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Abstract: The poor corrosion resistance of magnesium alloys is one of the major obstacles to their
widespread applications in the engineering field and the medical field. A hot deformation process is
the main way to improve the corrosion resistance of magnesium alloys. In the present study, X-ray
photoelectron spectroscopy (XPS), a scanning electron microscope (SEM), an electron probe micro-
analyzer (EPMA) and X-ray diffraction (XRD) were used to investigate the micro-galvanic corrosion
behavior and film protection mechanism of hot-rolled Mg-2Zn-2Er-0.3Zr-0.3Mn under 25%, 50% and
75% thickness reductions in Hank’s solution. The results revealed that the best corrosion resistance
was obtained in the alloy under a 75% thickness reduction, with a corrosion rate of 0.85 mm/y. The
improvement in anti-corrosion was due to the coupling effect of a refined microstructure and dense
degradation film on the large deformation hot-rolled alloy. Furthermore, the elements Mn and Er
participated in the film formation and stabilized the film structure.

Keywords: degradation film; refined microstructure; micro-galvanic corrosion; various rolling reduction

1. Introduction

Mg-based alloys have been regarded as excellent biomedical materials and achieve
complete degradation due to a low density, good progressing ability and specific elastic
modulus, which is similar to natural bone [1,2]. Nonetheless, in an electrolyte environment
with a large number of corrosive ions (Cl−, HPO4

2−, CO3
2−, etc.), mechanical integrity

may be lost prematurely, even causing tissue necrosis [3–5]. A low absolute strength and
relatively low corrosion resistance are two main disadvantages that restrict wide industrial
and clinical applications of Mg alloys. They are essential to improving the corrosion
resistance by alloying elements and performing the deformation process of magnesium
alloys for their successful application as bearing structures and implant materials.

The element Er has not been extensively studied to enhance the anti-corrosion abil-
ity, while the mechanical property has been significantly improved by using Er [6–9].
For decades, the corrosion behaviors of Mg-RE-Zn-based alloys containing Mg12YZn,
which have long-period stacking-ordered (LPSO) and (Mg, Zn)3Gd phases, have been
reported [10–14]. A refined microstructure and compact layers can enhance the corrosion
resistance by reducing the micro-galvanic intensity, facilitating the reaction kinetics of film
formation and stabilizing the film layer [15–20]. Panemangalore et al. [21] found that the
corrosion resistance of Mg-2Zn was greatly enhanced by the addition of the element Er
(2 wt.%). The corrosion rate decreased from 0.13 to 0.078 mm/y.

Moreover, thermal deformation processes, such as extrusion and rolling, are regarded
as effective ways to modify the corrosion resistances of magnesium alloys. Rolling, a
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significant manufacturing technology for Mg strips or plates, has the advantages of high ef-
ficiency and flexibility among all thermal mechanical processes. It can modify the corrosion
behavior of Mg alloys by using a refined grain size, reduced segregation and redistributed
precipitates. Koleini et al. [22] stated that the hot-rolled process remarkably reduced the
high-corrosion tendency of an as-cast Mg-1Ca alloy in an SBF (simulated body fluid) so-
lution. Xiang et al. [23] reported that a current density reduced from 9.5 ± 1.2 × 10−4 to
2.5 ± 2.0 × 10−4 A/cm2 by using the hot-rolled process. Furthermore, Estrin et al. [24]
reported that a Mg-4Li-1Ca alloy, processed by using two-step rolling, showed superiority
in bone implants. Bakhsheshi-Rad et al. [25] stated that the corrosion resistance is related to
the secondary phase. However, corrosion occurs preferentially at the interface between the
LPSO phase and the Mg matrix. The 18R-LPSO phase combines well with the matrix and
also keeps a high corrosion resistance. Thus, the corrosion resistance of a Mg-Zn-Y-Er alloy
can be improved. These opinions provide a new perspective for developing Mg-Zn-Er
alloys. Moreover, the elements Er and Mn are considered to be beneficial to the corrosion
behavior of Mg alloys [26,27].

