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Abstract: In this study, the copper-graphene oxide composites were prepared using low sintering
temperature to investigate the effect of various mesh sizes of GO on Cu-GO composites. Scanning
electron microscopy (SEM), X-ray diffraction (XRD) and Raman were conducted to elaborate the
microstructure, diffraction pattern and disorder in the powders as well as bulk composites. Transmis-
sion electron microscopy (TEM) analysis was also carried out to further study the microstructural
analysis of composites at the nano-scale level. By changing the mesh sizes of GO from lower to higher
level, the tensile strength and hardness of Cu-GO composites were significantly enhanced due to
better mixing of GO with higher mesh size. A fractograph analysis was also examined in detail to
investigate the effect of various mesh sizes of GO on Cu-GO.

Keywords: copper-graphene oxide; stress–strain; hardness; mesh size

1. Introduction

Copper matrix composites are largely used in many industrial applications such as
aerospace, vehicles, electronic and thermal packaging industries [1]. Among the different
metals, copper (Cu) is one of the most significant due to its higher thermal properties and
cost-effectiveness [2]. However, its low mechanical properties limit its use in larger applica-
tion areas. To improve the mechanical properties, in recent years, most researchers have
used various fillers such as carbon nanotubes (CNTs), graphene oxide (GO) and graphene
(Gr) due to their excellent mechanical properties [3–9]. Major problems have occurred
during the mixing process of Cu and fillers, which has led to the deterioration of the overall
properties of final composites. Many researchers utilized various processing methods to
overcome this challenge, including electroless plating, layer-by-layer self-assembly, in situ
chemical vapor deposition, and flake powder metallurgy [10–13]. Many researchers in
the past fabricated the Cu-GO composites using different fabrication techniques and by
varying the percentage of filler. However, the fabrication of Cu-GO composites at low
sintering temperature and by varying mesh sizes has seldom been studied to date. Mostly,
the hot press/vacuum/spark plasma sintering technique has been used for the fabrication
of pellets, and the temperature used for that ranges between 800–1000 ◦C, which is very
high; this is performed under some protective environment [14–19]. However, in our
current work, we used a simple oven at a low temperature of 750 ◦C for the fabrication of
Cu-GO composites, which is an easy and cost-effective process. Jan Dutkiewicz et al. [20]
fabricated copper-graphene nanoplates (Cu-GNP) composites using two different kinds of
GNP, coarse and fine. They used 1 and 2 wt.% of both coarse and fine thickness of GNP
10–20 nm and 4–6 nm at a temperature of 550 ◦C under a pressure of 35 MPa. The maximum
hardness values for coarse GNP at 1 and 2 wt.% GNP were 50.8 and 40 HV, whereas for fine
GNP, the values were 61 HV, respectively. Hongyan yue fabricated Cu-Gr composites at a
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temperature of 850 ◦C using a vacuum sintering technique by varying the percentage of
Gr [21]. At 0.5 wt.%, the value of hardness for Cu-Gr composite was reported to be 55 HV,
and this further decreased with increasing percentage of filler. C. Ayyappadas et al. [17]
also fabricated Cu-Gr composites by varying the Gr amount, and they also measured
the effect of two different sintering techniques: microwave and conventional sintering
process. In both cases, the sintering temperature was set to 900 ◦C, which was a very high
temperature. They found that, at 0.9 vol.% Gr, the hardness values of Cu-Gr composites
were 47.7 and 42.8 HV for conventional and microwave sintering, respectively. The values
of hardness were very low at 0.9 vol.% Gr in both of the cases due to the poor dispersion
of Gr in Cu matrix composites. Xin gao et al. synthesized [16] Cu-GO composites using
a hot press sintering technique at 900 ◦C and 25 MPa pressure by varying GO content,
including 0.1, 0.3 and 0.5 wt.%. At 0.5 wt.%, they observed the maximum hardness value
for Cu-GO composites, which was 45 HV, and the ultimate tensile strength (UTS) value was
196 MPa. These values of hardness and UTS are not much higher at a high temperature of
sintering. From the above discussion, it can be found that most of the researchers used very
high temperature for the fabrication of Cu-GO composites and adopted different sintering
techniques. However, the effect of different mesh size/grain size of GO on the mechanical
properties of Cu-GO composites have seldom been studied. In this study, we determine the
effect of various GO mesh sizes on Cu-GO composites using a low sintering temperature at
0.5 wt.% of GO.

