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Abstract: Extensive studies have shown that engineering materials, including metals and their oxides,
will present different mechanical properties in tension or compression; however, this difference is
generally neglected due to the complexity of the analysis. In this study, we theoretically analyze the
thermal stress of a metal bar with a bimodular effect. First, the common strain suppression method is
used to obtain a one-dimensional thermal stress expression. As a contrast with the one-dimensional
solution, a two-dimensional thermoelasticity solution is also derived, based on the classical Duhamel
theorem concerning body force analogy. Results indicate an important phenomenon that the linear
temperature rise mode will produce thermal stress in a bimodular metal bar, whereas there is no
thermal stress in the case of singular modulus. If the equilibrium relation is needed to be satisfied, the
variation trend between different moduli and different thermal expansion coefficients in tension and
compression should be opposite. In addition, the amplitude of stress variation, from the maximum
tensile stress to the maximum compressive stress, increases dramatically. There exists an inevitable
link between one- and two-dimensional solutions. These results are helpful to the refined analysis
and measurements of the thermophysical properties of metals and their oxides.

Keywords: thermal stress; metal bar; bimodular effect; strain suppression method; thermoelasticity

1. Introduction

In the classical Theory of Elasticity by Timoshenko and Goodier [1], the theoretical
analysis for thermal stress began with problems of boundary force that we all are familiar
with, that is, a bar with uniform thickness is subjected to a temperature change. In the
classical thermal stress problem, the material considered is homogeneous, elastic and
isotropic, thus the strain suppression method, as well as thermoelasticity method, may
be used for finding the thermal stress distribution. In this study, we devote ourselves
to the theoretical analysis of thermal stress of a bar with a bimodular effect. Therefore,
the relevant works may be reviewed from the following two aspects, one is the existing
bimodular problem without a thermal effect and another is corresponding solving methods
of the thermal stress problem.

Many studies have indicated that most materials [2,3], including concrete, ceramics,
graphite, rubber, biomedical materials and metals and oxides, exhibit different tensile
and compressive strains under the same stress applied in tension or compression. These
materials are known as bimodular materials [4]. Overall, there are two basic material
models widely used in theoretical analysis within the engineering profession. One is
the criterion of positive-negative signs in the longitudinal strain of fibers put forward
by Bert [5]. This model is mainly applicable to orthotropic materials and is, therefore,
widely used for research on laminated composites [6–9]. Another model is the criterion
of positive-negative signs of principal stress proposed by Ambartsumyan [10], which is
mainly applicable to isotropic materials. In mechanical engineering, the stress state along a
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certain principal direction is a key issue in the stress analysis of mechanical elements like
bars, plates and shells, since it is this factor that determines whether the point is in tension
or in compression. Ambartsumyan [10] adopted two straight lines whose tangents at the
origin are discontinuous to linearize the bimodular materials model, as shown in Figure 1.
Because this bimodular theory defines its constitutive model based on principal directions,
the principal stress is generally obtained as a final result but not as a known condition
before solving, which inevitably incurs difficulties describing the stress state of a point.
This model also lacks the ability to describe experimental results of elastic coefficients in
the state of complex stress. Analytical solutions are available in a few cases, although they
only concern beams and plates [11–14]. In some complex problems, it is necessary to resort
to the finite element method (FEM) based on an iterative technique [15–19]. According to
our literature collection [2–19], at present, there are few studies on the application of the
model in the analysis of thermal stress.
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In general, the variation of the temperature field within an elastic continuum results
in thermal stresses. The fracturing of glass when a surface is rapidly heated is attributable
to such stress. Fatigue failure can occur as a result of temperature fluctuations. The
consequences of such thermal stress are important in many aspects of engineering design,
as in turbines, jet engines, and nuclear reactors. Analysis of thermal stress involves multiple
academic fields. As indicated in [20], the field of thermal stresses lies at the crossroads of
stress analysis, theory of elasticity, thermodynamics, heat conduction theory, and advanced
methods of applied mathematics. With the development of material techniques, various
new materials and their functional characteristics are constantly emerging, which makes it
inevitable to excavate the mechanical potential of the materials.

In the theory of thermoelasticity, the influence of the temperature field in the governing
equations is through the constitutive law. The theory of linear thermoelasticity is established
on the linear supplement of thermal strains to mechanical strains. Generally, problems of
thermoelasticity were solved by finding solutions of Lamé displacement equations when a
body is acted upon by arbitrary mass forces. Thus, many basic thermoelasticity problems
were considered within the classical theory of elasticity. This is the well-known body force
analogy which may date back to Duhamel, and now there is an extension for this analogy
(for example, see [21–23]). Besides the thermoelasticity method mentioned above, there is
another simple method of the thermal stress problem aiming for bar-shaped components,
this is the so-called strain suppression method [1]. The application of this method may be
simply explained as the next two steps. First, for finding the thermal stress (for example,
the thermal expansion due to temperature rise) in a thin rectangular plate with four sides
free, we may suppress the thermal strain by acting a compressive force on both ends of
the plate, and then, we need to exert another tensile force on both ends of the plate to
satisfy the free boundary conditions at the beginning, in which a bending moment is also
needed sometimes, depending on the distribution of the tensile force along the ends of the
plate. Although the strain suppression method and thermoelasticity method originate from
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different solving approaches, it is believed that there is a link between them which will be
investigated again in our following study for the bimodular problem.

Note that in the theory of thermoelasticity, the material is assumed to be homogeneous,
elastic and isotropic, with constant material properties. In fact, materials cannot keep
constant mechanical properties when they are in a thermal environment. The temperature
dependence of the thermo-mechanical behavior of materials is of great importance in
many engineering applications where the precise properties of materials over an extended
temperature range are needed. For example, a density functional study was presented
to predict the temperature variation of Young’s modulus of graphene [24]. Then, in turn,
the changeable material properties may also affect the thermo-mechanical behavior of
the structure. Returning to our discussion before, when the material is in tension and
compression, material properties cannot be regarded as the same, this naturally raises a
new question, what will happen to the introduction of the bimodular effect of the material?
From the perspective of the literature review, only a few studies dealt with this problem,
and most of them (for example [9]) were based on the Bert bimodular model of laminated
composite, not on the Ambartsumyan model of isotropic materials.

More recently, Wen et al. [25] presented a two-dimensional thermoelasticity solution
for a bimodular beam under the combined action of thermal and mechanical loads. In this
solution, however, the one-dimensional solution of the bimodular beam was not involved,
which is inadequate for the application in engineering. For a bar-shaped component, its one-
dimensional solution has an irreplaceable advantage compared with its two-dimensional
solution. Moreover, the potential change of thermal expansion coefficients in the case of
the bimodular effect of materials has not been considered, this seems to be insufficient for
refined analysis and further theoretical study. Additionally, no sufficient attention was
given to the equilibrium and compatibility conditions of the solution obtained. For the
reasons stated above, this work is necessary and valuable.

