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Abstract: Texture and microstructure evolution during high-temperature plane-strain compression
in Fe-3.0 wt.% Si alloy has been investigated by micro-texture analysis and modeling. In this study,
hot deformation test is performed on the temperature range of 900 ◦C~1150 ◦C with a strain rate
scope of 0.01 s−1~5 s−1, and the effect of deformation parameters is investigated by means of electron
backscattered diffraction. Nucleation and growth assisted by strain-induced boundary migration
result in strong {001}<110> and {001}<210> texture components with low Taylor factors, and the grain
size of λ fiber increases significantly by consuming the {111}<110> and {111}<112> texture components
with high Taylor factors. The critical Taylor factor above which nucleation by strain-induced boundary
migration cannot occur, decreases continuously during hot deformation. With the decreasing critical
Taylor factor, the increment rate of low-Taylor-factor orientation depends more sensitively on Taylor
factor than the decrement rate of high-Taylor-factor orientation. The boundary separating enhanced
and weakened orientations moves towards lower Taylor factor with the deformation proceeding, and
medium-Taylor-factor texture components may experience a reversed change from enhancement
to weakness. A quantitative model is proposed to describe texture development by incorporating
the oriented nucleation probability dependent on a variable critical Taylor factor and the selective
growth driven by a variable Taylor factor difference between adjacent grains. The present work
can provide an efficient method for optimizing hot deformation texture by means of strain-induced
boundary migration.

Keywords: texture; strain-induced boundary migration (SIBM); hot deformation; Taylor factor;
silicon steel

1. Introduction

Hot deformation texture plays a vital role in texture development through thermo-
mechanical processing. The textures in cold deformation and annealing are known to
be inherited from hot deformation texture [1,2]. For example, recrystallization γ fiber
(<111>//ND) is the ideal product texture for deep drawability in interstitial-free steels,
where γ fiber and λ fiber (<001>//ND) are the favorable and unfavorable hot deformation
textures, respectively [3,4]. In contrast, λ fiber is the ideal texture for magnetic prop-
erties in non-oriented electrical steels, which derives from hot deformation λ fiber and
retains during cold deformation and final annealing [5–7]. Therefore, the precise control
on hot deformation texture is the prerequisite to optimize the final product texture and
performance [8,9].

The texture evolution during hot deformation results from the crystal orientation rota-
tion [10,11], as well as the formation and migration of high-angle grain boundaries [12–14],
which is closely related to initial texture and deformation parameters. The difference
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in stored strain energy between adjacent deformed grains has a great effect on texture
evolution in terms of strain-induced boundary migration (SIBM) [15,16]. The enhancement
of texture components with low stored strain energy has been frequently observed under
hot deformation [17,18].

Taylor factor is normally used to represent the stored strain energy dependent on grain
orientation approximately [19]. The texture components with various Taylor factors can
exhibit a variety of evolution during hot deformation. In torsion of Ti-IF steel, {112}<111>
with Taylor factor 1.7 increases, and {110}<112> with Taylor factor 2.5 decreases as the
true strain changes from 1.9 to 4.9 [20]. In plane-strain compression of Fe-3.0 wt.% Si
alloy, {001}<110> with Taylor factor 2.1 increases and γ fiber with Taylor factor 3.5 reduces
with the strain rate decreasing from 5.0 × 10−3 s−1 to 5.0 × 10−5 s−1, whereas {112}<110>
having Taylor factor 3.2, increases from 5.0 × 10−3 s−1 to 5.0 × 10−4 s−1 and reduces from
5.0 × 10−4 s−1 to 5.0 × 10−5 s−1 [21]. In torsion of Ni-30 wt.% Fe alloy, {111}<110> with
Taylor factor 1.7 increases through the dynamic recrystallization (DRX) process, while
{110}<110> with Taylor factor 3.0 decreases below 90% DRX fraction and remains nearly
unchanged above 90% DRX fraction [22]. In plane-strain compression of Ni-30 wt.%
Fe-Nb-C alloy, {001}<100> with Taylor factor 2.5 does not change obviously below 20%
and increases significantly at a larger DRX fraction, while {110}<112> with Taylor factor
2.7 decreases first and then remains constant beyond 20% DRX fraction [23].