Until now, little research has referred to the corrosion behavior of Mg-Er alloys. In this
study, a Mg-2Zn-2Er-0.3Mn-0.3Zr (wt.%) (MZEZM) alloy was used to study the influence
of hot rolling on the corrosion resistance of MZEZM. Weight loss tests, electrochemical
tests and corrosion morphology observations were systematically performed to evaluate
the corrosion rate with different processing conditions in Hank’s solution. Finally, the
degradation mechanism, by using the synergistic effect of the refined-grain structure and
the stability of the corrosion film, was revealed.

2. Materials and Methods
2.1. Materials Fabrication

Mg-2Zn-2Er-0.3Zr-0.3Mn was prepared by using an electric resistance furnace (MRL-8,
Huizhou Tianji Magnesium Industry Co., Ltd., Guangdong, China). The alloy elements Zn,
Er, Mn and Zr were added by melting pure zinc (99.9% purity), Mg-30Zr (99.9% purity),
Mg-10Mn (99.9% purity) and Mg-20Er (99.9% purity) master alloys. To ensure proper
alloying, the master alloys were melted at 750 ◦C for 20 min under a protective gas of
N2 and SF6 with a volume ratio of 6:1. Then, the molten alloy was poured into graphite
molds with zinc oxide coatings. The as-cast samples were annealed at 350 ◦C for 12 h and
cooled down in air. The total reductions in thickness were 25 (2 steps), 50 (5 steps) and 75%
(9 steps), named HR-25, HR-50 and HR-75, respectively. Between each two-rolling step,
samples were reheated to 350 ◦C for 10 min. The deformation of each pass was less than
15%, which was intended to avoid cracking.

2.2. Microstructure Characteristics

Test specimens were mechanically ground on silicon carbide sand paper (#160, #400,
#800, #1500, #2500 and #3000) in sequence, then polished and etched with a mixed solution
of 4 g picric acid, 3.6 mL glacial acetic acid, 70 mL absolute ethanol and 16.4 mL deionized
(DI) water. The corrosion product was removed by using a 200 g/L CrO3 and 10 g/L AgNO3
solution for 60 s and then was weighted with analytical balances. The microstructures
were revealed by using optical microscopy (OM, DM6M, Leica, Brackenheim, Germany), a
scanning electron microscope (SEM, Scios, FEI Company, Brno, Czech Republic) and an
electron probe micro-analyzer (EPMA, JXA-8230, Rigaku Corporation, Yamanashi, Japan),
which was equipped with a back-scattered electron imaging mode. Phase analyses were
performed with an X-ray diffractometer (XRD, D/MAX2500PC, JEOL, Tokyo, Japan) with
CuKα radiation at a scanning speed of 10◦/min.

2.3. Weight Loss Test

The samples for electrochemical tests were ground on SiC papers of up to 2500 grit
and then washed thoroughly with distilled water and dried by using cold air. For weight
loss testing in Hank’s solution, each sample with a cross-section of about 10 mm (RD:
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rolling direction) × 10 mm (TD: transverse direction) and a thickness of about 1.5 mm
was immersed for 7 days at 37 ◦C. After the immersion test, the corroded specimens were
carefully cleaned with a solution consisting of 200 g/L of CrO3 and 10 g/L of AgNO3 at
100 ◦C, and then the mass changes were measured with a precision balance. The corrosion
rate (mm/y) was calculated by using the following equation [28]:

CR = 8.67 × 104 × ∆W/(A·T·D) (1)

where ∆w was the weight loss after the immersion test, g; A was the surface area of the
samples, cm2; T was the period of the immersion test, hours and D was the density of the
sample, g·cm−3.

