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Abstract: This study is aimed at the fact that material allocation and construction progress cannot be
intelligently controlled in the construction of prestressed steel structures. An intelligent planning
method of a material-allocation path for prestressed steel-structure construction, based on digital
twins (DTs), is proposed. Firstly, the characteristics of material allocation in the process of structural
construction are analyzed, and a five-dimensional integrated DT framework for intelligent path-
planning is built. Driven by the DT framework, the progress and environmental information of
the construction site are collected in real time. At the same time, the field working conditions
are dynamically simulated in the virtual model, so as to realize the interactive mapping between
physical space and virtual space. In each construction process, by integrating the progress of each
process at each construction location, and the storage and allocation of materials, a multidimensional
model for the intelligent planning of material allocation is formed. The information fusion of virtual
and real space is carried out using an entropy method to analyze the construction buffer time and
material allocation time at each location of the construction site. On this basis, combined with the
Dijkstra algorithm, the transportation time associated with the path is calculated according to the field
distribution of each location. A feasibility analysis is carried out in the virtual model and imported
into the field dynamic-marking system. Combined with radio frequency technology to guide material
allocation on site, the intelligent planning of the material-allocation path is realized. In this study,
taking the construction of the National Speed Skating Pavilion of the 2022 Beijing Winter Olympics
as an example, the DT technology and Dijkstra algorithm are applied to the intelligent planning of
the material-allocation path. It is fully verified that the intelligent method can effectively coordinate
the relationship between schedule control and material allocation.

Keywords: digital twin; Dijkstra algorithm; prestressed steel structure; material allocation; intelligent
planning; construction management

1. Introduction

With the continuous improvement of construction technology, large-span spatial
structures, which are composed of various forms of string beams, cable domes and cable-
membrane structures, have been widely used [1]. To cope with the future labor shortage, it
is necessary to achieve intelligent management of large stadium construction, so as to en-
able a less-manned or unmanned construction site. However, due to the large construction
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volume of prestressed steel structures, it is difficult to intelligently control the construction
elements. Currently, the method of integrating multiple elements of construction, establish-
ing a data coordination mechanism, and forming an intelligent construction management
mode has become a research hotspot in engineering management [2,3]. This area has at-
tracted the engagement of many experts and scholars in the construction industry. Through
efficient management of the construction process, the energy consumption of a project is
reduced [4].

Goh et al. [5] conducted a detailed simulation study on modular construction oper-
ations. By applying lean production theory, cycle time and process time can be reduced,
and process efficiency and labor productivity can be improved. In view of the lack of
a unified and transparent quality-information management system in the construction
process, Sheng et al. [6] developed a framework based on blockchain to manage quality
information. The proposed framework can disperse the management of quality informa-
tion, so as to realize consistent and safe quality-information management. Moon et al. [7]
adapted sensor-based smart insoles to monitor the frequent workload of building materials
on construction sites, and concluded that foot pressure during walking could be used to
estimate the weight of building materials currently owned by workers. On the basis of
work breakdown structure (WBS) and Bayesian Network, You et al. [8] considered the
time-sequence relationship and resource constraint conditions between each unit of WBS,
and established the critical chain project management Bayesian network model (CCPMBN)
with examples. Zhang et al. [9] studied and proposed the integration technology of Build-
ing Information Modeling (BIM) and 3D Geographic Information System (3DGIS). This
study solved the problems of data sharing and mining utilization among different stages of
design, construction, and management, and realized functions from 3DGIS visualization,
roaming, and 3D space analysis, to BIM construction management, construction dynamic
simulation, and construction schedule overview.

In the aforementioned studies, a series of analysis methods for construction manage-
ment are proposed and applied in engineering. However, some shortcomings still exist:
(1) It is impossible to achieve a virtual–real interaction on the construction site, and to
visually guide the construction process from the perspective of virtual space; (2) there
is no integration of construction progress, materials and other information elements for
comprehensive management, resulting in insufficient intelligence of construction process
management. With the development of new-generation information technology and the
promotion of industrial information systems, the application of information technology to
engineering construction has become a research hotspot [10]. The application of the digital
twins (DTs) concept in engineering practice can significantly improve the accuracy and in-
telligence of structural performance analysis. At the same time, in the construction process,
intelligent algorithms are integrated for data analysis and processing to improve the accu-
racy and efficiency of management [11]. DTs and intelligent algorithms have been widely
used in engineering; the integration of the two provides a reference for the improvement of
the intelligent level of the construction industry, especially the construction process.