The enhancement of texture components with low Taylor factors is basically related
with the boundary migration of original grains or newly formed grains assisted by a
strain-induced bulge process. Kestens [24] and Sidor [25–27] proposed a low-Taylor-factor
nucleation model that deformation orientations with Taylor factors below a critical value
nucleate with a constant probability. Baczynski and Jonas [20] suggested that texture
components below critical Taylor factor can only nucleate with the probability dependent
on both critical and minimum Taylor factors. Actually, various texture components show
distinct evolution kinetics and even reversed tendency with the continuously changing
Taylor factor range. However, the texture evolution process during hot deformation assisted
by SIBM has not yet well been described in consideration of a changing Taylor factor range,
although it is of great importance for in-depth understanding and accurate control of hot
deformation texture.

In this paper, hot deformation texture in Fe-3.0 wt.% Si alloy during plane-strain
compression at different deformation temperatures and strain rates was investigated. A
quantitative model was proposed to accurately describe the texture evolution due to SIBM
by tracking the variation of Taylor factor distribution during the hot deformation process.

2. Materials and Methods

Fe-3.0 wt.% Si hot rolled plates, containing 0.003 wt.% C, 3.0 wt.% Si, 0.02 wt.%
Mn, 0.001 wt.% S, 0.019 wt.% P and balance Fe, were annealed at 1150 ◦C for 10 min
to complete recrystallization. Hot deformation specimens with 5 mm in height (normal
direction, ND), 20 mm in width (transverse direction, TD), and 15 mm in longitudinal
length (rolling direction, RD) were prepared from the annealed hot rolled plates for plane-
strain compression on MMS-200 thermo-simulation machine. The specimen directions were
defined in reference to rolling mode, as shown in Figure 1. The temperature was controlled
by the electric current through the anvils and measured by the thermocouples welded onto
the surface at the thickness center of each specimen. The specimens were first heated at a
rate of 10 ◦C·s−1 to the target deformation temperature and held for 1 min to eliminate in-
specimen temperature gradient. The deformed specimens were required to have different
states. One was the deformed state without SIBM, and the others were deformed states
with different progressions of SIBM. Compression testing was carried out under the strain
rates of 1, 0.1, and 0.01 s−1 at 1150 ◦C, as well as 5 s−1 at 900 ◦C. After compressed to 50%
reduction, the specimens were quenched in water immediately to avoid the occurrence of
post-deformation thermally activated phenomena such as static recrystallization or grain
growth. Three specimens were used for each deformation condition to ensure statistics.
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(EBSD) on a JEOL JSM-7001F scanning electron microscope with an electron accelerating 
voltage of 15 KV at a working distance of 15 mm. The undeformed and deformed parts of 
the compressed specimen were cutting separation, and the mid-plane of RD-TD sections 
of both parts were prepared for EBSD specimens. EBSD measurement was performed us-
ing a step size of 15 μm for general characterization, and a step size of 4 μm was adopted 
for local enlarged map. To facilitate the EBSD measurement, a scanned area of 5 mm × 20 
mm for each specimen was cut into two parts with the area of 5 mm × 10 mm. Thus, a total 
area of about 15 mm × 20 mm were scanned for each deformation condition. The speci-
mens for EBSD analysis were prepared by first mechanical polishing, and then elec-
tropolishing in a solution of 92% ethanol and 8% perchloric acid for 15 s at 20 V at the 
temperature of 0 °C. 

3. Results and Discussion 
3.1. Microstructure Evolution during Hot Deformation 

Figure 2 illustrates the orientation image map and texture of hot compression speci-
mens reconstructed from EBSD data. The initial microstructure mainly consists of equi-
axed grains distributed between 100~400 μm and composed of γ fiber with peak at 
{111}<112>, α fiber (<110>//RD) with peak at {114}<110> and λ fiber with peak at 
{001}<210>. 