2.4. Electrochemical Testing

All the electrochemical measurements were performed at an electrochemical work
station (CORRTEST CS2350, Wuhan, China) with a conventional three-electrode system
in Hank’s solution, incorporated with a saturated calomel electrode (SCE), a Pt counter
electrode and a working electrode (testing materials). Electrochemical measurements were
conducted on samples with an area of 1 cm2. The samples were immersed in Hank’s
solution for 15 min to obtain a relatively stable open-circuit potential (EOCP). Then, the
potentiodynamic polarization was set with a scan rate of 1 mV and a scan range from
−0.6 V to 0.6 V (relative to EOCP). Three samples were tested for each electrochemical to
reduce errors. The Tafel extrapolation method was used to fit polarization curves using
the software CView (Version 3.5d, Scribner Associates, Inc., Southern Pines, NC, USA).
In Equation (2), the corrosion rate Pi (mm/y) could be calculated by using the corrosion
current density, icorr (µA/cm2) [28]:

Pi = 22.85 icorr (2)

Furthermore, the corrosion resistance of the sample was evaluated by using elec-
trochemical impedance spectroscopy (EIS) measurements in Hank’s solution at a body
temperature of 37 ◦C. The EIS measurements were obtained (100 kHz~100 mHz) with
an amplitude signal of 5 mV (EOCP). The EIS data were fitted and analyzed by using the
software Zsimpwin (Version 3.60, EChem Software, Ann Arbor, Michigan, USA). At least
three samples were tested for each composition for the electrochemical measurements to
ensure accuracy.

2.5. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS, Thermo Scientific EACALAB Xi+, Ther-
moFisher, Waltham, MA, USA) measurements were performed on the films of corroded
MZEZM alloys to analyze the compositions of the corrosion products. The software Avan-
tage (Version 5.948, Micro Focus Ltd., Newbury, UK) was used to fit the XPS data. A C1s
peak (284.6 eV) was used to correct the binding energy scale.

3. Results
3.1. Microstructural Characterization

Figure 1 shows the OM microstructures of the as-cast and hot-rolled (HR) samples. For
the HR samples, the horizontal direction was the hot-rolled direction. At the deformation
of 25%, a large number of lamellar twins appeared in the Mg matrix, accompanied by the
phenomenon of a twin–twin intersection in the original grains. The dynamic recrystalliza-
tion (DRX) nucleation began to occur at the twin–twin intersection (Figure 1b). With the
increase in the deformation, the fraction of DRX increased. A large number of equiaxed
grains existed in the HR-50 and HR-75 alloys due to the large deformation process. Figure 2
shows EPMA images of the HR-75 alloy, which represent the α-Mg grains, secondary
phases and element distributions. An EPMA analysis was carried out in order to further
analyze the distributions of the other micro-alloying elements in the alloys. Figure 2 shows
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the element maps of Mg, Zn and Er. The elements Zn and Er are obviously enriched in the
secondary phases, which are located at the grain boundary. During the hot-rolled progress,
the secondary phases were broken.

Figure 1. (a–d) Optical micrographs of as-cast, HR-25, HR-50 and HR-75 samples.

Figure 2. EPMA analysis of secondary phase distributions of HR-75 alloy (a) Mg element, (b) Zn
element, (c) Er element, (d) Mn element, (e) Zr element and (f) microstructure of the secondary phase.



Metals 2022, 12, 365 5 of 14

Figure 3 shows the XRD patterns of the Mg-2Zn-2Er-0.3Zr-0.3Mn as-cast and hot-rolled
alloys, respectively. In the picture, the diffraction peaks of the W phase (face-centered cubic
phase, Mg3Zn3Er2) and α-Mg are observed. A small Mg-Zn binary phase was detected in
the as-cast and HR samples. Moreover, with the hot-rolled process, the α-Mg (0002) and
(2112) peak of the sample shifted to a higher angle, which indicated that the basal texture
increased during the deformation process. A reflection of lattice distortion was caused by
macroscopic residual stress.

Figure 3. XRD pattern of the as-cast and hot-rolled alloys.