DTs is a technology that makes full use of models, data, and intelligence, and integrates
multiple disciplines. It is a digital way to establish a dynamic virtual model of physical
entities with multi-dimensional, multi-temporal scales, as well as multi-disciplinary and
multi-physical measures to simulate and characterize the properties, behaviors and rules
of physical entities in the real environment. It has begun to be applied to intelligent
manufacturing, intelligent factories, Smart cities and other fields [12]. Liu et al. [13] pro-
posed a real-time data-driven online prediction method for the operation state of a DTs
workshop. They realized the online prediction of the workshop based on continuous
transient simulation by integrating real-time data. Dong et al. [14] proposed five key
modeling and simulation technologies for DTs in aircraft structure for fatigue-life man-
agement, and realized the interactive mapping between physical space and virtual space.
This study provided a reference for the systematic research and engineering application
of DTs for aircraft structures. Lee [15] proposed a time machine method for DT design
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and implementation, using historical data in the whole process of integrating DTs with
a network physics system. This provides a reference for the research and engineering
application of a DT system for aircraft structure. In order to monitor the health status of
proton-exchange-membrane fuel cells during operation. Meraghni et al. [16] applied DTs
as an intelligent manufacturing technology to establish a set of overall residual service-life
prediction systems, and achieved high prediction accuracy. Gopalakrishnan et al. [17]
pointed out that manufacturing needs digital transformation, and created a model-based
feature information network (MFIN) based on DTs, which realized the digital description
of components or systems. Thus, compared to manufacturing, DTs is relatively less used
in the construction industry. For the intelligent transformation and upgrading of the con-
struction industry, intelligent algorithms could also be integrated, driven by DTs [18] to
achieve closed-loop control of the construction process. In recent years, many scholars in
the construction industry have begun to apply intelligent algorithms to solving problems
in civil engineering. Intelligent algorithms can extract high-level features from the original
data for perceptual decision making, and improve the objectivity and accuracy of infor-
mation analysis. In order to solve the problem of structural health monitoring and find
suitable structural damage identification features, Li et al. [19] used a convolutional neural
network to extract structural features and identify damage, which proved the advantages
of the convolutional neural network in automatic feature extraction. In order to accurately
identify the damage to concrete structures, Xu et al. [20] used acoustic emission technology
to monitor the four-point bending failure test of reinforced concrete beams. Moreover, they
established a deep belief network (DBN) to train an acoustic emission signal sample set, to
improve the accuracy of structural damage identification. Solhmirzaei et al. [21] proposed
a data-driven machine learning (ML) framework for predicting failure modes and the shear
capacity of ultra-high-performance concrete (UHPC) beams. This framework can identify
the failure mode of UHPC beams and simplify the expression used to predict their shear
capacity. Valipour et al. [22] used F-ANP to effectively obtain the coupling relationship
between the highway PPP project risk factors, which improved the capability of project
risk management. Liu et al. [23] used the Dijkstra algorithm to plan an evacuation path,
and proposed a DT-driven dynamic guidance method for fire evacuation. This study real-
ized the functions of real-time collection of environmental information, three-dimensional
visualization of indoor layout, fire alarm, indoor personnel positioning and evacuation
path planning. In addition, the planning algorithm provides new ideas and tools for data
analysis and prediction [24]. Therefore, the combination of a planning algorithm and
DTs in the construction process can significantly improve the accuracy and efficiency of
engineering management.

Intelligent control of the building structure construction process has become a research
hotspot in the construction industry. Combining DTs and intelligent algorithms, this paper
puts forward the intelligent planning method of a construction-material-allocation path for
a prestressed steel structure. In this study, firstly, the characteristics of material allocation
for prestressed steel-structure construction are summarized. Based on this, a DT framework
for the intelligent planning of a material-allocation path for a prestressed steel-structure
construction is built, to realize the comprehensive control of material and progress. Driven
by the twin framework, from the perspective of virtual–real interaction, a virtual–real
interaction model for path intelligent planning is created, and twin data are formed using
the entropy method. The Dijkstra algorithm is used to process the twin data, and the
optimized path is imported into the dynamic identification system of the construction
site. The ‘one thing and one code’ of the material are realized using radio frequency
technology to guide the material allocation on the site. Based on the above theoretical
method, this study takes emergency material allocation in the construction of the 2022
Beijing Winter Olympics National Speed Skating Hall as an example of practical application.
The effectiveness of this method is preliminarily verified using practical application.
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2. DT-Driven Intelligent Planning Framework for Material-Allocation Paths

In view of the characteristics of material allocation in the construction process of
prestressed steel structures, how to effectively control the relationship between construc-
tion progress and material allocation has become an important scientific research topic
and engineering practice in construction management [25,26]. Driven by the concept of
DTs, through the integration of physical field construction and virtual model simulation,
a framework for intelligent planning of a material-allocation path is built, so as to carry out
construction management accurately and efficiently.

