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Abstract: A small amount of Co was added to the Fe88Ce7B5 glass forming alloy for the possi-
bility of improving its glass formability and magnetocaloric effect. The Curie temperature of the
amorphous Fe88-xCe7B5Cox (x = 0, 1, 2, 3) ribbons increases linearly with the Co content, while the
maximum magnetic entropy change (−∆Sm

peak) increases to 3.89 J/(kg × K) under 5 T at x = 1 and
subsequently decreases with further Co addition. The mechanism for the influence of Co addition
on magnetic properties and the magnetocaloric effect of the amorphous alloys was investigated.
Furthermore, a flattened −∆Sm profile was designed in the amorphous laminate composed of the
amorphous Fe88-xCe7B5Cox (x = 0, 1, 2) ribbons. The high average −∆Sm from ~287 K to ~320 K
indicates the potential application perspective of the amorphous hybrid as a magnetic refrigerant of a
domestic refrigerator.

Keywords: amorphous alloy; glass formability; Curie temperature; magnetic entropy change

1. Introduction

With the increasing shortage of energy and the worsening environmental pollution,
it is vitally urgent to develop new refrigeration technology to replace the vapor expan-
sion/compression refrigerators because the traditional refrigeration technology is of low
refrigeration efficiency and is not eco-friendly. The magnetic refrigerators based on the
magnetocaloric effect (MCE) of magnetic materials are regarded as one of the potential
alternatives to the traditional refrigerators because of their energy conservation (at least
30%), eco-friendliness due to their free of ozone-depleting gases, and compactness due to
the use of solid refrigerants [1,2].

The MCE refers to the heating of a magnetic material upon magnetization under an
adiabatic condition induced by the decrease of magnetic entropy due to the ordering of
magnetic moment [3]. Materials exhibiting excellent MCE are considered to be suitable
for application as magnetic refrigerants. The magnetic refrigerator generally undergoes
an Ericsson cycle, and thus the magnetic refrigerant should better exhibit a table-like mag-
netic entropy change (−∆Sm) profile within the working temperature range of a magnetic
refrigerator [4]. However, the table-like −∆Sm profile can hardly be achieved in a single
alloy or compound; instead, it is usually achieved in composites composed of several alloys
or compounds with Curie temperatures (Tc) ranging from the cold end (Tcold) to the hot
end (Thot) of a magnetic refrigerator [5–9]. Obviously, the broad −∆Sm hump of the alloys
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experiencing 2nd-order magnetic phase transition (MPT) behavior rather than the narrow
−∆Sm peak of 1st-order MPT alloys, and the tunable Curie temperature of the alloys, are
essential for constructing the table-like −∆Sm profile.

Amorphous alloys (AAs) can perfectly match the above requirements, not only because
they experience a 2nd-order MPT and exhibit a broadened −∆Sm hump but also due to
their tailorable Tc within a wide temperature range by compositional adjustment [10–22].
The major challenge for the AAs to be used as magnetic refrigerants is how to enhance
the −∆Sm as much as possible. The rare earth (RE)-based AAs, typically the Gd-based
bulk metallic glasses, show outstanding glass formability as well as rather large peak
value of magnetic entropy change (−∆Sm

peak) at low temperature [10–12]. However, the
RE-based metallic glasses are expensive, and the alloys with Tc near room temperature
(RT) usually show poor glass formability and low −∆Sm

peak [13]. The transition metal
(TM)-based metallic glasses with Tc near RT are less expensive and can be easily fabricated,
but their −∆Sm peak values are very low. For instance, the Fe-Zr-B-based AAs show better
MCE in the iron-based metallic glasses near the ambient temperature, but most of their
−∆Sm

peak are not higher than 3.2 J/(kg × K) under 5 T [14–17]. The minor substitution of
Co for Fe can obviously improve the −∆Sm

peak of the Fe-Zr-B amorphous ribbons to above
3.2 J/(kg × K) under 5 T, or even to about 3.4 J/(kg × K) under 5 T at 2% (at.%) Co, but
they simultaneously enhance their Curie temperature to above 330 K, which is well higher
than RT [18,19].

More recently, we successfully fabricated the Fe-La/Ce-B metallic glasses and achieved
better magnetocaloric properties with −∆Sm

peak of at least 10% larger than those of the
Fe-Zr-B-based AAs near the ambient temperature [20,21]. In this paper, we selected a
Fe88Ce7B5 AA with a −∆Sm

peak of ~ 3.83 J/(kg × K) under 5 T at 287 K [22] as a basic alloy
and prepared the Fe88-xCe7B5Cox (x = 1, 2, 3) amorphous ribbons. The effect of minor Co
replacement for Fe on the glass formability, magnetic properties and MCE of the ternary
amorphous alloy, as well as the mechanisms involved, was studied.