3.2. Corrosion Behavior of MZEZM Alloy in Hank’s Solution
Weight Loss Test

The weight loss rates of the four samples after immersion in Hank’s solution for 7 days
was measured, and the responsible data are listed in Table 1. The weight loss rates of the
as-cast and HR-25 samples were larger than those of the other two samples during the
immersion test, implying that the as-cast and HR-25 alloys suffered more corrosion damage.
It should be mentioned that the corrosion rates of the HR-25, HR-50 and HR-75 alloys
decreased in turn by 1.72, 1.08 and 0.85 mm/y, respectively.

Table 1. Corrosion rates of four samples.

Sample Corrosion Rate (mm y−1)

As-cast 1.13
HR-25 1.72
HR-50 1.08
HR-75 0.85

3.3. Corrosion Morphologies
3.3.1. The Morphologies and Qualities of Corrosion Products

Figure 4 shows the SEM images of the surface morphologies of the as-cast and hot-
rolled alloys after immersion in Hank’s solution for 7 days. The surfaces of all the alloys
were covered by accumulated corrosion products. The quantities of corrosion production
had increased in the order of HR-25, as-cast, HR-50 and HR-75, suggesting that the HR-75
alloy exhibited the best corrosion resistance. After a 7 day immersion test, a corrosion
product layer with a micro-crack covered the surfaces of the HR-75 and HR-50 alloys, while
a large number of white precipitation clusters dispersed on the surfaces of the other two
samples (Figure 4e). Corrosion products in the shape of needle-like clusters are a typical
morphology of brucite [Mg(OH)2] [29], which grows perpendicular to the surface. The
XRD data presented in Figure 4g proves that the corrosion products were mainly composed
of Mg(OH)2, HA (hydroxyapatite) and MgCO3.
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Figure 4. (a–d) Surface morphologies of as-cast, HR-25, HR-50 and HR-75 alloys after immersion in
Hank’s solution for 7 days, (e) enlarged image of the corrosion film, (f) EDS of the corrosion product
and (g) XRD patterns of the films of four alloys.
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3.3.2. Corrosion Morphology Analysis

After the immersion in Hank’s solution for 7 days, severe localized corrosion was
found on the as-cast and HR-25 samples; in contrast, the HR-50 and HR-75 samples revealed
uniform corrosion and filiform corrosion. The corrosion films shown in Figure 4a,b reflect
that the films were rugged and sparse, which improved the possibility of corrosion ions
contacting the substrate. A large number of corrosion pits and gullies, which can be found
in Figure 5a,b, improved the ions’ ability to pass through the channel in the sparse corrosion
film and produce a strong galvanic corrosion reaction with the substrate. On the contrast,
the films of the HR-50 and HR-75 samples were dense and smooth, which was implied by
the characteristics of filiform and uniform corrosion (Figure 5c,d).

Figure 5. Corroded surface morphologies of the (a) as-cast alloy, (b) HR-25 alloy, (c) HR-50 alloy and
(d) HR-75 alloy after immersion in Hank’s solution for 7 days.

3.3.3. Polarization Tests

The polarization curves of the as-cast and HR samples after their immersion in an
electrolyte for 500 s are shown in Figure 6. The values of corrosion potential (Ecorr) and the
corrosion current densities (icorr) extracted from the polarization curves are illustrated in
Table 2. The βc represents cathodic slopes. The values of icorr increased with the increase
in the rolling reduction. The polarization curves of the as-cast, HR-50 and HR-75 samples
had similar characteristics, and a breakdown potential (Ept) appeared near the potential of
−1.3 V, which indicated that a temporary protective oxide film was formed on the surface
of the sample. A breakdown potential did not exist in the HR-25 alloy. The HR-25 sample
had the largest icorr. The corrosion rate decreased in the following order: HR-25 > as-cast >
HR-50 > HR-75; it showed the same tendency with the weight loss test.
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Figure 6. Polarization tests of the as-cast and HR alloys in Hank’s solution.

Table 2. Polarization-curve fitting results.