2.1. Characteristics of Material Allocation for Structural Construction

Prestressed steel structures [27] have been increasingly applied in large public build-
ings due to their advantages of large space, reasonable force, diversified structural forms,
and fast construction speed. Therefore, in the construction of prestressed steel structures,
some attributes are provided by the large construction volume:

(1) Linkage: In the process of structural construction, many construction elements such as
‘human, machine, material, method, and environment’ are involved, and each ele-
ment is integrated across fields and multi-services, forming a linkage construction
system. A change in one construction element, will cause a response from the whole
construction system.

(2) Complexity: In the process of construction management, to realize the macro control
of the whole process, it is necessary to sort out the relationship between progress,
quality, cost, and safety, especially the coordination between material allocation and
construction progress. In addition, the large construction volume of prestressed steel
structures and the variety of materials required undoubtedly increase the complexity
of construction management.

(3) Diversity: Most of the construction of prestressed steel structures is located in com-
plicated construction sites, accompanied by multiple allocation paths of construction
materials, and faced with the problem of selecting the most appropriate allocation
path efficiently and accurately.

In order to ensure that each construction link can have sufficient construction buffer
time and avoid the phenomenon of running out of work, this study proposes the use of
DT technology to reasonably plan the allocation path of materials. Thus, the coordination
between construction progress and material allocation time is realized.

2.2. The DT Framework of Intelligent Path Planning

According to the characteristics of material allocation in the construction process, it
is necessary to establish a DT model for the real-time optimization of schedule control
and material allocation, to improve the accuracy and intelligence of construction man-
agement [28]. The purpose of DTs is to copy the real physical entity using visual virtual
space modeling and simulate the dynamic behavior of the entity in the real environment.
Through the virtual mapping of entities and their production processes, the performance
of products is accurately evaluated, and the production accuracy and efficiency of product
development and manufacturing are improved [29]. Driven by the integration of DTs
and artificial intelligence, the multi-factor, multi-process and multi-service time-history
parallel simulation and virtual–real integrated control of intelligent construction systems
can be realized [30]. This study builds a DT framework for the intelligent planning of
material-allocation paths for prestressed steel-structure construction based on the concept
of DTs, which is shown in Figure 1.
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Figure 1. DT framework for intelligent planning of construction-material-allocation path. 

The DT framework for the intelligent planning of a material-allocation path for pre-
stressed steel-structure construction is composed of five dimensions, namely: physical 
space, virtual space, the data processing layer, the functional application layer, and the 
connection layer among all dimensions. Its mathematical language is expressed as Equa-
tion (1). 𝐹஽் = (𝑃𝑆, 𝑉𝑆, 𝐷𝐿, 𝐹𝐿, 𝐶𝐿) (1)

In Equation (1), 𝐹஽் represents the DT frame; 𝑃𝑆 represents the physical space; 𝑉𝑆 
represents the virtual space; 𝐷𝐿 equals the data processing layer; 𝐹𝐿 means the function 
application layer; and 𝐶𝐿 represents the connection layer among all dimensions. 

In the physical space, by capturing the schedule, material reserve and field distribu-
tion of each node in the field construction, it provides real working condition support for 
the simulation in the virtual space. In the virtual space, the site layout model of the con-
struction site is established to truly map the working conditions and layout of the site. At 
the same time, construction behavior roaming is carried out in the virtual model to simu-
late the allocation of materials on the site. Additionally, the condition of the site is simu-
lated from the construction state, thus realizing the interactive mapping between the vir-
tual space and the physical space. In the data processing layer—driven by an intelligent 
algorithm—the buffer time of each construction position (the time when materials can 
support construction), the time spent on allocating materials in each path, and the feasi-
bility of allocating paths are analyzed. Finally, the visual presentation of the construction 
site and the planning of the material-allocation path are carried out in the functional ap-
plication layer, so as to guide the on-site construction. At the same time, the data-driven 
function is realized through the information extraction of the scene and the simulation 
analysis of the virtual model. The functional service layer interacts with the virtual and 
real space, thus connecting the various dimensions of the framework. 

Figure 1. DT framework for intelligent planning of construction-material-allocation path.

The DT framework for the intelligent planning of a material-allocation path for
prestressed steel-structure construction is composed of five dimensions, namely: physi-
cal space, virtual space, the data processing layer, the functional application layer, and
the connection layer among all dimensions. Its mathematical language is expressed
as Equation (1).

FDT = (PS, VS, DL, FL, CL) (1)

In Equation (1), FDT represents the DT frame; PS represents the physical space; VS
represents the virtual space; DL equals the data processing layer; FL means the function
application layer; and CL represents the connection layer among all dimensions.