2. Materials and Methods

The master ingots with nominal Fe88-xCe7B5Cox (x = 1, 2, 3) compositions were pre-
pared one by one by arc-melting the mixture of raw materials several times using a non-
consumable electrode in a high vacuum furnace (Physcience Opto-electronics, Beijing,
China) filled with high-purity Ar. The ingots were manufactured to be the shape of
~40-µm-thickness ribbons under a high-purity Ar atmosphere by a melt-spinning method
at a wheel surface speed of 50 m/s. The amorphous features of the as-spun Fe88-xCe7B5Cox
(x = 1, 2, 3) ribbons were ascertained by their X-ray diffraction (XRD) patterns measured
by a Rigaku D\max-rC diffractometer (Rigaku, Tokyo, Japan) with Cu Kα radiation [23].
The glass formability of the amorphous ribbons was evaluated from the thermal properties
obtained from their differential scanning calorimetry (DSC) traces measured by a NET-
ZSCH 404C calorimeter (Netzsch, Selb, Germany) [24] at a heating rate of 20 K/min. The
temperature and field dependence of magnetization curves were measured by a vibrating
sample magnetometer (VSM), which is a module of a Physical Property Measurement
System (PPMS, model 6000, Quantum Design, San Diego, CA, USA) [25]. The Arrott plots
were derived from the isothermal magnetization (M-H) curves to confirm the type of phase
transition. The −∆Sm vs. temperature curves were constructed from M-H curves according
to the Maxwell equation. The −∆Sm of the amorphous hybrid was calculated as

− ∆Sm(hybrid) =
n

∑
i=1, 2, ..., n

wi × (−∆Sm)i (1)

where wi is the weight fraction of an amorphous ribbon.
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3. Results and Discussion

The X-ray diffraction results of the as-spun Fe88-xCe7B5Cox (x = 1, 2, 3) ribbons are
displayed in Figure 1a. The ribbons show smooth and broad diffraction humps, indicating
that all the as-spun Fe88-xCe7B5Cox (x = 1, 2, 3) ribbons are amorphous. From the DSC
traces of the three samples, as shown in Figure 1b, the endothermic glass transition hump
and the exothermic crystallization peaks also ascertain the amorphous characteristics of
these samples. Simultaneously, the onset temperatures of glass transition (Tg) and primary
crystallization (Tx), as well as the liquid temperature (Tl) of the Fe88-xCe7B5Cox (x = 1, 2, 3)
ribbons, are listed in Table 1. Therefore, two commonly used criteria for evaluating the glass
formability of amorphous alloys, namely, the reduced glass transition temperature (Trg,
defined as the ratio of Tg and Tl) [26] and the parameter γ (defined as the ratio of Tx and
(Tg + Tl)) [27], can be calculated accordingly to be 0.421 and 0.368 for Fe87Ce7B5Co1, 0.426
and 0.361 for Fe86Ce7B5Co2, 0.437 and 0.360 for Fe85Ce7B5Co3. Compared to the Fe88Ce7B5
ribbon, the minor Co substitution for Fe dramatically decreases the Tg, which decreases the
Trg and reaches a minimum at x = 1 but obviously enlarges the supercooled liquid region
(∆Tx = Tx − Tg [28], also listed in Table 1), which makes the γ value reach to a maximum at
x = 1, as illustrated in Figure 1c. Overall, both the Trg and γ of the Fe88-xCe7B5Cox (x = 0,
1, 2, 3) ribbons are in accordance with their glass formability: they can be quenched into
amorphous ribbons easily but are not able to be vitrified into bulk amorphous samples.
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Figure 1. (a) XRD patterns and (b) DSC curves of the Fe88-xCe7B5Cox (x = 1, 2, 3) as-spun rib-
bons; the inset is the melting behaviors. (c) The compositional dependence of Trg and γ for these
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Metals 2022, 12, 589 4 of 9

Table 1. The thermal properties of the Fe88-xCe7B5Cox (x = 0, 1, 2, 3) amorphous ribbons.