 
Figure 2. (a) Orientation image map and (b) constant ϕ2 = 45° section of ODF (levels: 1, 2, 3…) of hot 
compression specimens. 

Figure 1. Schematic drawing of the plane-strain compression.

Texture and microstructure were analyzed by electron backscattered diffraction (EBSD)
on a JEOL JSM-7001F scanning electron microscope with an electron accelerating voltage
of 15 KV at a working distance of 15 mm. The undeformed and deformed parts of the
compressed specimen were cutting separation, and the mid-plane of RD-TD sections of
both parts were prepared for EBSD specimens. EBSD measurement was performed using a
step size of 15 µm for general characterization, and a step size of 4 µm was adopted for
local enlarged map. To facilitate the EBSD measurement, a scanned area of 5 mm × 20 mm
for each specimen was cut into two parts with the area of 5 mm × 10 mm. Thus, a total area
of about 15 mm × 20 mm were scanned for each deformation condition. The specimens for
EBSD analysis were prepared by first mechanical polishing, and then electropolishing in a
solution of 92% ethanol and 8% perchloric acid for 15 s at 20 V at the temperature of 0 ◦C.

3. Results and Discussion
3.1. Microstructure Evolution during Hot Deformation

Figure 2 illustrates the orientation image map and texture of hot compression speci-
mens reconstructed from EBSD data. The initial microstructure mainly consists of equiaxed
grains distributed between 100~400 µm and composed of γ fiber with peak at {111}<112>,
α fiber (<110>//RD) with peak at {114}<110> and λ fiber with peak at {001}<210>.
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Figure 2. (a) Orientation image map and (b) constant ϕ2 = 45◦ section of ODF (levels: 1, 2, 3 . . . ) of
hot compression specimens.

Figure 3 shows the orientation image maps and average grain size of undeformed and
deformed parts of the compressed specimens reconstructed from EBSD data under different
hot deformation conditions. The undeformed parts experienced the same heating process
as deformed parts but without deformation. After compressed at 900 ◦C with 5 s−1, most
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grains are highly elongated with small bulges of original grain boundaries and small grains
having low Taylor factors (Figure 3b). There appear some large λ grains with the lowest
Taylor factors, indicating the local occurrence of SIBM. When deformed at 1150 ◦C with
1 s−1, most grain boundaries of λ grains are featured with bulges and a lot of small new λ

grains form in the deformed grains with relatively high Taylor factors (Figure 3d). A local
enlarged map of region I in Figure 3d clearly shows the bulges along the short boundaries of
small λ grains (Figure 3i). This suggests that the bulges of grain boundaries and formation
of small grains by SIBM dominate the evolution of microstructure during hot deformation.
Compressed at 1150 ◦C with 0.1 s−1, the average size of λ grains increases accompanied
by the growth of bulges and new λ grains, contributing to the evident enhancement of
λ texture (Figure 3f). After deformation at 1150 ◦C with 0.01 s−1, the average size of λ
grains increases further and λ texture consumes most of the other textures (Figure 3h).
The straight grain boundary dominates the microstructure, and λ grains consume most of
deformed grains with high and medium Taylor factors. Figure 3i shows the average grain
size of undeformed and deformed grains under different deformation conditions. Based on
the comparison of microstructure, average grain size and texture of undeformed parts, the
average grain size increases slightly with increasing deformation temperature and time;
however, λ grains have no advantage over other textures and there are no bulges and new
grains (Figure 3a,c,e,g). Therefore, SIBM is responsible for the microstructure and texture
evolution during hot compression in the present study.
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Figure 3. Orientation image maps of uncompressed and compressed parts of the specimens under
different deformation conditions of 900 ◦C and 5 s−1 (a,b), 1150 ◦C and 1 s−1 (c,d), 1150 ◦C and
0.1 s−1 (e,f), 1150 ◦C and 0.01 s−1 (g,h), (i) local enlarged map of region I in Figure 3d as well as
(j) average grain size of undeformed and deformed grains under different deformation conditions.
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3.2. Texture Evolution during Hot Deformation