In the physical space, by capturing the schedule, material reserve and field distribution
of each node in the field construction, it provides real working condition support for the
simulation in the virtual space. In the virtual space, the site layout model of the construction
site is established to truly map the working conditions and layout of the site. At the same
time, construction behavior roaming is carried out in the virtual model to simulate the
allocation of materials on the site. Additionally, the condition of the site is simulated from
the construction state, thus realizing the interactive mapping between the virtual space and
the physical space. In the data processing layer—driven by an intelligent algorithm—the
buffer time of each construction position (the time when materials can support construction),
the time spent on allocating materials in each path, and the feasibility of allocating paths
are analyzed. Finally, the visual presentation of the construction site and the planning of
the material-allocation path are carried out in the functional application layer, so as to guide
the on-site construction. At the same time, the data-driven function is realized through
the information extraction of the scene and the simulation analysis of the virtual model.
The functional service layer interacts with the virtual and real space, thus connecting the
various dimensions of the framework.
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Driven by the DT framework for the intelligent planning of a material-allocation path
for prestressed steel-structure construction, this study proposes an intelligent planning
method. According to the construction site, a virtual model with high fidelity is established,
which can simulate the field distribution of the site and the construction state of each
position in the virtual space. In order to improve the construction efficiency, the Dijkstra
algorithm is utilized to analyze the information extracted from the site and the information
simulated from the virtual model. Guided by the dynamic marking system on site, this can
intelligently judge the feasibility of allocating materials by each route, and finally, select the
most reasonable allocation route. The intelligent planning method of a material-allocation
path driven by DTs is shown in Figure 2.
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3. Creation of Virtual–Real Interaction Model for Intelligent Path Planning

According to the intelligent planning method of a material-allocation path driven by
DTs, it is necessary to collect the physical information on site in real time, and carry out the
dynamic simulation of site construction in the virtual model. Thus, the interactive mapping
between virtual space and physical space is achieved. The virtual–real interaction model for
intelligent path planning is built to support the data processing of the Dijkstra algorithm.

3.1. Real-Time Collection of Physical Information

In the planning of a material-allocation path, the collection of physical information
mainly includes the construction progress of each node, the material reserve situation,
the overall layout of the construction site, and the transportation speed of personnel and
equipment on site. The mathematical expression of physical information collected in real
time is Equation (2).

PI = (CP, MR, SL, TS, MT) (2)

In Equation (2), PI represents physical information; CP means the construction
progress of each node on the site; MR represents the material reserve of each node on
site, and the buffer time of each node construction can be calculated according to the
material reserve. Incoporating the control of the construction progress of each node, the
relationship between construction progress and material reserve can be clarified, and the
material allocation time on site can be reduced; SL is the overall layout of the construction
site, which can analyze the transportation channel and the blockage of the site; TS equals
the transport speed of personnel and equipment on site, and the time required on each path
can be calculated by the layout and transport speed of the site; and MT indicates the types
of materials required at each construction position, such as cable clamps, anchors, etc.

For the physical information on the scene, Internet of Things technologies, such as
monitoring equipment and RFID, can be used for real-time acquisition, and the virtual–real
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interaction can be realized through dynamic simulation of the virtual model. In particular,
with regard to material information collection, RFID technology is used to encode the
material, and the basic information—such as the material type and construction location of
the material—will facilitate the real-time capture and accurate distribution of information
in the allocation process. At the same time, the construction buffer time and material
allocation time of each node can be calculated from the collection of field information.

3.2. Dynamic Simulation of Virtual Model

The construction of the virtual model mainly includes the layout of the construction
site and the relevant operation information of the construction process, which form the
geometric model and behavior model for the construction process. According to the
actual construction process on the site, each dimension model is correlated and integrated
to realize the deep, multi-angle and comprehensive simulation of the construction site.
Through the simulation analysis in the virtual model, the path can be displayed intuitively
in the construction site, thus improving the efficiency of construction and the accuracy
of management. Therefore, the information in the virtual model (VI) is divided into two
categories—basic information (BI) and behavior information (BI∗)—which are simulated
in the geometric model and the behavior model, respectively. The specific mathematical
language is expressed as Equations (3)–(5).

VI = (BI, BI∗) (3)

BI = (SL∗, CL, CC) (4)

BI∗ = (CT, NT, CP∗, MR∗) (5)

In Equations (4) and (5), SL∗ represents the site layout in the building; CL represents
the layout of the channel in the building; CC means the construction of each node on the
channel; CT represents the time used for allocating materials in each channel; NT is the
time required to pass through each node on the channel; CP∗ indicates the progress of each
construction node analyzed in the virtual model; and MR∗ equals the material reserves of
each construction node analyzed in the virtual model.