State Ecorr (VSCE) βc icorr (µA/cm2) Corrosion Rate (mm/y)

As-Cast −1.47 −2.64 57.15 1.31
HR-25 −1.46 −2.91 125.89 2.88
HR-50 −1.44 −3.02 44.16 1.01
HR-75 −1.46 −3.40 37.41 0.85

3.3.4. Electrochemical Impedance Spectroscopy (EIS)

Nyquist curves were plotted from the EIS measurement in Hank’s solution (Figure 7)
to further reveal the evolution of degradation behavior during immersion. An equivalent
electrical circuit is shown in Figure 7 to fit the EIS data. The EIS of the as-cast, HR-25
and HR-50 samples contained a capacitance loop (high frequency), a capacitance loop
(medium frequency) and an inductance loop (low frequency). The inductance loop of
HR-75 was small. Rs represented the solution resistance, while the layer resistance (Rf)
paralleled with a constant phase element (CPEf), which was related to the oxidized layer.
Rct represented the charge transfer resistance related to the dissolution. Moreover, the
double layer capacitance in parallel with Rct was represented by CPEdl with the inductance
L, which represented the occurrence of a localized corrosion or micro-galvanic event. The
comparison of EIS plots proved that there was a better protection ability of the film of
HR-75 formed in Hank’s solution than the others.
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Figure 7. Nyquist plot and equivalent circuits.

3.3.5. XPS

To obtain more information about the possible corrosive product, XPS spectra for
Mn2p and Er in Hank’s solution were measured and plotted in Figure 8. As displayed in the
XRD diffraction in Figure 4g, Mg(OH)2, HA and MgCO3 were enriched in the outer layers
of the corrosion products, hinting that the Mg, C, O and P elements precipitated to form
the corrosion products during the degradation in Hank’s solution. Nevertheless, according
to the XPS survey spectrum in Figure 8, Mn and Er were detected in the corrosion layer.
However, the signal of Er4d was low and noisy, confirming the existence of a small amount
of the element Er in the corrosion layer.

Figure 8. XPS analysis of the corrosion products formed on the HR-75 alloy: (a) Mn2p spectrum
(b) and Er4d spectrum.

4. Discussion

According to the electrochemical results, the film morphology and the immersion
analysis, there was a significant improvement in the corrosion resistance of the hot-rolled
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MZEZM alloy with a large deformation. The results showed that the refined microstructure
was beneficial for ameliorating the corrosion activity. The percentage of grain boundaries
became greater with the smaller grains. Since the activities of the grain boundaries were
different from those of the cores, a large number of the grain boundaries could achieve
uniform corrosion. Another factor influencing the corrosion activity of the MZEZM alloy
was twins. A large amount of deformation twins was observed in the microstructure of
HR-25. The deformation twins increased the galvanic corrosion; therefore, HR-25 showed
the fastest dissolution rate.

4.1. Microstructure of MZEZM

The as-cast MZEZM had coarser grains with a grain size of about 600 µm, while the
HR-50 and HR-75 alloys had more refined grain microstructures of about 8 and 6 µm,
approximately 1/75 and 1/100 of the original grain sizes. The HR-25 alloy contained a
large number of twins surrounded by small grains. The dynamic recrystallization during
the hot-rolled process promoted the grain refinement.

The element Er exhibited a good solubility in Mg at a high temperature. With the
decrease in temperature, a Mg3Zn3Er2 phase was observed in the grains and on the bound-
aries (Figure 2). The element Er also refined the microstructure effectively and reduced the
mismatch stress between the α-Mg matrix and the surface, which could decrease the pitting
initiation [30]. The controlled addition of Zr and Zn could suppress the adverse effects of
the harmful impurities (Fe, Cu, Ni) on corrosion resistance [31,32]. The element Zr could
also refine grain size by provide heterogenous nucleation sites. Mn is a common alloying
element in Mg alloys because it refines the microstructures of Mg-Zn, Mg-Zn-RE, etc. by
using PSN (particle stimulated nucleation). The inhibition effect of the Mn element on the
growth of DRX is strong during the elastic deformation process [33]. Moreover, a Mn oxide
film acts as a barrier against Cl ion penetration and improves the corrosion properties.