Figure 4 presents texture characteristics under different hot deformation conditions.
Typical rolling textures consisting of α and γ fibers form after compression at 900 ◦C with
5 s−1 (Figure 4a), corresponding to little bulges and new grains. With the increasing defor-
mation temperature and decreasing strain rate, {001}<110> and {001}<210> components
are enhanced continuously. The {112}<110> component exhibits a nonmonotonic change
that it decreases by compression with 1150 ◦C and 1 s−1 (Figure 4b) and remains nearly
constant after compression with 1150 ◦C and 0.1 s−1 (Figure 4c), while decreases again with
further decreasing strain rate (Figure 4d). In contrast, the γ fiber decreases continuously
in hot deformation process, and is nearly exhausted after compression with 1150 ◦C and
1 s−1 (Figure 4b). Onuki [21] observed the similar result of the increase of {001}<110> and
decrease of γ fiber in plane-strain compression of Fe-3.0 wt.% Si alloy and considered the γ

fiber to be consumed by the preferential growth of {001}<110>. Thus, the texture evolution
confirms that the hot deformation process is characteristic of low-Taylor-factor texture
components consuming those with relatively high Taylor factors.
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and 5 s−1, (b) 1150 ◦C and 1 s−1, (c) 1150 ◦C and 0.1 s−1, (d) 1150 ◦C and 0.01 s−1.

To identify SIBM effect, the contribution of SIBM to texture evolution is extracted by
subtracting the hot deformation texture without SIBM from the hot deformation texture
with SIBM. The four hot deformation conditions represent different texture development
stages by SIBM, which can be quantitatively described by total low-Taylor-factor volume
fraction increments. The deformation with 900 ◦C and 5 s−1 approximately corresponds to
the stage with little SIBM effect. Figure 5 shows the orientation density variation of main
texture components between adjacent stages. At an early stage, {001}<110> component
exhibits the largest increase in orientation density, and {001}<210> and {001}<100> com-
ponents keep nearly constant, while {112}<110>, {111}<110> and {111}<112> components
present a similar decrease. In the second stage, {001}<110> and {001}<210> components
have a large increase in orientation density, while {001}<100>, {112}<110>, {111}<110>
and {111}<112> components remain nearly unchanged. In the third stage, {001}<110>
and {001}<210> components exhibit an increase in orientation density, while {001}<100>,
{111}<110> and {111}<112> components keep nearly constant, and {112}<110> component
shows a large decrease. Accordingly, at an early stage of the SIBM effect, the critical orien-
tation boundary separating the enhanced and weakened texture components (olive lines in
Figure 5) is the orientation line deviated about 30◦ from γ fiber. Afterwards, there occurs a
moderate change in orientation density but with an obvious convergence of critical orienta-
tion boundary towards {001}<110>. The orientation density variation and shift of critical
orientation boundary indicate that the texture components with high Taylor factors are
preferentially consumed by those with low Taylor factors, and the texture components with
medium Taylor factors may experience a reversed change from enhancement to weakness
with the proceeding SIBM effect.
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3.3. Texture Evolution Model

Baczynski and Jonas [20] proposed a low-Taylor-factor nucleation model, where the
nucleation probability (PN

gi
) of low-Taylor-orientation gi is written as follows:

PN
gi
= exp[−

(
Mgi − Mmin

M0 − Mmin

)n
] (1)

Here, n is a Gaussian exponent, M0 is the critical Taylor factor, Mmin is the minimum Taylor
factor, and Mgi is the Taylor factor of orientation gi. Beladi [18,22] reported the prominent
mechanism for texture evolution in Ni-30%Fe austenitic alloy is the preferred nucleation of
low-Taylor-factor component by SIBM. In the case of microstructure and texture evolution
by SIBM, PN

gi
can actually reflect the fraction of grain boundaries surrounding orientation gi

that can bulge. Based on the shift of critical orientation boundary during hot deformation
in the present study, a variable critical Taylor factor is required in the description of texture
evolution by SIBM.