In the process of establishing the virtual model, firstly, the basic information on the
construction site structure layout, channel layout, and the construction of each node on the
channel are modeled at the geometric level. The geometric model is established using a BIM
modeling software such as Revit. By establishing a geometric model with high fidelity,
the geometric characteristics of the construction process can be truly mapped. Additionally,
the actual working conditions of the construction site can be intuitively displayed, which
provides field information support for the analysis of the subsequent behavior model [31].
The geometric model can also intuitively show the allocation path after intelligent planning.
In the behavior model, combined with the basic information of the scene provided by the
geometric model, the time required for the allocation of materials in each channel and the
time required for each node in the channel can be analyzed by roaming. In the behavior
model, the relationship between the progress of each construction node and the material
reserve can also be calculated through the construction simulation. Moreover, the buffer
time of construction can be calculated, which provides constraints for the planning of
material allocation time and path. The behavior information of the construction process is
identified in the geometric model, and the construction of the behavior model provides
simulation data support for the path planning in the geometric model. The information
dynamic simulation in the virtual model is shown in Figure 3.
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3.3. Information Interaction between Physical Space and Virtual Space

Through the real-time collection of physical information and the dynamic simulation
of information in a virtual model, twin data are formed. In this process, it is necessary
to establish a virtual–real interaction mechanism to support the data processing of the
Dijkstra algorithm and realize the intelligent planning of the material-allocation path.
The virtual–real interaction mechanism is shown in Figure 4.
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Based on the analysis of the construction site, a one-to-one mapping correlation

between virtual space and physical space is realized, namely, PI 1:1⇒ VI. In the process of
the virtual–real interaction, the most important achievement is that of information fusion.
In view of the key information such as field layout, schedule, and material reserve in the
construction process, sensors and monitors are arranged on the site. Through a high-speed,
high-stability and low-delay data transmission protocol (such as HTTP, SMTP, SNMP, FTP,
etc.), as well as a wired or wireless mode (such as Zigbee, Bluetooth, WIFI, etc.), a hardware
and software guarantee for data transmission is realized. In this study, the data transmission
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protocol is HTTP, and data are transmitted through Bluetooth and WIFI, which enable the
display of construction information in the virtual model, as well as the interactive feedback
of virtual and real space. On the basis of virtual–real interaction, the buffer time (BT) of
each node’s material reserve supports the construction progress; moreover, the time used
to allocate materials in each channel (CT), and the time required for each node through
the channel (NT), are calculated by the intelligent algorithm in the twin data processing
layer. Due to the inaccuracy of field information collection and virtual space simulation,
the error of time will also be analyzed. From the practice on site, it is found that the fusion
of the time gained using the entropy method can better reflect the construction process.
Therefore, the entropy method [32] is used to fuse the information collected in physical
space and the information simulated in virtual space, so as to ensure the effectiveness of the
data. The original data on physical space and virtual space are expressed as Equation (6).

A =

 x11 x12
...

...
xm1 xm2

 (6)

In Equation (6), the data are judged in two ways—physical space and virtual space—
and there are m analysis objects.

Firstly, the original data are standardized by Equation (7).

Xij =
xij −min

(
xj
)

max
(
xj
)
−min

(
xj
) (i = 1, 2, · · · , m; j = 1, 2) (7)

The proportion of the ith record under jth indicator is calculated by Equation (8).

Pij =
Xij

∑m
i=1 Xij

(8)

The entropy of the jth indicator is calculated by Equation (9).

ej = −k ∗∑m
i=1 Pij ∗ log

(
Pij
)
, k =

1
ln(m)

(9)

The difference coefficient of the jth indicator is calculated by Equation (10).

gj = 1− ej (10)

The weight of the jth indicator is calculated by Equation (11).

Wj =
gj

∑m
i=1 gj

(11)

The final fusion result is calculated by Equation (12).

Xi = ∑2
j=1 xijWj (12)

On one hand, the resulting twin data can directly guide the scene. On the other
hand, they can be imported into the virtual model for the feasibility simulation analysis
of decision-making, and ultimately provide data support for the intelligent planning of
a material-allocation path based on the Dijkstra algorithm.

4. Intelligent Planning of Material-Allocation Path Based on Dijkstra Algorithm

By building a virtual–real interaction model for intelligent path planning, twin data
are formed. In this study, the Dijkstra algorithm is used to process the twin data. In the
analysis process, the algorithm is improved according to the characteristics of construction
and intelligent improvement requirements. The obtained material-allocation path is then
returned to the virtual model for feasibility simulation, and finally, the results of the path
planning are imported into the dynamic marking system of the site. Combined with the
real-time information capture function of RFID technology, the site construction is guided
to form a complete intelligent planning process for the material-allocation path.
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4.1. Improvement of Dijkstra Algorithm

In this study, the Dijkstra algorithm is selected as the planning algorithm for the
shortest path optimization of material allocation, which can calculate the shortest path of
any two points in a given planar topology [33]. Its basic principles are:

(1) There are two initialized sets, namely S and U. The set S contains only the source
point v, namely S = {v}, and the shortest path of v is 0. The set U contains other nodes
except node v, namely U = {S − v}.

(2) Select a nearest node u from the set U to join the node u in the set S, then the selected
distance is the shortest path length from v to u.