4.2. Comparison of Corrosion Resistances of As-Cast and Hot-Rolled MZEZM Alloys in
Hank’s Solution

The corrosion rate values from the immersion in Hank’s solution highlighted the
difference between the as-cast and hot-rolled MZEZM alloys (Table 1). The as-cast sample
exhibited a larger corrosion rate than the HR-50 and HR-75 samples, while HR-25 showed
the highest corrosion rate. Since a large number of twins were produced during the
deformation (which can decrease the electrochemical potential of a Mg substrate and
increase the anodic dissolution, as shown in Figure 1b), there was a strong micro-galvanic
event between the secondary phases and the matrix [34]. After the 7 day immersion test,
it was possible to observe small particles, which stacked on the surface (Figure 4b) and
were identified as Mg(OH)2 and MgCO3 (Figure 4g) [35,36]. The non-uniform roughened
surface showed that the intense hydrogen evolution caused the constant and heterogeneous
spalling of the corrosion products from the surface. The intensities of the peaks of corrosion
products (Figure 4g), such as Mg(OH)2 and MgCO3, did not follow a certain rule, probably
due to the spalling of the oxidation corrosion products. Figure 8 shows that the elements
Mn and Er participated in the formation of a corrosion film. Although the element Mn
stabilized the film structure [37,38], the severe hydrogen evolution effect had a stronger
damage effect on the film layer.

This study confirmed that a large thickness-reduction hot-rolled process can enhance
the corrosion resistance of an MZEZM alloy by producing a uniform structure, fine grains
and a stable corrosion film. An oxide film can easily form when an MZEZM alloy immerses
in Hank’s solution. An active dissolution occurs during the immersion test. Twins and
impurities, such as Fe, Ni and Cu, act as cathodes, which are more inter- than anode Mg,
thus promoting the micro-galvanic corrosion (reaction (3)–(5)) [39,40]. Then, a porous
magnesium hydroxide film is formed on the surface.

2H2O + 2e− → 2OH− + H2↑ (3)
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Mg→Mg2+ + 2e− (4)

Mg + 2H2O→Mg(OH)2 + H2↑ (5)

Figure 6 shows the potentiodynamic polarization measurement of the immersion
in Hank’s solution. The corrosion rates from large to small are HR-25, as-cast, HR-50
and HR-75. The current density plateaus on the anodic curves of as-cast, HR-50 and
HR-75 were observed and attributed to the protective corrosion film on the surface. On
the contrary, the current density of HR-25 increased monotonously. This was consistent
with the formation of non-protective properties. This indicated that the twins destroyed
the uniformity and integrity of the film. Due to the large deformation, the defects in the
matrix were greatly reduced, and HR-75 showed a uniformly corroded surface with the
best corrosion resistance.

To further reveal the evolution of corrosion behavior during immersion, Nyquist plots
were obtained from the EIS measurement in Hank’s solution (Figure 7). The XRDs of HR-25
and HR-50 indicated larger amounts of corrosion products than HR-75 due to the violent
hydrogen-evolution reaction. The reaction produced a loose and porous corrosion film and
promoted a continuous reaction between the matrix and corrosion ions. The subsequent
reactions produced more corrosion products. The dense and flat corrosion film of HR-75
acted as a physical barrier to slow down local corrosion initiation and expansion. This was
consistent with EIS and polarization curves. HR-75 had the largest Rct, which indicated
that the refined grains could obtain a corrosion film with a good compactness and integrity.
In addition, HR-75 showed a small attendance of pitting corrosion, which corresponded to
the unobvious low frequency inductance curves. An inductance loop in the low frequency
region could be observed from the other three loops (Figure 7), indicating the breakdown
of reaction layers. Table 3 shows that the solution resistances (Rs) of the four samples
were approximately same, around 10 Ω·cm2. The charge transfer resistances (Rct) and
resistances of the films (Rf) determined the corrosion resistances of the alloys. According
to the diameter of the loop and fitting parameters, the degradation rates of the samples
were HR-25, as-cast, HR-50 and HR-75, in increasing order. Moreover, a larger diameter
of the semicircle in the Nyquist plot represented a more superior corrosion protective
property [41]. The HR-75 plot showed a much more superior impedance at any frequency
than the other three plots. The almost invisible low frequency inductance loop meant that
the corrosion film was relatively complete and prevented the local corrosion [42]. The film
resistances of HR-50 and HR-75 were much larger than those of as-cast and HR-25 (Table 3).
The comparison of EIS plots proved that the films of as-cast and HR-25 contained weak
protection abilities. Moreover, the large Rct of HR-50 and HR-75 indicated that the kinetics
of Mg dissolution and hydrogen gas evolution were slower than in the as-cast and HR-25
alloys due to the protection of the uniform and dense films. In addition, HR-75 showed an
excellent corrosion resistance compared to the corrosion behaviors of the other hot-rolled
alloys (Table 4).