In addition, different thermoelastic responses, plasticity and strength of metals, ceram-
ics, or composites are due to the defects and curvilinear interfaces (between polycrystalline
grains, pores, inclusions, or ceramic particles embedded into a metal matrix, etc.). Near
these interfaces, local regions of volumetric tension arise, both under tension and compres-
sion. These regions form in different sites of the interface under tension or compression,
which results in the difference in micro-failure and in macroscopic effective properties
of materials under different types of loading [26–30]. Similarly, these reasons make the
consideration for the bimodular effect appear necessary.

This study is devoted to the attainment of one-dimensional and two-dimensional
thermal stress solutions of a bimodular bar under different temperature rise modes, thus,
the external temperature field is regarded as steady, and does not change with time [1,20].
Our emphasis will place on changes including thermal stress and thermal expansion
coefficient which is introduced by the bimodular effect. The whole paper is organized
as follows. The solved problem and bimodular effect are described in Section 2. Two
basic methods, the strain suppression method and the thermoelasticity method are pre-
sented in Section 3. Under three temperature fields, the one-dimensional solution and
two-dimensional thermoelasticity solution are derived in Sections 4 and 5, respectively.
In Section 6, the bimodular effect on thermal stress, the equilibrium and compatibility
conditions as well as the link of two solutions, are discussed in detail. Some interesting
conclusions are summarized in the concluding remarks.

2. Problem Description
2.1. Problem

Let us consider the thermal stress in a bimodular bar with the length 2l, the height
2h and the thickness t under the specific temperature rise modes, as shown in Figure 2, in
which the origin o of the coordinate system (o-xyz) is located at the centroid of the cross
section of the bar. For beams and plates, it is generally assumed that temperature rise
modes T vary only with the thickness direction [1,20], and thus, in this study, T = T(y). For
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the convenience of mathematical treatment, the T(y) is considered as a simple function in
the form. Thus, the following three temperature rise modes are assumed:

Case 1 : T(y) =
T0

2

(
1− y

h

)
;

Case 2 : T(y) = T0

(
1− y2

h2

)
;

Case 3 : T(y) =
T0

2

(
1− y3

h3

)
,

which corresponds to the linear, parabolic and cubic rise, respectively. Note that the linear
rise satisfies the heat conduction equation while the parabolic and cubic rises cannot and
they are unrealistic. However, here we only present a theoretical study on a bimodular
bar under different temperature rise modes although the parabolic and cubic rises are
imaginary. Among the three cases, the highest rise T0 is uniform and constant, in which for
Case 2, T0 takes place at the middle of height direction of the bar while for Cases 1 and 3,
T0 both take place at the bottom of the bar, as shown in Figure 2.
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Figure 2. Sketch of a bimodular bar under three temperature rise modes, in which T0 is the highest
rise and y0 is the location of neutral axis.

Note that unlike the common analysis, the materials made of the bar in this study
are considered as bimodular materials whose the tensile Young’s modulus E+ is different
from the compressive one E−. At the same time, for simplicity the Poisson ratio of the
bimodular materials are considered the same, while the linear thermal expansion coefficient
is considered different in tension and compression, that is, we have the singular µ and
different α+ and α−. Additionally, note that y0 in Figure 2 stands for the location of the
neutral axis when the bar is under pure bending, which may be determined thereafter.

2.2. Bimodular Effect

According to the theory of elasticity of different moduli founded by Ambartsumyan [10],
the so-called tensile or compressive modulus of a certain point is defined as whether the
principal stress at this point is positive or negative, with the positive corresponding to tensile
and the negative corresponding to compressive. In other words, if the point is in tension
along the principal direction, the modulus here is taken as E+, while in compression along the
principal direction, the modulus should be changed to E−. Obviously, in a three-dimensional
space problem, the constitutive law of bimodular materials which is established on the
criterion of positive-negative signs of principal stress is somewhat complicated. However, in a
one-dimensional stress state of tension or compression, or in a pure bending problem, it is
easy for us to describe the constitutive law. More specifically, as shown in Figure 3, when a
prismatic bar is subjected to pure axial tension, it is in the stress state of uniaxial tension, and
we should take E+ here; on the contrary, when the bar is subjected to pure axial compression,
E− should be taken since it is in the stress state of uniaxial compression.
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Figure 3. Uniaxial tension or compression and corresponding modulus: (a) uniaxial tension;
(b) uniaxial compression, in which σx is the stress.

Compared to uniaxial tension or compression, the bimodular problem of bars under
pure bending is somewhat complicated, this may be one of the problems that entered
scholars’ vision earlier. As shown in Figure 4, a rectangular section bar with a height of
2h and thickness t, is subjected to the bending moment M at two ends and we isolate it
apart from the whole bar as our studied object. Obviously, the bar will deflect downward
to resist the external bending moment, thus, resulting in tension in the lower part of the
bar and compression in the upper part. For convenience, we establish the x axis of the
coordinate system (xoy) on the unknown neutral axis which may be determined thereafter.
The height of the tensile part of the bar is h1 and the corresponding modulus is taken as E+;
at the same time, the compressive height and the modulus is h2 and E−, respectively, as
shown in Figure 4.
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In the light of the assumption of the plane section, the curvature ρ of the neutral axis
may be expressed as:

1
ρ
=

dθ

dx
, (1)

in which, dx and dθ denote the length and rotation angle of a segment on the neutral axis,
respectively, as shown in Figure 4. According to the basic definition of strain, for a certain
segment with distance y from the neutral axis, its relative elongation, εx, is equal to:

εx = −y
dθ

dx
= −y

ρ
. (2)

where a minus symbol is added to agree with the conventional “+” for tension and “−“ for
compression, since here the positive direction of the y axis is upward while the bending
moment M makes the beam convex downward, see Figure 4. Thus, we have the tensile
normal stress and compressive normal one as follows:{

σ+
x = −E+ y

ρ − h1 ≤ y ≤ 0
σ−x = −E− y

ρ 0 ≤ y ≤ h2
. (3)

Due to the pure bending, the equation of equilibrium gives:

∫ 0

−h1

σ+
x tdy +

∫ h2

0
σ−x tdy = 0 (4)
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and ∫ 0

−h1

σ+
x ytdy +

∫ h2

0
σ−x ytdy = −M, (5)

where the minus symbol before the bending moment M is based on the consideration that
the convex direction produced by the bending moment is inconsistent with the positive
direction of the y axis. Combining Equations (3) and (4) yields:

E+h2
1 = E−h2

2. (6)

After considering h1 + h2 = 2h, we have

h1 =

√
E−√

E+ +
√

E−
2h, h2 =

√
E+

√
E+ +

√
E−

2h, (7)

which determines the location of the unknown neutral axis. Similarly, combining Equations
(3) and (5) yields:

1
ρ

(
E+th3

1
3

+
E−th3

2
3

)
= M. (8)

If we define the bending stiffness D of the bimodular beam as:

D =
t
3
(E+h3

1 + E−h3
2), (9)

Equation (8) will return to our familiar form:

1
ρ
=

M
D

. (10)

Substituting Equation (10) into Equation (3) gives the tensile and compressive stress
as follows: {

σ+
x = − M

D/E+ y = − M
I+ y, −h1 ≤ y ≤ 0

σ−x = − M
D/E− y = − M

I− y, 0 ≤ y ≤ h2
, (11)

in which, I+ and I− denote the tensile and compressive moment of inertia, respectively, and
they are:

I+ =
t
3

(
h3

1 +
E−

E+
h3

2

)
, I− =

t
3

(
E+

E−
h3

1 + h3
2

)
. (12)

Besides, from Figures 2 and 4, it is easy to see that h + y0 = h1 or h− y0 = h2. Combining
Equation (7), we have the coordinate location of the neutral axis:

y0 =

√
E− −

√
E+

√
E− +

√
E+

h. (13)

The above expressions may be reduced to the classical forms when E+ = E− = E and h1
+ h2 = h; and next we will use these results for the analysis of thermal stress of bimodular
problems, in which the axial tension or compression and pure bending are included.

3. Two Basic Methods
3.1. Strain Suppression Method

Let us consider a metal bar with uniform thickness in a thermal environment, in which
the temperature T is a function of y and is independent of x and z, as shown in Figure 2. The
longitudinal thermal expansion αT will be entirely suppressed by applying to the whole
bar the longitudinal stress [1]:

σx = −αET (= −α−E−T), (14)
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which is compressive when T is positive. In fact, this stress is always compressive under the
three temperature rise modes shown in Figure 2, thus, each point of the bar is in the state
of compression. If here we introduce the different moduli in tension and compression, the
elastic modulus E in Equation (14) may be changed as E−, and also the thermal expansion
coefficient α is changed as α− accordingly while E = E−, as shown in Equation (14). Besides,
we note that the application of the above stress (14) will not produce stress in the lateral
directions since the bar is free to expand laterally.

To maintain the stress (14) throughout the bar, it will be necessary to distribute com-
pressive forces of the magnitude (14) at the two ends of the bar only. These compressive
forces will completely suppress any expansion of the bar along the x direction due to the
temperature rise T. In order to obtain the thermal stress in the bar, which is free from
external forces, we have to superpose on the stress (14), the stresses produced in the bar
by tensile forces of intensity αTE distributed at the ends. These forces have the result∫ +h
−h αET(y)dy, and at a sufficient distance from the ends, they will produce approximately

uniformly distributed tensile stress of the magnitude 1
2h

∫ +h
−h α+E+T(y)dy, in which the

elastic modulus E has been changed to E+ and also the thermal expansion coefficient α is
changed as α+ accordingly since it is always tensile stress. Therefore, the thermal stress in
the bar with free ends, at a sufficient distance from the ends, will be:

σx = −α−E−T(y) +
1

2h

∫ +h

−h
α+E+T(y)dy. (15)

If the temperature T is symmetrical with respect to the x axis, for example, in Case 2 in
Figure 2, Equation (15) will be the final result of the thermal stress, even the introduction
of the bimodular effect does not change this characteristic. For Cases 1 and 3 in Figure 2,
however, the temperature T is not symmetrical with respect to the x axis, we must superpose
on the compressive stress (14) a uniform tension, determined as before, and bending stress
determined from the condition that the moment of the forces distributed over a cross
section must be zero, y

I
∫ +h
−h αET(y)ytdy, in which I is the moment of inertia of the cross

section. If the bimodular effect is introduced here, the bending stress may be calculated in
the form of piecewise integral, y

I+
∫ y0
−h α+E+T(y)ytdy + y

I−
∫ +h

y0
α−E−T(y)ytdy, in which y0

is the location of the neutral axis and its expression is shown in Equation (13), and I+ and I−
denote the tensile and compressive moment of inertia, respectively, and their expressions
are shown in Equation (12). Note that here we assume the tension takes place at the lower
part of the bar and the compression at the upper part, that is, for the cross section of the bar,
the lower in tension and the upper in compression. Or alternatively, it may be the lower in
compression and the upper in tension. Which situation we take will depend on the real
problem. More specially, if the linear and cubic temperature rises take place, as shown in
Figure 2, the bending mode should be the lower in tension and the upper in compression
to agree with the basic idea of strain suppression. Eventually, the total thermal stress is:

σx = −α−E−T(y)+
1

2h

∫ +h

−h
α+E+T(y)dy+

y
I+

∫ y0

−h
α+E+T(y)ytdy+

y
I−

∫ +h

y0

α−E−T(y)ytdy. (16)

3.2. Thermoelasticity Method
Letting εx, εy and γxy to be the strain components of a plane stress problem and σx, σy and τxy

are the corresponding stress components, the physical equation of thermoelasticity theory may be
directly given as follows [1]: 

εx = 1
E+/− (σx − µσy) + α+/−T

εy = 1
E+/− (σy − µσx) + α+/−T

γxy =
2(1+µ)
E+/− τxy

, (17)

in which, the tensile-compressive Young’s modulus is denoted by E+/−, E+ corresponding to the
tensile modulus and E− to the compressive one. Similarly, α+/− has the same meaning as E+/−. In
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our study, there is no way to specify, from the very beginning, the stress state of any point, tensile or
compressive. Therefore, we have to use this form E+/− and α+/− to express the physical equation for
the time being.

Via geometrical equation and equation of equilibrium, we may have the Lamé equation ex-
pressed in terms of the displacement u and v and the temperature variation T:

∂2u
∂x2 +

1−µ
2

∂2u
∂y2 +

1+µ
2

∂2v
∂x∂y − (1 + µ)α+/− ∂T

∂x = 0
∂2v
∂y2 +

1−µ
2

∂2v
∂x2 +

1+µ
2

∂2u
∂x∂y − (1 + µ)α+/− ∂T

∂y = 0
, (18)

and the stress boundary condition: l
(

∂u
∂x + µ ∂v

∂y

)
s
+ m 1−µ

2

(
∂u
∂y + ∂v

∂x

)
s
= l(1 + µ)α+/−T

m
(

∂v
∂y + µ ∂u

∂x

)
s
+ l 1−µ

2

(
∂v
∂x + ∂u

∂y

)
s
= m(1 + µ)α+/−T

, (19)

in which, l and m are direction cosines. Similar to [25], from Equations (18) and (19) it is also found
that based on the classical Duhamel theorem concerning body force analogy, the thermal plane stress
problem may be transformed into a classical plane stress problem.