(3) Taking node u as the new intermediate point, the shortest path length of each node
j in the set U is modified. If the shortest path length (passing node u) from source
point v to node j (j∈U) is shorter than the original shortest path (not passing node u),
the shortest path length of node j is modified.

(4) Repeat steps (2), (3) until all nodes are contained in the set S.

The object of material-allocation path planning in this study is the entire construction
site. Its topological structure is composed of multi-layer planar topology, and the field dis-
tribution of the path and the nodes connecting each path should be considered. Therefore,
the traditional Dijkstra algorithm cannot meet the requirements of intelligent planning of
the material-allocation path in the construction process. Thus, this study improves the
Dijkstra algorithm as follows:

(1) The layout of each layer is extended to three-dimensional space. Combining with
the construction characteristics of sports venues, the nodes from various planes are
comprehensively considered. Assuming that there are n planes, the overall analysis
object is f = (f1, f2, f3, . . . , fn). The projection of each plane is used to realize the
comprehensive analysis of the construction site.

(2) In the construction process, the nodes between the paths may be in a state of construc-
tion blockage or material stacking. If the allocation path needs to pass through these
nodes, the time to pass through these nodes needs to be considered, where the node
is in a blockage state, and the time to pass through this node is set to be infinite.

(3) It is necessary to comprehensively consider the relationship between the buffer time
and allocation time of each node. Equation (13) ensures that each node does not
produce the phenomenon of nesting, and finally, evaluates the feasibility of the
material deployment path by Equation (14).

BTi> CTi + NTi (13)

FI = ∑N
i=1(CTi + NTi)

∑N
i=1 BTi

(14)

In Equations (13) and (14), BTi represents the buffer time of each node; CTi + NTi
indicates the time of material delivery to each node; and FI represents the feasibility analysis
index of the material-allocation path; the smaller the value is, the higher the feasibility is.

(4) Since the construction process is dynamic, in the path analysis, the material allocation
time should be corrected in real time according to the changes in factors, such as field
distribution information, in the virtual model.

4.2. Intelligent Material-Allocation Path Planning Process

Driven by the DT frame, the Dijkstra algorithm is integrated to intelligently plan
the material-allocation path of prestressed steel-structure construction. Firstly, the real-
time collection of physical information is performed, and the dynamic simulation of the
construction process is carried out in the virtual model, thus forming the virtual–real
interaction mechanism and extracting the twin data. The Dijkstra algorithm is used to
analyze the twin data, and the relationship between the buffer time and allocation time
of each node is comprehensively considered to plan the path. The feasibility of material



Metals 2022, 12, 631 11 of 17

allocation is evaluated, and the most reasonable way is selected. Driven by DTs, the material
deployment path is imported into the virtual model for simulation analysis. The material-
allocation path of the construction process is imported into the dynamic marking system of
the construction site. Since the construction process is dynamic, the construction is guided
by changing the guiding route of the construction site. At the same time, the allocation of
materials is collected in real time using radio frequency technology to ensure the accuracy
of the construction. The process of realizing the intelligent planning of a material-allocation
path in the construction process is shown in Figure 5.

Metals 2022, 11, x FOR PEER REVIEW 11 of 17 
 

 

is evaluated, and the most reasonable way is selected. Driven by DTs, the material deploy-
ment path is imported into the virtual model for simulation analysis. The material-alloca-
tion path of the construction process is imported into the dynamic marking system of the 
construction site. Since the construction process is dynamic, the construction is guided by 
changing the guiding route of the construction site. At the same time, the allocation of 
materials is collected in real time using radio frequency technology to ensure the accuracy 
of the construction. The process of realizing the intelligent planning of a material-alloca-
tion path in the construction process is shown in Figure 5. 

physi-
cal 

space

virtual 
space

dynamic 
awareness

simulation

twin data

data 
fusion

virtual-real 
interaction

buffer 
time

allocat-
ion time

allocation path 
planning

feasibility 
analysis

feedback 
adjustment

twin 
demonstration

guiding 
construction

 
Figure 5. Process of intelligent planning of material-allocation path. 

5. Case Study 
Based on the analysis of theoretical methods, this study applies the intelligent plan-

ning method of a material-allocation path for prestressed steel-structure construction, 
based on DTs, to the emergency allocation of materials in the construction process of the 
2022 Beijing Winter Olympics National Speed Skating Hall; the aim is to improve the ef-
ficiency and intelligence of its construction [34]. 

