modeling the stress state of a steel strip with a roller leveling machine under cyclic alternating deformations. Steel Transl.
**2020**, 50, 750–755. [Google Scholar] [CrossRef] - Müller, U.; Krambeer, H.; Wolff, A.; Viella, A.E.; Richardson, A.D.; Perä, J.-O.; Luoto, P.; Weberm, W. Optimisation of Final Plate Flatness by Set-Up Coordination for Subsequent Manufacturing Process (Final Plate Flatness); Final Report, EUR 25852 EN; Europe Commission: Brussels, Belgium, 2013. [Google Scholar]
- Guan, B.; Zhang, C.; Zang, Y.; Wang, Y. Model for the whole roller leveling process of plates with random curvature distribution based on the curvature integration method. Chin. J. Mech. Eng.
**2019**, 32, 47. [Google Scholar] [CrossRef][Green Version] - Hosford, W.F.; Caddell, R.M. Metal Forming–Mechanics and Metallurgy; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Guan, B.; Zang, Y.; Wu, D.; Qin, Q. Study on mechanical behavior of thin-walled member during precision straightening process. Sens. Transducers
**2014**, 179, 36–42. [Google Scholar] - Guan, B.; Zang, Y.; Wu, D.; Qin, Q. Stress-inheriting behavior of H-beam during roller straightening process. J. Mater. Processing Technol.
**2017**, 244, 253–272. [Google Scholar] [CrossRef] - Yonetani, S. The Engender Theory and Countermeasure of Residual Stress; China Machine Press: Beijing, China, 1983. [Google Scholar]
- Smith, R.P. The effect of the number of leveling rolls on the straightening process. Iron Steel Technol.
**2007**, 4, 57–68. [Google Scholar] - Yi, G.; Wang, Z.; Hu, Z. A novel modeling method in metal strip leveling based on a roll-strip unit. Math. Probl. Eng.
**2020**, 2020, 1486864. [Google Scholar] [CrossRef] - Mathieu, N.; Dimitriou, R.; Parrico, A.; Potier-Ferry, M.; Zahrouni, H. Flatness defects after bridle rolls: A numerical analysis of leveling. Int. J. Mater. Form.
**2013**, 6, 255–266. [Google Scholar] [CrossRef] - Carvalho, A.P.; Reis, L.M.; Pinheiro, R.P.R.P.; Pereira, P.H.R.; Langdon, T.G.; Figueiredo, R.B. Using Plane Strain Compression Test to Evaluate the Mechanical Behavior of Magnesium Processed by HPT. Metals
**2022**, 12, 125. [Google Scholar] [CrossRef] - Baumgart, M.; Steinboeck, A.; Kiefer, T.; Kugi, A. Modelling and experimental validation of the deflection of a leveler for hot heavy plates. Math. Comput. Model. Dyn. Syst.
**2015**, 21, 202–227. [Google Scholar] [CrossRef] - Wang, X.; Li, X. Research on force simulation of main leveler housing and roll cassettes in medium and heavy plate leveling. J. Converg. Inf. Technol.
**2012**, 7, 153–161. [Google Scholar]

**Figure 9.**Distributions of (

**a**) bending moment per unit width, (

**b**) curvature, and (

**c**) deformed center line of the strip between roll 1 and roll 9.

**Figure 11.**Stress distributions of the strip at (

**a**) rolls 2, 3, and 4; (

**b**) rolls 5, 6, and 7; (

**c**) rolls 8 and 9.

**Figure 12.**(

**a**) The initial configuration, (

**b**) a deformed configuration before spring-back, and (

**c**) a deformed configuration after spring-back of the finite element model.

**Figure 15.**Residual curvature as a function of the averaged intermesh for the strip with an initial curvature.

Property | E (Gpa) | σ_{s} (MPa) | Poisson’s Ratio | C (Mpa) | γ | Q_{∞} (Mpa) | b |
---|---|---|---|---|---|---|---|

Value | 219.8 | 329.7 | 0.3 | 44,600.6 | 673.1 | 96.9 | 12.7 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kuo, S.-K.; Ou, Y.-L.; Wang, D.-A.
An Analytical Model for Stress and Curvature Prediction of a Strip Leveling Process. *Metals* **2022**, *12*, 757.
https://doi.org/10.3390/met12050757

**AMA Style**

Kuo S-K, Ou Y-L, Wang D-A.
An Analytical Model for Stress and Curvature Prediction of a Strip Leveling Process. *Metals*. 2022; 12(5):757.
https://doi.org/10.3390/met12050757

**Chicago/Turabian Style**

Kuo, Shih-Kang, Yi-Liang Ou, and Dung-An Wang.
2022. "An Analytical Model for Stress and Curvature Prediction of a Strip Leveling Process" *Metals* 12, no. 5: 757.
https://doi.org/10.3390/met12050757