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Abstract: One of the most important requirements for a metallic biomaterial is the mechanical
biocompatibility, which means excellent mechanical properties—high strength and fatigue strength,
but low elastic modulus, to be mechanically harmonized with hard tissues. In order to improve the
mechanical and biocompatible performance of the Ti-25.5Nb-4.5Ta-8.0Zr wt% alloy, the influence of
cold plastic deformation and solution treatment on its properties were investigated. The Ti-25.5Nb-
4.5Ta-8.0Zr wt% alloy was fabricated by melting in a cold crucible furnace (in levitation) and then
subjected to several treatment schemes, which include cold rolling and different solution treatments.
Microstructural and mechanical characteristics of specimens in as-cast and thermo-mechanically
processed condition were determined by SEM microscopy and tensile testing, for different structural
states: initial as-cast/as-received, cold rolled and solution treated at different temperatures (800, 900,
and 1000 ◦C) and durations (5, 10, 15, and 20 min), with water quenching. It was concluded that
both cold rolling and solution treatment have important positive effects on structural and mechanical
properties of the biomaterial, increasing mechanical strength and decreasing the elastic modulus.
Samples in different structural states were also corrosion tested and the results provided important
information on determining the optimal processing scheme to obtain a high-performance biomaterial.
The final processing route chosen consists of a cold rolling deformation with a total deformation
degree of 60%, followed by a solution heat treatment at 900 ◦C with maintenance duration of 5 min
and water quenching. By applying this thermo-mechanical processing scheme, the Ti-25.5Nb-4.5Ta-
8.0Zr wt% alloy showed an elastic modulus of 56 GPa (5% higher than in the as-cast state), an ultimate
tensile strength of 1004 MPa (41.8% higher than in the as-cast state), a yield strength of 718 MPa (40.6%
higher than in the as-cast state), and increased corrosion resistance (the corrosion rate decreased by
50% compared to the as-cast state).

Keywords: Ti-Nb-Ta-Zr alloy; thermo-mechanical treatment; cold rolling; solution treatment; me-
chanical properties; corrosion resistance; microstructural characteristics; grain-size distribution

1. Introduction

During implant life in the human body, the osseous implant is exposed to high
mechanical loads, fatigue loading, friction, and wear. Considering all these requirements,
titanium and its alloys are considered the most biocompatible of all metallic biomaterials
for implant materials [1–6].

The standard Ti-based biomaterial used in osseous implantology, Ti-6Al-4V alloy, has
been shown to have a high elastic modulus (close to 110 GPa) [1,7–9] and toxic effects due to
Al ions released, associated with long-term health problems like neurological pathologies,
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and due to V ions release, known to be cytotoxic [1,10,11]. The appropriate alloying
elements are selected according to their biocompatibility, cell viability, corrosion resistance,
and rate of human allergic reactions to various metallic biomaterials.

Consequently, a new generation of low elastic modulus β-Ti alloys, containing only
Nb, Ta, Zr, has been developed [12–20]. Niobium (Nb), tantalum (Ta), and zirconium (Zr)
are known as the most harmless titanium alloying elements [21–25]. Nb and Ta are β
stabilizers and Zr is important for the solid solution strengthening of the alloy. In the last
decades, the properties of new metastable beta Ti alloys have been intensively studied:
Ti–35Nb–7Zr–5Ta [26], Ti-24Nb-4Zr-8Sn [27], Ti-25Ta-25Nb [28], and Ti-20Zr-10Nb [29].

Promising elastic behavior can be achieved in β-Ti alloys when α”-Ti transformation
occurs, due to their low elastic modulus compared to that of the β-Ti parent phase [30–34].
It has been shown that in Ti-Nb-Ta-Zr (TNTZ) alloys, the proportion of α” phases varies
inversely with the Nb content [35].

β-Ti alloys are also advantageous from the perspective of preventing stress shielding.
The key feature of Ti-Nb-Ta-Zr (TNTZ) alloy is represented by the excellent combination of
mechanical properties (high strength-low elastic modulus) and its unique compositional
design, which ensures a high biocompatibility with human bone due to the use of non-toxic
elements (Ti, Nb, Ta, Zr). Considering the demand of an appropriate elastic modulus of
30 GPa, in order to avoid the stress shielding effect, which leads to bone atrophy [2–6], it
was proven that TNTZ alloy can exhibit an elastic modulus between (45–75) GPa, depending
on applied cold-deformation intensity [36]. At the same time, in order for TNTZ alloys to
be used in load-bearing applications (such as narrow dental implants), a higher mechanical
strength is required, which is also achieved by large plastic deformations, by dislocation
and grain boundary strengthening.

Depending on the processing route, containing both cold-deformation and thermal
treatments, the elastic modulus of TNTZ or other similar alloys (TZN, TNZ) was drasti-
cally influenced [36–44]. If phase changes occur during cold-deformation and/or thermal
treatments, the β-Ti/α”-Ti phase proportion and characteristics are strongly influenced
as-well [38].

Continuing the research carried out in recent years on this category of alloys, the
present work aims to investigate the effect of cold deformation and solution treatment on
biomechanical properties of newly developed Ti-25.5Nb-4.5Ta-8.0Zr wt% (TNTZ) alloy, in
order to select the optimal thermo-mechanical treatment from the structural, mechanical,
and corrosion point of view.