2. Experimental Procedure
2.1. Materials

Copper powder (purity > 99.9%, size 6–8 µm) and various graphite (GF) mesh sizes
(400, 800 and 1600) µm were purchased from Shanghai Sheeny Metal Materials Co., Ltd.
(shanghai, China). GO powder was synthesized using the modified Hammer’s method by
varying graphite mesh size. Details of GO synthesis have been reported in our previous
work [1].

2.2. Fabrication of Cu-GO Composites

The GO powder was ultra-sonicated in an ethanol solution for 1 h for the better mixing
of the GO solution. The GO solution was added into the Cu powder and ball-milled using a
ball-to-powder ratio of 20:1 and speed 450 rpm for 4.5 h in the presence of an ethyl alcohol
solution. After the milling process, the mixed powder was dried in an oven at 100 ◦C for
48 h. The dried powder was green compacted using 100 MPa pressure, and after that, the
pellets were sintered in an oven at a low sintering temperature of 750 ◦C. Moreover, the
sintered samples were annealed at 400 ◦C under a mixture of Ar and N2 gas for 1 h, and
the sample dimensions were diameter 25 mm and height 10 mm.

2.3. Characterizations

The microstructure of powders and fracture behavior of bulk composites were ob-
served with the help of scanning electron microscopy (SEM, Hitachi S-4800, Hitachi, Ltd.,
Tokyo, Japan). Further microscopic investigation for bulk composites was carried out
through transmission electron microscopy (TEM) with point mapping using a Tecnai G2
F20 microscope (Hitachi, Ltd., Tokyo, Japan). A phase investigation was performed us-
ing an X-ray diffraction technique (XRD, X’Pert PRO MPD, Panalytial Inc., Almelo, The
Netherlands) with Cu Kα radiation (λ = 1.5418 Å). The Vickers hardness of each sample
was assessed using an AHVD-1000 (songshan materials laboratory, Dongguan, China) by
applying 100 g force for 15 seconds and making seven indentations. An (Instron universal
material machine, Tokyo, Japan) with a crosshead speed of 0.5 mm/min was used to
perform the tensile test, using a tensile test sample of a dog-bone shape. Three samples
were conducted for each composite to obtain reliable results.
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3. Results and Discussions

The structure of as-received Cu and GF powders are oval and flake-like, which are
shown in Figure 1a,b, respectively. GO was synthesized by Hammer’s method and sheet-
like structure and curl from the edges, which are shown in Figure 1c. TEM analysis of
Cu-GO(1600) shows that the GO mixed well with the Cu matrix, and there are no obvious
voids is showing on the interface. The white region in Figure 1d shows the presence of
GO, whereas the black region is the Cu matrix. For further verification of the presence of
GO, we performed point mapping (Figure 1f) of the yellow region shown in Figure 1e. The
point maps data analysis showed that the white region is GO where the carbon is present in
huge amounts; however, there can also be seen a small peak for oxygen, and the interface
bonding is also good. The XRD analysis of bulk composite only showed four peaks for Cu,
whereas there is no peak of GO, as can be seen in Figure 1f. This is due to the very low
amount of 0.5 wt.% of GO, which means is impossible to detect GO through XRD. Similar
kinds of results are frequent in the literature.
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Figure 1. SEM of (a) Cu and (b) GF, (c) TEM of GO and (d) Cu-GO (1600 µm), (e) TEM with point
analysis, and (f) XRD of Cu and Cu-GO composites.