Table 3. Fitting results of the EIS spectra.

Sample Rs (Ω·cm2)
CPEf

(µΩ−1·cm−2·sn) n1
Rct

(Ω·cm−2)
CPEdl

(µΩ−1·cm−2·sn) n2 Rf (Ω·cm2) L (H·cm2)

As-cast 10.57 196 0.80 192.7 4.78 0.89 44.27 37.73
25% 9.80 27.61 0.93 327.5 5.85 0.88 48.2 31.41
50% 11.68 2.67 0.92 60.28 44.0 0.80 597.20 1062
75% 10.08 1.8 0.98 1145 1185 0.90 401.6 -
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Table 4. Comparison of corrosion rates of hot-rolled Mg alloys in literature and this work.

Alloy Solution Corrosion Rate (mm/y) Reference

HR-75 Hank’s 0.85 This work
Mg-1.5Sn-0.5Ca 0.35 wt.%NaCl 4.31 [43]

Mg-1.5Sn-0.5Ca-0.1Ce 0.35 wt.%NaCl 3.12 [43]
AZ31 0.5 M NaCl 10.3 [44]

Mg-8Sn-1Al-1Zn 0.6 M NaCl 19 [45]
Mg-2Zn-0.2Mn-0.62Nd Kokubo 0.92 [15]

Mg-5Gd 3.5 wt.% NaCl 0.7 [46]
Mg-4Li-1Ca SBF 12.3 [47]

Mg-4Li SBF 104 [47]

5. Conclusions

In this study, Mg-2Zn-2Er-0.3Zr-0.3Mn alloys were prepared by using as-cast and
hot-rolled processes. The microstructure and the corrosion behavior of Mg-2Zn-2Er-0.3Mn-
0.3Zr in Hank’s solution were systematically investigated. The HR-75 alloy showed a good
corrosion resistance and had an excellent potential in the field of high-corrosion resistant
Mg-alloy materials. Some conclusions were obtained:

1. The main phase composition included an α-Mg matrix, a W phase and a Mg-Zn phase.
With the increase in the hot-rolled reduction, the degree of dispersion distribution of
the secondary phase increased. The main factors influencing the corrosion resistance
of Mg-Zn-Er-Mn-Zr were the grain size contribution and the film structure. The better
long-term degradation performance of the alloy with a large deformation was due
to the different structure of the oxide film and the secondary phase and due to the
refined grains. The worst corrosion resistance of HR-25 was due to the generation
of twins.

2. According to the results of the electrochemical test, the corrosion rates of the four
samples were in the order of HR-25, as-cast, HR-50 and HR-75 with the corrosion
rates of 2.88, 1.31, 1.01 and 0.85 mm/y, respectively. The reason for the abnormal
corrosion rate of HR-25 was that the non-uniform grain-size distribution enhanced the
hydrogen evolution effect, leading to the spalling of the oxidation corrosion products
and resulting in the weak corrosion resistance of HR-25.

3. The reasons for the high corrosion resistance of HR-50 and HR-75 were that the
fine-grain and homogeneous structure could reduce the hydrogen chemical kinetics,
protect the integrity of the film and insulate the contact reaction between the erosive
ions and the substrate.
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