5.1. Engineering Overview 
With a total construction area of 97,000 square meters, the National Speed Skating 

Pavilion, is located on the west side of Beijing Chaoyang District Olympic Forest Park and 
to the south side of the National Tennis Center Diamond Stadium. During the 2022 Beijing 
Winter Olympics, the National Speed Skating Pavilion will undertake speed skating com-
petitions and training. The main structure of the speed skating hall is a cast-in-situ rein-
forced concrete structure, and the roof is a large-span saddle-shaped cable network struc-
ture. The structural span is 124 m × 198 m, supported by the outer steel ring truss, and the 
curtain wall cable is set outside the ring truss. The steel ring truss adopts the structural 
form of a three-dimensional truss, and the grid spacing is 4 m. The maximum specification 
of the chord in the truss is P1600 mm × 60 mm, and the joints are connected in the form of 
coherent welding. The ring truss and steel-reinforced concrete column are connected by 
finished spherical hinge support. The external curtain wall support structure adopts a 

Figure 5. Process of intelligent planning of material-allocation path.

5. Case Study

Based on the analysis of theoretical methods, this study applies the intelligent planning
method of a material-allocation path for prestressed steel-structure construction, based on
DTs, to the emergency allocation of materials in the construction process of the 2022 Beijing
Winter Olympics National Speed Skating Hall; the aim is to improve the efficiency and
intelligence of its construction [34].

5.1. Engineering Overview

With a total construction area of 97,000 square meters, the National Speed Skating
Pavilion, is located on the west side of Beijing Chaoyang District Olympic Forest Park
and to the south side of the National Tennis Center Diamond Stadium. During the 2022
Beijing Winter Olympics, the National Speed Skating Pavilion will undertake speed skating
competitions and training. The main structure of the speed skating hall is a cast-in-situ
reinforced concrete structure, and the roof is a large-span saddle-shaped cable network
structure. The structural span is 124 m× 198 m, supported by the outer steel ring truss, and
the curtain wall cable is set outside the ring truss. The steel ring truss adopts the structural
form of a three-dimensional truss, and the grid spacing is 4 m. The maximum specification
of the chord in the truss is P1600 mm × 60 mm, and the joints are connected in the form of
coherent welding. The ring truss and steel-reinforced concrete column are connected by
finished spherical hinge support. The external curtain wall support structure adopts a steel
cable and vertical wave steel keel. The construction site of the speed skating rink is shown
in Figure 6.
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5.2. Virtual–Real Interaction Modeling

In the construction of the structure, because it is difficult for a tower crane to trans-
port material to the connection part of the roof and the lower structure, the process of-
ten needs manual participation [35]. In order to improve the efficiency and intelligence,
the construction progress and material reserves of important nodes are accurately con-
trolled. In order to improve the accuracy of material allocation, the materials required by
each node are collected on the spot and virtually modeled. The real-time interaction is
carried out by the sensor equipment. The virtual–real interaction of materials is shown in
Figure 7. The basic information such as the type of material, and the behavior information
such as the construction position, are determined by the virtual model. The RFID tags are
arranged in the real components to read the information in real time, and the management
mode of ‘one thing and one code’ is realized.
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The layout diagram of the construction process analyzed in this study is shown in
Figure 8, in which materials are stored at node A, and there is a shortage of materials at
nodes D, E, and G. The nodes (A, B, C, D, E, F, G) in the figure represent the positions
where the material passes. According to the construction schedule plan, material reserves
and field distribution, the construction buffer time of each node is calculated in physical
space and virtual space, respectively. Finally, the buffer time and allocation time of each
node are fused using the entropy method; thus twin data are formed, which can effectively
reduce the error caused by the inaccuracy of field information collection and virtual space
simulation, and provide data support for the intelligent planning of the material-allocation
path. The twin data of the buffer time and allocation time of each node are shown in Table 1.
In the table, a single node indicates that there is a nesting phenomenon of the node, and
analyzes its construction buffer time. The nodes are connected to represent the allocation
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path of the material, and the time includes the time passing through the starting node.
Therefore, on the same path, different starting nodes will lead to different allocation times.
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Table 1. Twin data of buffer time and allocation time of each node.

Location Time of Physical Space
Analysis (min)

Time of Virtual Space
Analysis (min)

Fusion Time
(min)

D 21.5 23.9 22.7
E 15.2 16.7 16.0
G 30.2 32.8 31.5

A→B 6.5 7.2 6.9
A→C 2.1 2.5 2.3
B→C 2.8 3.1 3.0
C→B 3.2 3.9 3.6
B→D 5.6 6.3 6.0
C→D 7.5 6.8 7.1
D→B 7.4 8.5 8.0
D→C 9.3 10.3 9.8
D→E 4.2 3.7 3.9
D→F 4.3 3.9 4.1
D→G 4.6 5.1 4.9
E→D 7.4 8.2 7.8
E→G 6.5 5.7 6.1
F→D 6.3 5.6 5.9
F→G 5.2 4.9 5.0
G→D 7.6 6.3 6.9
G→E 4.3 3.8 4.0
G→F 7.8 6.5 7.1

5.3. Path Planning

Together with the twin data formed by the virtual–real interaction, the Dijkstra al-
gorithm is used to process the connection of each node, and the time required for the
material-allocation path between each node is input. Considering the construction buffer
time of each node and the passing time of each route, the planned material-allocation route
and time are shown in Table 2 by combining Figure 8 with Table 1.
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Table 2. Material-allocation path and time used.