We conducted a SEM analysis of different Cu-GO composites after the sintering
process, which is shown in Figure 2 below. We can see that the GO is well-dispersed in the
Cu matrix at a mesh size 1600 µm, whereas the other two composites have some voids, and
GO is agglomerated little bit in the Cu matrix.
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Figure 3a shows the Raman analysis of different Cu-GO composites by varying the
mesh size of GO. With the increasing trend in mesh size, the ID to IG ratio of Cu-GO com-
posites significantly reduced which means the number of oxide layers reduced significantly.
The ratio of the intensity of the D-Raman peak to the G-Raman peak (ID/IG) is frequently
used to characterize graphite-based carbon materials such as to estimate the number and
size of sp2 clusters present in the carbon structures. The highest ratio of ID/IG is 0.85 for
Cu-GO(400), whereas for Cu-GO(1600), the ratio is 0.45. The Vickers hardness of Cu and
Cu-GO composites are also shown in Figure 3b. By increasing the mesh size of GO, the
hardness values for Cu-GO composites enhanced significantly, which is in good agreement
with the hall petch effect. By decreasing the particle size of filler, it acts well on the interface
boundary and restrains the sliding of atoms on the interface, which is the basic principle
for the pinning effect. Another important factor is the interface between Cu and GO, which
is strong for the 1600 mesh size compared to the other two mesh sizes, which leads to the
higher values of hardness and strength of the Cu-GO(1600) composite. Similar results are
also observed for the stress–strain curves for Cu-GO, which can be seen in Figure 3c. More-
over, with a very low percentage of 0.5 wt% of GO, the yield strength (YS), 106 MPa, and
ultimate tensile strength (UTS), 177 MPa, were observed for Cu-GO(1600) composite with
the agreement of ductility. For Cu-GO(400), the YS and UTS are 98 and 100 MPa, which are
very low due to shear fracture, which can be seen in Figure 3d. The Cu-GO(800) composites
have a high ductility value due to deep dimples, but the YS and UTS are still low at 82 and
118 MPa compared to Cu-GO(1600) composites. In Table 1 below, we compared the strength
and hardness values of different Cu-based matrix composites with our Cu-GO composite.
Most of the composites listed below are prepared at high temperatures using hot-press or
spark plasma sintering (SPS) machines (shanghai, China), but the hardness values are still
low compared with our Cu-GO(1600) composites prepared at a low sintering temperature.
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Figure 3. (a) Raman analysis of Cu-GO composites; (b) Vickers hardness of Cu and Cu-GO composites;
(c) stress–strain analysis of Cu-GO composites; (d–f) fractographs of Cu-GO composites, (d) 400 µm,
(e) 800 µm, and (f) 1600 µm.

The fracture behavior of the Cu-GO(1600) composite shows the presence of fine dim-
ples, which cause good ductility, and the bonding of GO is better with the Cu matrix, which
results in increases in the YS and UTS. The presence of GO in all the Cu-GO composites can
be seen in the fractograph, which is denoted by blue arrows. In the Cu-GO(1600) composite,
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the GO acts as a bridge between the Cu matrix, which is very beneficial to increase the
strength and the ductility of the composite.

Table 1. Ultimate tensile strength (UTS), Vickers hardness (HV) of various Cu matrix composites
with Cu-GO composites.

Reinforcement Fraction UTS (MPa) Hardness (HV) References

GO 0.5 wt.% 177 67 This work

GNPs 1 wt.% - 50.8 [20]

GNPs 0.5 wt.% - 33 [22]

GO 0.5 wt.% 196 45 [23]

Gr 0.9 vol.% - 45 [17]

GNPs 2.5 wt.% - 68.7 [24]

GNPs 4 vol.% - 45.1 [25]

Gr 0.3 vol.% - 52 [16]

GO 0.5 wt.% - 52 [21]

4. Conclusions

In short, different mesh size Cu-GO composites were successfully fabricated at low
sintering temperatures. Their microstructure showed that the higher-mesh-size GO mixed
well with the Cu matrix and led to significantly enhanced mechanical properties of Cu-
GO(1600) composites. The TEM analysis of Cu-GO(1600) composite also verifies the strong
interfacial bonding between Cu and GO, and the presence of GO can be seen. The Cu-
GO(1600) composite had higher hardness, YS, UTS and ductility values compared to other
composites and to pure Cu. The higher mechanical values of the Cu matrix are significantly
important for their use at the industrial level.

Author Contributions: F.N.: Investigation, Formal analysis, Data curation, Visualization, Writing—
original draft. H.W.: Supervision, Conceptualization, Writing—review & editing, Funding acquisition.
A.M.: Visualization, Conceptualization, Writing—review & editing. X.M.: Writing—review & editing.
C.L.: Writing—review & editing. J.L.: Writing—review & editing. All authors have read and agreed
to the published version of the manuscript.
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