Fe88-xCe7B5Cox Tg (K) Tx (K) Tl (K) ∆Tx (K) Trg γ

x = 0 647 761 1442 114 0.449 0.364
x = 1 606 753 1441 147 0.421 0.368
x = 2 613 740 1438 127 0.426 0.361
x = 3 627 743 1436 116 0.437 0.360

Figure 2a shows the hysteresis loops under 5 Tesla of the Fe88-xCe7B5Cox (x = 1, 2, 3)
glassy samples measured at 180 K and 380 K, respectively. All these samples show soft
magnetic at 180 K and almost paramagnetic at 380 K, indicating that the ferromagnetic-
paramagnetic transition occurs within 180 K and 380 K. The saturation magnetization is
approximately 144.4 Am2/kg for x = 1, 145.0 Am2/kg for x = 2 and 144.0 Am2/kg for
x = 3, which implies the slightly fluctuation of the magnetic moment with the Co addition.
The temperature dependence of magnetization curves for the Fe88-xCe7B5Cox (x = 1, 2, 3)
ribbons was measured under 300 Oe after a zero-field-cooling operation, as shown in
Figure 2b. The Tc, which is obtained at the minimum of dM/dT, can be found to be 305 K
for Fe87Ce7B5Co1, 323 K for Fe86Ce7B5Co2, and 346 K for Fe85Ce7B5Co3. Similar to the
situation in the Co substituted Fe88Zr8B4 amorphous ribbons [19], Tc of the Fe88-xCe7B5Cox
(x = 0, 1, 2, 3) amorphous ribbons increases linearly with the Co content, as shown in
the inset of Figure 2b, which is attributed to the enhanced 3d-3d interaction between 3d
atoms by the Co addition [29]. As shown in Figure 3a for x = 1, Figure 3b for x = 2,
and Figure 3c for x = 3, the magnetic phase transition of the Fe88-xCe7B5Cox (x = 1, 2, 3)
amorphous samples was confirmed to be 2nd-order MPT by the Arrott plots at various
temperatures derived from their isothermal magnetization (M-H) curves (illustrated in the
inset of Figure 3a–c, respectively).

Metals 2022, 12, x FOR PEER REVIEW 4 of 9 
 

 

Table 1. The thermal properties of the Fe88-xCe7B5Cox (x = 0, 1, 2, 3) amorphous ribbons 

Fe88-xCe7B5Cox Tg (K) Tx (K) Tl (K) ΔTx (K) Trg γ 
x = 0 647 761 1442 114 0.449 0.364 
x = 1 606 753 1441 147 0.421 0.368 
x = 2 613 740 1438 127 0.426 0.361 
x = 3 627 743 1436 116 0.437 0.360 

Figure 2a shows the hysteresis loops under 5 Tesla of the Fe88-xCe7B5Cox (x = 1, 2, 3) 
glassy samples measured at 180 K and 380 K, respectively. All these samples show soft 
magnetic at 180 K and almost paramagnetic at 380 K, indicating that the ferromagnetic-
paramagnetic transition occurs within 180 K and 380 K. The saturation magnetization is 
approximately 144.4 Am2/kg for x = 1, 145.0 Am2/kg for x = 2 and 144.0 Am2/kg for x = 3, 
which implies the slightly fluctuation of the magnetic moment with the Co addition. The 
temperature dependence of magnetization curves for the Fe88-xCe7B5Cox (x = 1, 2, 3) ribbons 
was measured under 300 Oe after a zero-field-cooling operation, as shown in Figure 2b. 
The Tc, which is obtained at the minimum of dM/dT, can be found to be 305 K for 
Fe87Ce7B5Co1, 323 K for Fe86Ce7B5Co2, and 346 K for Fe85Ce7B5Co3. Similar to the situation 
in the Co substituted Fe88Zr8B4 amorphous ribbons [19], Tc of the Fe88-xCe7B5Cox (x = 0, 1, 2, 
3) amorphous ribbons increases linearly with the Co content, as shown in the inset of Fig-
ure 2b, which is attributed to the enhanced 3d-3d interaction between 3d atoms by the Co 
addition [29]. As shown in Figure 3a for x = 1, Figure 3b for x = 2, and Figure 3c for x = 3, 
the magnetic phase transition of the Fe88-xCe7B5Cox (x = 1, 2, 3) amorphous samples was 
confirmed to be 2nd-order MPT by the Arrott plots at various temperatures derived from 
their isothermal magnetization (M-H) curves (illustrated in the inset of Figure 3a–c, re-
spectively). 

  
Figure 2. (a) The hysteresis loops of the Fe88-xCe7B5Cox (x = 1, 2, 3) amorphous ribbons measured at 
180 and 380 K under 5 T. (b) M-T curves of these amorphous ribbons under 300 Oe; the inset is the 
relationship between Tc and Co content. 