For obtaining the special solution of Equation (18), we introduce a potential function of displace-
ment, ψ(x,y), and at the same time the special solution of displacement may be taken as:

u′ =
∂ψ

∂x
, v′ =

∂ψ

∂y
. (20)

Regarding the u’ and v’ as u and v, and substituting them into Equation (18), we have:{
∂

∂x∇
2ψ = (1 + µ)α+/− ∂T

∂x
∂

∂y∇
2ψ = (1 + µ)α+/− ∂T

∂y
. (21)

Note that µ and α+/− are both constants, indicating that if the function ψ(x,y) can satisfy the
following differential equation:

∇2ψ = (1 + µ)α+/−T, (22)

the ψ(x,y) can satisfy Equation (21), thus also satisfying Equation (18). Finally, the u’ and v’ in
Equation (20) may be selected as a special solution. Substituting Equations (20) and (22) into Equation
(18), we obtain the stress component corresponding to the special solution:

σx
′ = −E+/−

1 + µ

∂2ψ

∂y2 , σy
′ = −E+/−

1 + µ

∂2ψ

∂x2 , τxy
′ =

E+/−

1 + µ

∂2ψ

∂x∂y
. (23)

On the other hand, the supplement solution of displacement, u” and v”, needs to satisfy the
homogeneous equation of Equation (18), that is:

∂2u′′
∂x2 +

1−µ
2

∂2u′′
∂y2 +

1+µ
2

∂2v′′
∂x∂y = 0

∂2v′′
∂y2 +

1−µ
2

∂2v′′
∂x2 +

1+µ
2

∂2u′′
∂x∂y = 0

. (24)

Via Equation (17) and also T = 0, we have the stress components corresponding to the supple-
ment solution: 

σx ′′ =
E+/−

1−µ2

(
∂u′′
∂x + µ ∂v′′

∂y

)
σy ′′ =

E+/−

1−µ2

(
∂v′′
∂y + µ ∂u′′

∂x

)
τxy ′′ =

E+/−

2(1+µ)

(
∂v′′
∂x + ∂u′′

∂y

) . (25)

Eventually, the total stress components are:

σx = σx
′ + σx

′′ , σy = σy
′ + σy

′′ , τxy = τxy
′ + τxy

′′ , (26)

which need to satisfy stress boundary conditions. In addition, we introduce a stress function, φ(x,y),
to express the stress components corresponding to the supplement solution, that is [1]:

σx
′′ =

∂2 ϕ

∂x2 , σy
′′ =

∂2 ϕ

∂y2 , τxy
′′ = − ∂2 ϕ

∂x∂y
. (27)
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4. One-Dimensional Solution Based on Strain Suppression Method

4.1. Case 1: T(y) = T0
2
(
1− y

h
)

By using the strain suppression method and also considering the different moduli in tension
and compression, we have the thermal stress expression in the bimodular bar, this is, Equation (16).
Substituting the T(y), I+ and I− from Equation (12) into Equation (16) and integrating, we obtain:

σx =
T0
2

{
−α−E−

(
1− y

h
)
+ α+E+

+
3y

E+h3
1+E−h3

2

[
α+(E+)

2
(

y2
0

2 −
y3

0
3h −

5h2

6

)
− α−(E−)2

(
y2

0
2 −

y3
0

3h −
h2

6

)] }. (28)

Alternatively, for the computation of the bending stress, if we neglect the difference of I+ and
I−, and also regard I+ = I− = I = 2th3/3, a simpler expression may be obtained as:

σx =
T0
2

{
−α−E−

(
1− y

h
)
+ α+E+

+ 3
2

y
h

[
α+E+

(
1
2

y2
0

h2 − 1
3

y3
0

h3 − 5
6

)
− α−E−

(
1
2

y2
0

h2 − 1
3

y3
0

h3 − 1
6

)] }. (29)

Note that without the bimodular effect, E+ = E− = E, α+ = α− = α, we may have h1 = h2 = h and
y0 = 0, thus Equations (28) and (29) both give σx = 0, which verifies the familiar conclusion that under
the linear temperature rise mode, there exists no thermal stress in the bar without bimodular effect.

4.2. Case 2: T(y) = T0

(
1− y2

h2

)
In this case, the temperature T(y) is symmetrical with respect to the x axis, the bending moment

does not occur, even if the bimodular effect is considered, thus, we have the thermal stress expression
that is the same as Equation (15). Substituting the T(y) into Equation (15) and integrating, we obtain:

σx = T0

[
−α−E−

(
1− y2

h2

)
+

2
3

α+E+
]

. (30)

When E+ = E− = E, α+ = α− =α, we have:

σx = αET0

(
y2

h2 −
1
3

)
, (31)

which agrees with the common expression.

4.3. Case 3: T(y) = T0
2

(
1− y3

h3

)
Similar to Case 1, we have the thermal stress expression in this case that is the same as

Equation (16), in which the bending stress exists since T(y) is not symmetrical with respect to the x
axis. Substituting the T(y), I+ and I− from Equation (12) into Equation (16) and integrating, we obtain:

σx =
T0
2

 −α−E−
(

1− y3

h3

)
+ α+E+

+
3y

E+h3
1+E−h3

2

[
α+(E+)

2
(

y2
0

2 −
y5

0
5h3 − 7h2

10

)
− α−(E−)2

(
y2

0
2 −

y5
0

5h3 − 3h2

10

)] . (32)

Similar to Case 1, the computation of the bending stress may be further simplified by taking I+

= I− = I =2th3/3, another simpler expression may be obtained as:

σx =
T0
2

 −α−E−
(

1− y3

h3

)
+ α+E+

+ 3
2

y
h

[
α+E+

(
1
2

y2
0

h2 − 1
5

y5
0

h5 − 7
10

)
− α−E−

(
1
2

y2
0

h2 − 1
5

y5
0

h5 − 3
10

)]
. (33)

When E+ = E− = E, α+ = α− = α, we have h1 = h2 =h and y0 = 0, thus Equations (32) and (33)
return to:

σx =
αET0

2

(
y3

h3 −
3
5

y
h

)
, (34)

which is the same as that of the singular modulus problem and also verifies the correctness of the
derivation from the side.
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5. Two-Dimensional Thermoelasticity Solution