Here, a quantitative model is proposed to differentiate the evolution of various texture
components, where the Taylor factors involved in nucleation probability (Equation (1))
and growth rate dependent on the Taylor factor difference between adjacent grains are
all employed as a variable. The volume fraction increment (∆Vgi ) of a low-Taylor-factor
orientation gi within one strain step is written as:

∆Vgi= KPN
gi

Sgi

(
MA

gi
− Mgi

)
(2)

where K is a constant, Sgi is the grain boundary area of orientation gi, MA
gi

is the averaged
Taylor factor of adjacent grains surrounding the grains with orientation gi. Neglecting
the grain size difference among low-Taylor-factor texture components, the proportion of
volume fraction increment of orientation gi ( fgi ) in total increments of all low-Taylor-factor
texture components within one step is:

fgi= PN
gi

Vgi

(
MA

gi
− Mgi

)
/

(
l

∑
i=1

PN
gi

Vgi

(
MA

gi
− Mgi

))
(3)

where l is the number of low-Taylor-factor texture components, Vgi is the volume fraction
of orientation gi. Similarly, the proportion of volume fraction decrement of orientation gj
( fgj ) in total decrements of all high-Taylor-factor texture components within one step is:

fgj= Vgj

(
Mgj − MA

gj

)
/

(
m

∑
j=1

Vgj

(
Mgj − MA

gj

))
(4)

where m is the number of high-Taylor-factor texture components, Vgj is the volume fraction

of orientation gj, Mgj is the Taylor factor of orientation gj, and MA
gj

is the averaged Taylor
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factor of adjacent grains surrounding the grains with orientation gj. Then, the volume
fraction increment of low-Taylor-factor orientation gi (∆Vgi ) within one step is:

∆Vgi = ∆V f gi
(5)

Here, ∆V is the total low-Taylor-factor volume fraction increments within one step.
Likewise, the volume fraction decrement of high-Taylor-factor orientation gj (∆Vgj ) within
one step is:

∆Vgj = ∆V f gj
(6)

In Equations (3) and (4), the parameters of l, m, Vgi , Vgj , MA
gi

and MA
gj

vary with dy-
namic process, which are updated after each step. Taylor factor is calculated by full constraint
Taylor model under plane strain, and 48 slip systems (12 × {110}<111>, 12 × {112}<111>
and 24 × {123}<111>) are considered [28,29]. The M0 value is obtained as the maximum
Mgi value among all low-Taylor-factor texture components within one step. Thus, texture
evolution based on SIBM can be accurately described by means of the oriented nucleation
probability dependent on a variable M0 and the selective growth driven by a variable
Taylor factor difference between adjacent grains.

3.4. Texture Evolution by SIBM

Texture evolution during hot deformation can be quantitatively deduced based on the
proposed model, as shown in Figure 6. The initial texture used in calculation concentrates
in α and γ fibers including {001}<110>, {001}<210>, {001}<100>, {112}<110>, {111}<110> and
{111}<112> components, which is reconstructed from the measured deformation texture
without SIBM (Figure 4a). The calculated texture at total low-Taylor-factor volume fraction
increments of 20%, 40%, and 60% are evidently consistent with the measurements corre-
sponding to three deformation conditions at 1150 ◦C (Figure 4b–d). With the increasing
total low-Taylor-factor volume fraction increment, {001}<110> and {001}<210> components
increase continuously, {112}<110> component gradually decreases and is exhausted at
low-Taylor-factor increment of 40%, while γ fiber reduces to zero at 50% low-Taylor-factor
increment. The {001}<100> component remains weak and changes little during texture evo-
lution by SIBM. Figure 7 plots the calculated M0 values and orientation density variation of
main texture components as a function of total low-Taylor-factor volume fraction increment.
The calculation based on the proposed model agrees well with the EBSD measurement
in Figure 5.