Serial Number Path Time Used (min)

1 A→C→D 9.4
2 A→C→D→E 13.3
3 A→C→D→G 14.3

According to Table 1, it is necessary to adjust the path in Table 2. Firstly, the materials
are allocated to node E, then returned from node E to node D. Finally, they are transferred
from node D to node G, so as to ensure the normal construction of each node on site and
the efficiency of the construction process. The formed material-allocation path is simulated
in the virtual model, and its effectiveness is analyzed. The formed path is input to the
dynamic marking system of the construction site to guide the on-site material allocation.
The RFID information of the material is extracted in real time to ensure the accuracy of the
allocation. The path planning for material allocation is shown in Figure 9.
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5.4. Effect Analysis

In the framework of the intelligent planning of a construction-material-allocation path
driven by DTs, through the real-time collection of physical information on the construction
site and the simulation analysis in the virtual model, the virtual–real interaction mechanism
is formed. By integrating the Dijkstra algorithm to process twin data, the path of material
allocation can be analyzed efficiently and accurately, and the construction of the site can be
guided by the dynamic sign system. The material method formed in this study effectively
saves time in the construction process and provides ideas for the realization of intelligent
construction [36]. In the construction process, a twin model of site layout is established.
The node of the construction position is digitized, and different construction channels
are used as the distribution path of materials. The material distribution time and the
material storage of the construction node are comprehensively considered. The Dijkstra
algorithm is used to plan the optimal path. At the same time, the material that needs to
be delivered is calibrated. This process requires RFID tags to ensure the consistency of
materials. Finally, the dynamic marking system is arranged on the construction site to guide
the distribution of materials. By indicating the optimized path on the spot, the delivery
time is effectively shortened. For the whole process, material distribution in the same
scenario is also carried out using the traditional guidance method. By comparing the time
required by the traditional scheme and by the construction scheme proposed in this study, it
is shown that the overall time saving of the latter is 21%. The scenario in this study involves
the simultaneous delivery of multiple materials. In the research process, the optimization
method focuses on time savings. In the future, cost factors will be considered to optimize
the construction process and the layout of the working surface. The optimal construction
scheme will be obtained by using the fewest dynamic markers. This will not only reduce
the construction time, but will also reduce the construction cost.
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6. Discussion and Conclusions

DT technology is the key technology for realizing the intelligent construction of
structures. A DT framework for the intelligent planning of a material-allocation path for
prestressed steel-structure construction—incorporated with the construction characteristics
of prestressed steel structures—is built, and is driven by DTs. Moreover, an intelligent
planning method of a material-allocation path driven by DTs is formed. According to
the real-time collection of physical information on site and the dynamic simulation in the
virtual model, a virtual–real interaction model for intelligent path planning is established
and twin data are formed. The Dijkstra algorithm is used to process the twin data, and
the path of material allocation is obtained. RFID and other Internet of Things technologies
are integrated to guide the construction on site. In this study, the main conclusions are
as follows:

(1) Through the real-time collection of physical information and the dynamic simulation
of virtual space, and by combining an entropy method, data fusion is carried out to
form twin data, thus providing reliable data support for the intelligent planning of
the material-allocation path in the construction process.

(2) Based on the establishment of the virtual–real interaction model, the Dijkstra algo-
rithm is used to process the twin data, and the construction buffer time and material
allocation time of each node in the construction process are comprehensively con-
sidered; this contributes to a complete intelligent planning process of the material-
allocation path, which provides technical support for improving the intelligence level
of the construction process.

(3) Through the fusion of the DT concept and the Dijkstra algorithm, the interactive map-
ping between virtual space and real construction can be realized. Moreover, the feasi-
bility analysis of path planning and the integration of Internet of Things technology
for on-site construction guidance can achieve closed-loop control of the construction
process; this also offers a reference for virtual space to guide real construction.

The intelligent planning method of the material-allocation path proposed by this
research was applied in the construction of the National Speed Skating Hall of the Bei-
jing Winter Olympics in 2022, and effectively improved the construction intelligence.
The examples of its application in engineering showed time savings of 21% for the con-
struction of related processes. Driven by the intelligent planning method of the prestressed
steel-structure construction-material-allocation path based on DTs, the intelligent control of
structure construction can be carried out through the twin data fusion intelligent algorithm,
formed by virtual and real interaction. Moreover, the cost of real structure construction
management can be reduced by combining Internet of Things technologies. Future work
will focus on the integration of all management elements in each link of the construction
process, and on carrying out an intelligent analysis of the whole construction process.
On the basis of this study, the coordination of the construction process and work surface
will be studied. The efficient management of the whole construction process will be realized
by considering more realistic and comprehensive factors.
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