Figure 2. (a) The hysteresis loops of the Fe88-xCe7B5Cox (x = 1, 2, 3) amorphous ribbons measured at
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relationship between Tc and Co content.

The magnetic phase transition from ferromagnetic to paramagnetic usually results
in the reduction of magnetic entropy due to the ordering of magnetic moments. Figure 4
illustrates the relationship between−∆Sm and temperature ((−∆Sm)-T curve) under various
fields of the Fe88-xCe7B5Cox ((a) for x = 1, (b) for x = 2, and (c) for x = 3) amorphous ribbons.
The three AAs show typical broad −∆Sm hump of 2nd-order MPT materials, and the
−∆Sm

peak were observed near Tc on each (−∆Sm)-T curve. The −∆Sm
peak under different

fields of the ribbons are summarized in Table 2, accompanied with that of the Fe88Ce7B5
amorphous ribbon for comparison purposes. It was found that −∆Sm

peak of Fe88Ce7B5 AA
was improved by adding 1% (at. %) Co but was decreased by adding more Co. As the
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average magnetic moment of Co atoms is lower than that of the Fe atoms, the −∆Sm
peak of

the Fe88-xCe7B5Cox (x = 0, 1, 2, 3) AAs should be generally decreased with the Co addition.
The slightly increased −∆Sm

peak at x = 1 may be induced by the extra 3d-3d interaction
between Co and Fe atoms [30].

According to the Arrott–Noakes equation, the relationship between the −∆Sm and
the external magnetic fields (H) in an amorphous alloy undergoing a 2nd-order magnetic
transition can be expressed as −∆Sm = A × Hn, where A is a constant [31]. Figure 4d shows
exponent n vs temperature curves of the Fe88-xCe7B5Cox (x = 1, 2, 3) glassy ribbons by lin-
early fitting ln(−∆Sm)-ln(H) plots at various temperatures. As predicted by V. Franco [31],
n exponent of all the three samples is about 1 at low temperatures well below Tc, subse-
quently decreases to a minimum (about 0.75) near Tc, and finally approaches to a value of 2
at temperatures much higher than Tc. The values of n near Tc of these three samples, seen
in the inset of Figure 4d, are 0.763 for x = 1 at 305 K, 0.758 for x = 2 at 322.5 K, and 0.756
for x = 3 at 347.5 K, all of which agree well with the results of other alloys undergoing a
2nd-order MPT [11,15–21] and indicate the typical magnetocaloric effect of these AAs.
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Table 2. −∆Sm
peak and Tc of some Fe-based amorphous alloys near room temperature.

Composition
−∆Sm

peak (J/(kg × K)) Tc (K) Ref.
1 T 1.5 T 2 T 3 T 5 T

Fe88Ce7B5 1.12 1.54 1.91 2.60 3.83 287 [22]
Fe87Ce7B5Co1 1.15 1.56 1.95 2.65 3.89 305

This workFe86Ce7B5Co2 1.13 1.54 1.91 2.60 3.82 323
Fe85Ce7B5Co3 1.10 1.51 1.88 2.54 3.72 346
Fe83Nd5Cr8B4 - - 1.8 - 3.4 322

[9]Fe80Nd8Cr8B4 - - 1.8 - 3.5 340
Fe80B10Zr9Cu1 1.04 - 1.72 - 3.28 356

[14]Fe77Ta3B10Zr9Cu1 0.93 - 1.47 - 2.84 336
Fe75Ta5B10Zr9Cu1 0.68 - 1.04 - 2.03 313

Fe88Zr9B3 0.94 1.28 1.59 2.16 3.17 286
[15]Fe87Zr9B4 0.99 1.35 1.67 2.26 3.29 304

Fe86Zr9B5 1.02 1.39 1.72 2.3 3.34 327
Fe88Zr8B4 0.88 1.20 1.50 2.06 3.04 291

[16]Fe87Zr8B5 0.94 1.29 1.61 2.19 3.25 306
Fe87Zr7B4Co2 1.01 1.38 1.72 2.34 3.42 333 [18]
Fe87Co1Zr8B4 0.93 1.29 1.61 2.2 3.24 317

[19]Fe86Co2Zr8B4 0.98 1.35 1.69 2.31 3.38 340
Fe86La7Ce2B5 - 1.45 - - 3.64 313 [20]

Fe82Ce12B6 - - 1.78 - 3.54 284
[32]Fe82.5Ce11.5B6 - - 1.91 - 3.81 291

Fe83Ce11B6 - - 1.96 - 3.90 297
Fe85Co3Zr5B4Nb3 1.03 1.41 1.76 2.41 3.55 336 [33]