5.1. Case 1: T(y) = T0
2
(
1− y

h
)

Under the temperature variation T(y), Equation (22) which the potential function of displace-
ment ψ should satisfy now becomes:

∇2ψ = (1 + µ)
α+/−T0

2

(
1− y

h

)
. (35)

Obviously, if we take:
ψ = Ay2 + By3, (36)

it may satisfy Equation (35), in which A and B are two undetermined constants. Substituting
Equation (36) into Equation (35) and comparing the coefficients at two sides, we have:

A = (1 + µ)
α+/−T0

4
, B = −(1 + µ)

α+/−T0
12h

. (37)

Thus, the potential function of displacement is:

ψ = (1 + µ)
α+/−T0

4

(
y2 − y3

3h

)
. (38)

Via Equation (23), the stress component corresponding to the special solution of displacement gives:

σx
′ =

T0
2

α+/−E+/−
( y

h
− 1
)

, σy
′= 0, τxy

′= 0. (39)

Note that in the final solution, the modulus of elasticity and the thermal expansion coefficient
in σx’ should be rectified as E− and α−, respectively, since this term always corresponds to the
compressive stress. However, this term is still given in the form of tension or compression for the
time being since, in the next integration, the plus and negative symbol will be changed as the state in
tension and compression.

It is found that from Equation (39) the distribution of this stress on the left and right sides of the
bar is also linear and compressive. For satisfying the boundary conditions, a surface force, equal in
magnitude and opposite in direction, may be exerted on the left and right sides of the bar, thus, the
stress caused by this surface force may serve as a supplement solution, this is, σx”, σy” and τy”, to
be superimposed on the special solution presented in Equation (39). If the two plane dimensions of
the bar, 2l and 2h, are in the same order of magnitude, it is hard to obtain the analytical expression
of this supplement solution, in this case, numerical methods have to be resorted to. However, if
l >> h, as shown in Figure 2, the left and right ends of the bar become the second boundary, thus,
making the application of the de Saint-Venant Principle possible. According to the principle of statics
equivalence, the uneven surface force on the left and right ends of the bar should be counteracted by
a uniform tension and a bending moment. For this purpose, the following stress function is adopted:

ϕ = cy2 + ey3, (40)

in which c and e are two undetermined constants, the term cy2 corresponds to the uniform tension
while the term ey3 to the pure bending. The corresponding stress components are:

σx
′′ = 2c + 6ey, σy

′′ = τxy
′′ = 0. (41)

Adding them to the stress in Equation (39), we have the total stress components:
σx = σx

′ + σx ′′ =
T0
2 α+/−E+/−( y

h − 1
)
+ 2c + 6ey

σy = σy
′ + σy ′′ = 0

τxy = τxy
′ + τxy ′′ = 0

, (42)

which should satisfy the following boundary conditions:

(σx)x=±l = 0, (τxy)x=±l = 0,
(σy)y=±h = 0, (τxy)y=±h = 0, (43)
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in which, the last three conditions are satisfied naturally while the first one may be approximately
satisfied by using de Saint-Venant Principle. Thus, we have:∫ +h

−h
(σx)x=±ldy = 0 (44)

and ∫ +h

−h
(σx)x=±lytdy = 0. (45)

Substituting the expression of σx in Equation (42) into Equation (43), we have:∫ +h

−h

[
T0
2

α+/−E+/−
( y

h
− 1
)
+ 2c + 6ey

]
dy = 0, (46)

which gives 2c = T0α
+/−E+/−/2. As indicated earlier, the term 2c corresponds to the uniform tension,

this term should be changed to:

2c =
T0
2

α+E+. (47)

Similarly, substituting the expression of σx in Equation (42) into Equation (45), we have:∫ +h

−h

[
T0
2

α+/−E+/−
( y

h
− 1
)
+

T0
2

α+E+ + 6ey
]

ytdy = 0. (48)

Note that the term T0α
+E+/2 does not contribute to bending moment, thus, it may be deleted

in Equation (48) first. Generally, the bending moment is always accompanied by tension and
compression; therefore, the computation for the bending moment should be carried out in the
tensile area and in compressive area. According to the real temperature rise in Case 1, the highest
temperature takes place at the bottom of the bar. It may be speculated that the lower part of the bar is
in tension and the upper part of the bar in compression, thus the integration should be modified as:∫ y0

−h

[
T0
2

α+E+
( y

h
− 1
)
+ 6ey

]
ytdy +

∫ +h

y0

[
T0
2

α−E−
( y

h
− 1
)
+ 6ey

]
ytdy = 0. (49)

The unknown constant e may be determined as:

e =
T0
8h

[
α+E+

(
1
2

y2
0

h2 −
1
3

y3
0

h3 −
5
6

)
− α−E−

(
1
2

y2
0

h2 −
1
3

y3
0

h3 −
1
6

)]
. (50)

Thus, the final stress solution is:

σx =
T0
2

{
−α−E−

(
1− y

h
)
+ α+E+

+ 3
2

y
h

[
α+E+

(
1
2

y2
0

h2 − 1
3

y3
0

h3 − 5
6

)
− α−E−

(
1
2

y2
0

h2 − 1
3

y3
0

h3 − 1
6

)] }, σy = τxy = 0. (51)

in which, the modulus of elasticity and thermal expansion coefficient of the first term in σx has been
changed as E− and α−, as indicated earlier. After comparing Equation (51) with Equations (28) and (29),
it is found that Equation (51) is the same as Equation (29), having a slight difference with Equation (28)
that is caused mainly by the different moments of inertia.

5.2. Case 2: T(y) = T0

(
1− y2

h2

)
Under the temperature variation T(y), Equation (22) now becomes:

∇2ψ = (1 + µ)α+/−T0

(
1− y2

h2

)
. (52)

Obviously,
ψ = Ay2 + By4 (53)

may satisfy Equation (52). Substituting Equation (53) into Equation (52) and comparing the coefficients
at two sides, we have:

A = (1 + µ)
α+/−T0

2
, B = −(1 + µ)

α+/−T0

12h2 . (54)
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Thus, the potential function of displacement is:

ψ = (1 + µ)α+/−T0

(
y2

2
− y4

12h2

)
. (55)

Via Equation (23), the stress component corresponding to the special solution of displacement gives:

σx
′ = T0α+/−E+/−

(
y2

h2 − 1
)

, σy
′= 0, τxy

′= 0. (56)

Due to the fact that under the temperature rise, there exists no bending moment, we take the
following stress function:

ϕ = cy2, (57)

which corresponds to the uniform tension on the left and right ends of the bar. The corresponding
stress components are:

σx
′′ = 2c, σy

′′ = τxy
′′ = 0. (58)

Adding them to the stress in Equation (56), we have the total stress components:
σx = σx

′ + σx ′′ = T0α+/−E+/−
(

y2

h2 − 1
)
+ 2c

σy = σy
′ + σy ′′ = 0

τxy = τxy
′ + τxy ′′ = 0

. (59)

They should satisfy the boundary conditions which are the same as Equation (43). Similarly, the
last three conditions are satisfied naturally while the first one may be approximately satisfied by using
the de Saint-Venant Principle. Thus, we have Equations (44) and (45) again, in which Equation (45)
has been satisfied naturally. Substituting the expression of σx in Equation (59) into Equation (44),
we have: ∫ +h

−h

[
T0α+/−E+/−

(
y2

h2 − 1
)
+ 2c

]
dy = 0, (60)

which gives 2c = 2T0α
+/−E+/−/3. As indicated earlier, the term 2c corresponds to the uniform

tension, thus this term should be rectified as:

2c =
2
3

T0α+E+. (61)

Thus, the final stress solution is:

σx = T0

[
−α−E−

(
1− y2

h2

)
+

2
3

α+E+
]

, σy = τxy = 0, (62)

in which, the first term has been modified as the compressive quantities. After comparing it with
Equation (30), it is found that they are the same.

5.3. Case 3: T(y) = T0
2

(
1− y3

h3

)
Similar to Case 1, Equation (22) now becomes:

∇2ψ = (1 + µ)
α+/−T0

2

(
1− y3

h3

)
. (63)

Obviously,
ψ = Ay2 + By5 (64)

may satisfy Equation (63). Substituting Equation (64) into Equation (63) and comparing the coefficients
at two sides, we have:

A = (1 + µ)
α+/−T0

4
, B = −(1 + µ)

α+/−T0

40h3 . (65)

Thus, the potential function of displacement is:

ψ = (1 + µ)
α+/−T0

2

(
y2

2
− y5

20h3

)
. (66)
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Via Equation (23), the stress component corresponding to the special solution of displacement
gives:

σx
′ =

αT0
2

α+/−E+/−
(

y3

h3 − 1
)

, σy
′= 0, τxy

′= 0. (67)

The following stress function is adopted:

ϕ = cy2 + ey3, (68)

in which, cy2 corresponds to the uniform tension while ey3 to the pure bending. The corresponding
stress components are:

σx
′′ = 2c + 6ey, σy

′′ = τxy
′′ = 0. (69)

Adding them to the stress in Equation (67), we have the total stress components:
σx = σx

′ + σx ′′ =
T0
2 α+/−E+/−

(
y3

h3 − 1
)
+ 2c + 6ey

σy = σy
′ + σy ′′ = 0

τxy = τxy
′ + τxy ′′ = 0

. (70)

They should satisfy the boundary conditions of the bar with four sides free, as shown in
Equation (43). Similarly, the last three conditions are satisfied naturally while the first one may be
approximately satisfied by using the de Saint-Venant Principle. Thus, we have Equations (44) and (45)
once again. Substituting the expression of σx into Equation (44), we have:

∫ +h

−h

[
T0
2

α+/−E+/−
(

y3

h3 − 1
)
+ 2c + 6ey

]
dy = 0, (71)

which gives 2c = α+/−T0E+/−/2. As indicated earlier, the term 2c corresponds to the uniform tension,
this term should be changed to:

2c =
T0
2

α+E+. (72)

Substituting the expression of σx into Equation (45), we have:

∫ +h

−h

[
T0
2

α+/−E+/−
(

y3

h3 − 1
)
+

T0
2

α+E+ + 6ey
]

ytdy = 0. (73)

Similar to Case 1, the integration may be changed as:

∫ y0

−h

[
T0
2

α+E+
(

y3

h3 − 1
)
+ 6ey

]
ytdy +

∫ +h

y0

[
T0
2

α−E−
(

y3

h3 − 1
)
+ 6ey

]
ytdy = 0, (74)

leading to:

e =
T0
8h

[
α+E+

(
1
2

y2
0

h2 −
1
5

y5
0

h5 −
7
10

)
− α−E−

(
1
2

y2
0

h2 −
1
5

y3
0

h3 −
3

10

)]
. (75)

Thus, the final stress solution is:

σx = T0
2

 −α−E−
(

1− y3

h3

)
+ α+E+

+ 3
2

y
h

[
α+E+

(
1
2

y2
0

h2 − 1
5

y5
0

h5 − 7
10

)
− α−E−

(
1
2

y2
0

h2 − 1
5

y3
0

h3 − 3
10

)]
,

σy = τxy = 0

(76)

After comparing Equation (76) with Equations (32) and (33), it is found that Equation (76) is the
same as Equation (33), also having a slight difference with Equation (32) that is caused mainly by the
different moments of inertia.

6. Results and Discussions
6.1. Bimodular Effect on Thermal Stress

In order to investigate the bimodular effect on thermal stress, let us introduce the following
relations [31]:

E = E++E−
2 , λE = E+−E−

E++E− , E+ = (1 + λE)E, E− = (1− λE)E
α = α++α−

2 , λα = α+−α−

α++α− , α+ = (1 + λα)α, α− = (1− λα)α
(77)
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In which the relationship among α, α+, α− and λα is introduced by simulating the relationship
among E, E+, E− and λE. In Equation (77), E and α is the average modulus and average heat
expansion coefficient, respectively, and λE and λα are two important ratios of the difference to the
sum, and their values are relatively small by definition, and also indicating that when λE > 0, E+ >
E−; λE < 0, E+ < E− and λα also has the same regulation, that is, λα > 0, α+ > α−; λα < 0, α+ < α−.
Substituting the relation (77) into the thermal stress expressions in three cases, that is, Equations (28),
(30) and (32), we have, for Case 1,

σx = EαT0
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2
(
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(
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, (78)

for Case 2,

σx = EαT0

[
−(1− λE)(1− λα)

(
1− y2

h2

)
+

2
3
(1 + λE)(1 + λα)

]
, (79)

and for Case 3,

σx = EαT0
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)]
, (80)

in which, h1 and h2, as well as y0, are expressed in terms of λE, respectively:

h1 =

√
1− λE√

1 + λE +
√

1− λE
2h, h2 =

√
1 + λE√

1 + λE +
√

1− λE
2h, (81)

and

y0 =

√
1− λE2 − 1

λE
h. (82)

For the common metals and their oxides, the difference of tensile modulus and compressive
one is generally small but there does exist such a difference that may influence the thermal stress.
The data in Table 1 are taken from the classical monograph which was written by Ambartsumyan, in
which the λE values are computed based on the relation from Equation (77), λE = (E+ − E−)/(E+ +
E−). It is easy to see that the abstract value of λE is relatively small, ranging from 0 to 0.15. Therefore,
in our study, the parameter λE is taken as seven different values and they are 0.15, 0.10, 0.05, 0, −0.05,
−0.10 and −0.15, in which the former three values correspond to the case E+ > E−, the latter three
values correspond to E+ < E− and λE = 0 corresponds to E+ = E−.