Baczynski and Jonas [21] calculated the texture evolution during hot deformation
with a quantitative model incorporating the oriented nucleation probability dependent
on an estimated constant M0 value and uniform growth. Figure 8 shows the calculated
orientation density variation of main texture components with the model of Baczynski
and Jonas between adjacent stages. Throughout hot deformation, the orientation density
variation of main texture components diverges significantly from the EBSD measurement
and the critical orientation boundary of the high/low-Taylor-factors remains unchanged.
Therefore, the calculation with an estimated constant M0 value and uniform growth is not
sufficiently sensitive to capture the main features of texture evolution. Accordingly, the
consideration of the dynamic evolution of M0 value and selective growth in the model is
necessary to quantitatively describe texture evolution by SIBM.
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3.5. Texture Evolution Rate

According to Equations (3) and (4), PN
gi

and MA
gi
− Mgi or Mgj − MA

gj
can represent

the texture evolution rate. Thus, the volume fraction increment rate of low-Taylor-factor
orientation gi (ugi ) is expressed as:

ugi= PN
gi

(
MA

gi
− Mgi

)
(7)

Similarly, the volume fraction decrement rate of high-Taylor-factor orientation gj (ugj )
is written as:

ugj= Mgj − MA
gj

(8)

As shown in Figure 9, the nucleation probability (PN
gi

) depends on the critical Taylor
factor (M0) and the investigated Taylor factor (M). With the decreasing M0, PN

gi
and ugi

have a higher sensitivity to M in the case of lower M0, while ugj exhibits a relatively lower
sensitivity to M regardless of M0 range.
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Figure 9. The contours of (a) nucleation probability (PN
gi

), and (b) texture evolution rate (ugi or ugj )
dependent on critical Taylor factor (M0 ). The olive line represents the boundary of low/high-Taylor-
factor zones.

Under the present deformation conditions, {001}<110> and {001}<210> components lie
in low-Taylor-factor zone, and {112}<110>, {111}<110> and {111}<112> components locate
in high-Taylor-factor zone, while {001}<100> component situates around the olive line. The
evolution rate of various texture components exhibits a distinct sensitivity to M0. The
increment rate of {001}<110> component is more sensitive to M0 than {001}<210>, and the
decrement rates of {112}<110>, {111}<110> and {111}<112> components are relatively less
sensitive to M0 than the increment rate of {001}<110> component.

Therefore, the present model can quantitatively describe the dynamic texture evolution
by SIBM. The accurate prediction on texture development is highly valuable to design and
control hot deformation texture, especially when low-Taylor-factor components are the
expected target texture.

4. Conclusions

1. Strain-induced boundary migration occurs during high-temperature plane-strain
compression of Fe-3.0 wt.% Si alloy, and various texture components have a dis-
tinct evolution with the critical Taylor factor changing continuously. The texture
components with high Taylor factors are preferentially consumed, and the texture
components with medium Taylor factors may experience a reversed change from
enhancement to weakness with the proceeding strain-induced boundary migration.

2. Critical Taylor factor decreases continuously during the hot deformation process,
and the evolution rate of various texture components has a distinct sensitivity to the
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critical Taylor factor. With the decreasing critical Taylor factor, the increment rate
of low-Taylor-factor orientation depends more sensitively on Taylor factor than the
decrement rate of high-Taylor-factor orientation.

3. A quantitative model is proposed to describe texture evolution by incorporating the
oriented nucleation probability dependent on a variable critical Taylor factor and
the selective growth driven by a variable Taylor factor difference between adjacent
grains. The model can efficiently capture the texture evolution by SIBM, as well as the
sensitivity of critical Taylor factor, indicating the capability to predict and optimize
hot deformation texture as a function of initial texture and dynamic process.
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