Fe87Zr8B4Sm1 0.98 1.33 1.65 2.24 3.27 308
[34]Fe86Zr8B4Sm2 1.04 1.41 1.73 2.32 3.35 325

Fe85Zr8B4Sm3 1.09 1.47 1.81 2.44 3.55 333
Fe86Zr8B4Mn2 0.87 - 1.47 2.00 2.93 283 [35]

Fe66.3B12Si8V13.7 - - - - 1.8 334 [36]
Fe79Gd1Cr8B12 1.12 1.42 - - 3.59 355 [37]
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Figure 5a shows the −∆Sm
peak under 5 T of various iron-based metallic glasses with

Tc ranging from 280 K to 360 K (also listed in Table 2). The −∆Sm
peak of the Fe(Co)-Ce-B

glassy alloys are comparable to or even larger than those of most iron-based metallic
glasses around RT [9,14–16,18–20,32–37]. For example, the −∆Sm

peak of the Fe87Ce7B5Co1
amorphous ribbon (3.89 (J/(kg × K) under 5 T) is comparable to that of the Fe83Ce11B6
glassy alloy [32], which is the largest among those metallic glasses. The −∆Sm

peak of
the Fe85Ce7B5Co3 amorphous ribbon, which is the lowest −∆Sm

peak value among the
Fe88-xCe7B5Cox ribbons, is still higher than the −∆Sm

peak of most of those iron-based
metallic glasses. On the other hand, it should be noted that the Tc of Fe88Ce7B5 (287 K)
and Fe86Ce7B5Co2 (323 K) glassy alloys are close to the Tcold and Thot of a domestic air
conditioner. Therefore, high −∆Sm

peak of the Fe88-xCe7B5Cox metallic glasses allows us to
construct a specific table-like −∆Sm profile within temperature interval from 280 K to 320 K
in an amorphous hybrid composed of these amorphous ribbons. Figure 5b displays the
table-like (−∆Sm)-T curves under 1.5 T and 5 T for an amorphous laminate composed of 49%
(wt.%) Fe88Ce7B5 + 2% (wt.%) Fe87Ce7B5Co1 + 49% (wt.%) Fe86Ce7B5Co2 glassy ribbons.
The average −∆Sm value (−∆Sm

average) of the amorphous laminate is about 1.28 J/(kg × K)
under 1.5 T from 280 K to 315 K, and approximately 3.48 J/(kg × K) under 5 T from 287 K
to 320 K; these values are much higher than those of other Fe-Zr-B-based amorphous
hybrids [19,34]. Furthermore, the compositions of the amorphous laminate do not contain
any radioactive elements and will not bring about some health hazards. Therefore, the high
−∆Sm

average from the Tcold to the Thot of the amorphous composite indicates the potential
application perspective as magnetic refrigerant in a domestic air conditioner.
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ribbons under 1.5 T and 5 T.

4. Conclusions

In this work, the Fe88-xCe7B5Cox (x = 1, 2, 3) alloys were successfully fabricated to be
about 40-µm-thickness amorphous ribbons, and the magnetic properties, as well as MCE of
these glassy samples, were investigated. All the samples are soft magnetic at 180 K and
paramagnetic at 380 K. The Tc of the Fe88-xCe7B5Cox amorphous ribbons increases linearly
from 287 K when x = 0 to 305 K when x = 1, 323 K when x = 2, and 346 K when x = 3,
which is probably due to the enhanced 3d-3d interaction by the Co addition. The Arrott
plots as well as the −∆Sm = A × Hn relationship of the amorphous Fe88-xCe7B5Cox ribbons
confirm the typical magnetocaloric behaviors of 2nd-order MPT alloys. The −∆Sm

peak of
these amorphous samples increases to 3.89 (J/(kg × K) at x = 1 and subsequently decreases
with further Co addition, which may be attributed to the compromise of two factors: the
decreasing −∆Sm

peak with Co addition due to the lower average magnetic moment of
Co, and the slightly enhanced −∆Sm

peak due to the introduction of extra 3d-3d interaction
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between Co and Fe atoms by Co substitution. Based on these results, an amorphous
laminate with a table-like −∆Sm profile from ~280 K to ~320 K was achieved by mixing
49% (wt.%) Fe88Ce7B5 + 2% (wt.%) Fe87Ce7B5Co1 + 49% (wt.%) Fe86Ce7B5Co2 amorphous
ribbons. The high −∆Sm

average of the amorphous hybrid makes it a better candidate for
application as a magnetic refrigerant in a domestic air conditioner.
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