Table 1. The tensile and compressive moduli for certain metals and alloys (data from [10]) and their
λE values.

Metals or Alloys E+ (GPa) 1 E− (GPa) λE

Regular steel 40 205.790 211.788 −0.0144
Regular steel У8 204.791 213.772 −0.0215

Iron 1X18H9T 200.792 211.788 −0.0267
Pig iron CЧ12-28 91.846 121.873 −0.1405
Bronze Bp.C-30 26.470 29.469 −0.0536

Silafont AΠ2 66.934 73.422 −0.0462
1 The raw data were given in unit kgf/mm2 and are converted here in SI system. λE value is from the computed
value of this study.

In the current studies, no reports of the different moduli effects on the thermal expansion
coefficient of metals have been found. However, this is the main purpose of this theoretical study. For
predicting theoretically the variation trend of linear expansion coefficients with the bimodular effect,
we take the following three groups’ values for comparisons, that is, when λE is taken as 0.15, 0.10,
0.05, 0, −0.05, −0.10 and −0.15 in turn, in Group 1, λα is also taken as 0.15, 0.10, 0.05, 0, −0.05, −0.10
and −0.15 in turn, that is, the variation trend of λα is consistent to λE, both changing from 0.15 to
−0.15; in Group 2, λE keeps the original change trend, and there is no any change between α+ and
α−, that is, λα = 0 and in Group 3, λα is taken as −0.15, −0.10, −0.05, 0, 0.05, 0.10 and 0.15 in turn,
that is, the variation trend of λα is contrary to that of λE. Figure 5a–c plot the thermal stress for Case
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1 under different λE and λα values, Figure 6a–c is for Case 2 and Figure 7a–c is for Case 3, in which
the horizontal axis stands for the dimensionless thermal stress σx/EαT0 and their expressions are
shown in Equations (78)–(80), and the vertical axis stands for the height direction of the cross section,
also given in dimensional form y/h.
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From Figures 5, 6 and 7a–c, we may have the following results and corresponding discussions.

(i) Basic curve shapes:

First, Figures 5, 6 and 7a–c show that all curves follow the variation trend shown in Equations
(78)–(80), presenting the linear, parabolic and cubic relation, respectively.

(ii) Neutral axes and stress distributions:

Note, that in this study there are two different notions concerning the neutral axis, one is the
bending neutral axis due to pure bending that we analyzed in Section 2.2 and the location for the
unknown neutral axis may be determined as long as the magnitude of tensile and compression
modulus of elasticity is known, as shown in Equation (7); another notion is the so-called final neutral
axis with thermal effect, due to the combination of the compressive axial force, and tensile axial force
and the corresponding bending moment, as shown in Equation (16).

From Figure 5c it is seen that for Case 1, regardless of different λE values, there is only one
position of the neutral axis, this means that for each λE value, there is one position of neutral axis
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corresponding to it. When λE = 0 (E+ = E−), the curve is exactly on the axis y/h, indicating σx = 0 and
there exists no neutral axis. When λE >0 (E+ > E−), the cross section of the bar presents tension in the
lower part and compression in the upper part, and when λE <0 (E+ < E−) the cross section presents
compression in the lower part and tension in the upper part. Figure 5c also shows that the linear
temperature rise will produce unexpected thermal stress in a bimodular metal bar.

Figure 6c shows that there are two final neutral axes. It is easy to see from Figure 6c that
there are, in fact, four curves but not seven curves since among the seven curves, the former three
curves overlap completely with the latter three curves, the partially enlarged drawing show this
phenomenon which may be easily validated from Equation (79).

Figure 7c shows that all curves present an S shape and have three intersects with the y/h axis,
indicating that there are three final neutral axes. However, the introduction of different moduli
changes the S shape to some extent. All curves pass the zero point, showing that there is no thermal
stress in the center of the metal bar.

(iii) Amplitudes of stress variation:

It is easy to see from Figures 5c, 6c and 7c that after the introduction of the bimodular effect, the
amplitude of stress variation from the maximum tensile stress to the maximum compressive stress
increased dramatically. Table 2 lists these amplitudes for Cases 1, 2 and 3 in the form of dimensionless
quantity σx/EαT0, in which the largest amplitude change is Case 2 (parabolic temperature rise) and
the smallest is Case 1 (linear temperature rise) and Case 3 (cubic temperature rise) is the middle. The
amplitude of stress variation reflects the degree of stress variation in a limited region; this should
be paid some attention to the design of components related to thermal stress, especially when the
bimodular effect is introduced.

Table 2. The amplitude of stress variation under three cases.

λE λα Case 1 Case 2 Case 3

0.15 −0.15 0.2392 0.9775 0.2886
0.10 −0.10 0.1568 0.9900 0.2502
0.05 −0.05 0.0768 0.9975 0.3230

0 0 0 1 0.4000
−0.05 0.05 0.0730 0.9975 0.4728
−0.10 0.10 0.1418 0.9900 0.5408
−0.15 0.15 0.2056 0.9775 0.6034

6.2. Discussions on the Compatibility
For the verification of the compatibility, first, we need to derive the compatibility equation

expressed in terms of stress and temperature variation T. For this purpose, we substitute Equation
(17) into the following compatibility equation expressed in terms of strain, that is:

∂2εx

∂y2 +
∂2εy

∂x2 =
∂2γxy

∂x∂y
. (83)

Thus, we have:

∂2

∂y2

(
σx − µσy

E+/− + α+/−T
)
+

∂2

∂x2

(
σy − µσx

E+/− + α+/−T
)
=

∂2

∂x∂y

[
2(1 + µ)

E+/− τxy

]
. (84)

On the other hand, letting the body force be zero, the equilibrium equation gives:

∂σx

∂x
+

∂τxy

∂y
= 0,

∂σy

∂y
+

∂τxy

∂x
= 0. (85)

Via Equation (85), we may obtain the relation 2∂2τxy/∂x∂y = −∂2σx/∂x2− ∂2σy/∂y2 which may
be used for the simplification of Equation (84). Substituting it into Equation (84), the compatibility
equation becomes:

∇2(σx + σy) + E+/−α+/−∇2T = 0. (86)

in which, ∇2 stands for ∂2/∂x2 + ∂2/∂y2. Now, substituting the thermal stress solutions (Equations
(28), (30) and (32)) under three different temperature rise modes, into the compatibility Equation
(86), respectively, also noting that σy = 0 and σx depends only on y, we have, for Case 1, due to
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T(y) = T0 (1–y/h)/2, Equation (86) is naturally satisfied after substituting Equation (28); for Case 2,
T(y) = T0(1–y2/h2), substituting Equation (30) into Equation (86) gives:

2T0α−E− − 2T0E+/−α+/− = 0. (87)

Obviously, if E+/−α+/− in the second term is appropriately selected, Equation (87) may be
satisfied. More specially, if we let E+/−α+/− = E−α−, Equation (87) is naturally satisfied, or alter-
natively if we select E+/−α+/− =E+α+, Equation (87) can also be satisfied by adding a restrictive
condition, E+α+ = E−α−, which is rational according to the next discussion on equilibrium. For Case 3,
T(y) = T0(1–y3/h3)/2, substituting Equation (32) into Equation (86) gives:

3T0α−E−y− 3T0E+/−α+/−y = 0. (88)

Similarly, Equation (88) is also satisfied according to the analysis above. Therefore, the stress
solution satisfies the compatibility relation.

6.3. Discussions on the Equilibrium
First, the stress components must satisfy the equation of equilibrium. The verification of the

equilibrium condition may begin with Equation (85). If we note σy = 0, τxy = 0 and σx depends only
on y, it is easy to see that Equation (85) is easily satisfied. However, this seems to be inadequate since
the stress solution in this study needs to satisfy the Lamé equation (Equation (18)).

In this study, because the obtainment for thermal stress solution is our main aim, and the
displacement components are obtained as a secondary aspect, thus, it is difficult for us to verify the
Lamé equation (Equation (18)) expressed in terms of the displacement u and v. However, we may
verify the equilibrium from the variation trend of λE and λα. This equilibrium result is well reflected
in Figures 5, 6 and 7c, in which the variation trend of λE and λα is opposite, indicating that if λE > 0
(E+ > E−), we may have λα < 0 (α+ < α−); or alternatively, if λE < 0 (E+ < E−), we may have λα > 0
(α+ > α−). At the same time, we note that, except for those cases of λE = λα = 0, Figures 5 6 and 7a,b
cannot reflect this equilibrium, in which Figures 5, 6 and 7a correspond to the case that the variation
trend of λE and λα is consistent, Figures 5b, 6b and 7b correspond to the case of λα = 0.

From the point of view of equilibrium, if there are no external forces and moments, in an
unconstrained body, the internal stress profile produced as a result of thermal variations should be
self-equilibrated. Especially, under the opposite variation trend of λE and λα, if we let E+α+ = E−α−,
it is easily found that for the σx in Equations (28), (30) and (32), the net resultant N and resultant
moment M acting on the cross section is zero, that is, (noting that t is the thickness along z direction
and the integral region is from –h to +h)

N =
∫

σxtdy = 0, M =
∫

σxtydy = 0, (89)

which verifies the so-called equilibrium, only under certain conditions.
The above result indicates that if the equilibrium relation needs to be satisfied, the variation

trend of λE and λα should be opposite, that is, if E+ > E−, we may have α+ < α−; or alternatively if
E+ < E−, we may have α+ > α−. This phenomenon implies that the increase of elastic modulus will
cause the decrease of thermal expansion coefficient and vice versa. In fact, it is not surprising that a
change in the elastic modulus of a certain material will cause a corresponding change in the thermal
expansion properties of this material. From a microscopic perspective, the physical essences of the
thermal expansion and elastic modulus are closely related to the interatomic force, but the causes are
different. However, the exploration of this issue is already beyond the scope of this study.

6.4. Link of One- and Two-Dimensional Solutions
In addition, the link between the two solutions should be discussed here. The one-dimensional

solution is based on the strain suppression method, which is characterized by less mathematical
derivation and obvious physical meaning, while for the two-dimensional thermoelasticity solution,
there is relatively more mathematical operation and the final solution is obtained by limiting the
plane dimension, for example, l >> h, making the application of de Saint-Venant Principle possible.
Totally speaking, we may conclude that the two-dimensional thermoelasticity solution consists of
two important parts, one is any special solution of Equation (18) which corresponds to the first term
of the one-dimensional solution, another the supplement solution of Equation (18) not considering
temperature changes which exactly corresponds to the second and third terms of the one-dimensional
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solution. This conclusion is valid not only for the thermoelasticity problem with the bimodular effect
we presented here but also for the common thermoelasticity problem without the bimodular effect.

7. Concluding Remarks
In this study, the thermal stress problem of bimodular metal bars is theoretically analyzed

under three different temperature rises modes, and the one-dimensional solution based on the strain
suppression method and the two-dimensional thermoelasticity solution based on body force analogy
is obtained. The results indicate that the introduction of the bimodular effect, as well as different
thermal expansion coefficients, will bring forth obvious changes for the thermal stress. The following
four conclusions can be drawn.

(i) Above all, the linear temperature rise will produce unexpected thermal stress in a bimodular
metal bar whereas there exists no corresponding thermal stress in a metal bar without the
bimodular effect.

(ii) If the equilibrium relation needs to be satisfied, the variation trend of λE and λα should be
opposite, that is, if E+ > E−, we may have α+ < α−; or alternatively if E+ < E−, we may have
α+ > α−. This opposite changing trend actually refers to the inherent mechanistic relationship
between modulus of elasticity and thermal expansion coefficient.

(iii) After the introduction of the bimodular effect, the amplitude of stress variation from the maxi-
mum tensile stress to the maximum compressive stress increase dramatically, in comparison
with common problems of the same modulus.

(iv) There exists an inevitable link between one- and two-dimensional solutions. Especially, the first
term of one-dimensional solution corresponds to a special solution of the Lamé equation; while
the second and third terms of one-dimensional solution correspond to the supplement solution
of the Lamé equation.

The theoretical solutions obtained in this study are helpful to the analysis and measurements of
thermophysical properties of metals and their oxides [32–35], especially when the bimodular effect
is relatively obvious in a thermal environment and cannot be ignored optionally. In addition, the
consideration for the bimodular effect may be extended to study the domain of influence theorem
for generalized thermoelasticity of anisotropic material with voids [36], as well as to study the
influence of the gravity field on a two-temperature fiber-reinforced thermoelastic medium [37]. Lastly,
the study for different thermal expansion coefficients in tension and compression should resort to
more complicated theoretical analysis and large quantities of tests which will be considered in our
future work.
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