2. Materials and Methods
2.1. Alloy Synthesis and Thermo-Mechanical Processing Route

The investigated alloy with the nominal chemical composition Ti-25.5Nb-4.5Ta-8.0Zr
wt% (TNTZ) was obtained by melting in an inert controlled atmosphere (argon), in a cold
crucible (in levitation) FIVE CELES-MP25 (Five’s Group Company, Paris, France) furnace,
starting from high purity elemental components: Ti: min. 99.6%, no. GF71176776; Nb: min.
99.9%, no. GF49338120; Zr: min. 99.5%, no. GF10742284; Ta: min. 99.9%, no. GF80066392
(SIGMA ALDRICH/MERCH, Merck KGaA, Darmstadt, Germany). In order to obtain
a high chemical homogeneity, the re-melting of the ingots was performed twice. The
alloy chemical composition was determined by EDS technique, using a scanning electron
microscope (SEM), model TESCAN VEGA II—XMU (TESCAN, Brno, Czech Republic),
coupled with a BRUKER QuantaxxFlash 6/30 (Bruker Corporation, Billerica, MA, USA)
EDS detector.

Figure 1 shows the applied thermo-mechanical processing route (TMP), starting from
initial/as-received (AR) TNTZ alloy, which was deformed by cold-rolling (CR), using a
Mario di Maio LQR120AS rolling-mill (Mario di Maio Inc., Milano, Italy), with a total reduc-
tion ratio (thickness reduction) of approx. ε ≈ 60%. After CR, the samples were solution
treated (ST) by heating at 800 (ST1), 900 (ST2), and 1000 ◦C (ST3) with variable treatment
durations from 5 to 20 min, followed by water quenching (WQ). All ST treatments were
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performed using a GERO SR 100 × 500 furnace (Carbolite-Gero, Neuhausen, Germany),
under high vacuum.
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Figure 1. Thermo-mechanical processing scheme applied to Ti-Nb-Ta-Zr alloy (Ti-25.5Nb-4.5Ta-
8.0Zr wt%).

2.2. Microstructural and Mechanical Characterization

All microstructural investigations were carried out using an SEM model TESCAN
VEGA II—XMU (TESCAN, Brno, Czech Republic) microscope, including grain size mea-
surements, which were performed using a complex image analysis software integrated into
the SEM. Samples were cut from all TMP states using precision Metkon MICRACUT 200
(Metkon Instruments Inc., Bursa, Turkey) cutting equipment, fitted with a XDLM (NX-MET,
Echirolles, France) diamond cutting disk. All samples were hot mounted in conductive
phenolic resin (NX-MET, Echirolles, France) and then polished, using a MetkonDigiprep
ACCURA (Metkon Instruments Inc., Bursa, Turkey) machine.

An additional super-polishing step was applied using a Buehler VibroMet2 (Buehler,
Lake Bluff, IL, USA) machine, for improving the sample surface quality. The polishing and
super-polishing steps of sample preparation are presented in detail in a previous paper [38].
To highlight the microstructure of TNTZ alloy, after the super-polishing step, the samples
were etched with an etching solution (Kroll reagent), having the following composition:
6 mL nitric acid (HNO3) + 3 mL hydrofluoric acid (HF) + 91 mL water distilled, the etching
duration was 40 to 60 s.

Mechanical characterization by tensile tests was performed using a GATAN MicroTest-
2000N testing machine (Gatan Inc., Pleasanton, CA, USA) with a strain rate of 1 × 10−4 s−1.
The tensile test specimens had a “dog-bone” shape, with a calibrated part as follows
(Figure 2): 2 mm width by 0.8 mm thickness and 7 mm gauge length. Based on the obtained
stress–strain curves, the following mechanical characteristics were: ultimate tensile strength
(σUTS); yield strength (σ0.2); fracture strain (εf); and elastic modulus (E). All values were
rounded at nearest integer.
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Figure 2. Geometric configuration of samples used in mechanical testing (tensile tests).

2.3. Corrosion Testing in Simulated Body Fluids (SBF)

Corrosion testing in simulated body fluids (SBF) was performed on TMP samples
showing the best results from a microstructural and mechanical point of view, by the
linear polarization technique. This technique consists of drawing linear polarization curves
involving the following steps: measuring the open circuit potential (OCP), over a period of
6 h; tracing of potentially dynamic polarization curves from −0.2 V (vs. OCP) to +0.2 V (vs.
OCP)—Tafel curves, with a scan rate of 0.167 mV/s.

Corrosion resistance tests were performed using a Potentiostat/Galvanostat PARSTAT
4000 (Princeton Applied Research—AMETEK, Oak Ridge, TN, USA). Corrosion testing
was performed according to ASTM G59-97(2014) [45]. An electrochemical cell consisting of
a saturated calomel electrode (SCE)—reference electrode, a platinum electrode—recording
electrode and the working electrode, which consisted of the investigated samples, were
used to perform the tests. The tests were performed at 37 ± 0.5 ◦C. The SBF solution had
the following composition: 7.996 g/L NaCl, 0.350 g/L NaHCO3, 0.224 g/L KCl, 0.228 g/L
K2HPO4·3H2O, 0.305 g/L MgCl2·6H2O, 40 mL 1 M-HCl, 0.278 g/L CaCl2, 0.071 g/L
Na2SO4, 6.057 g/L (CH2OH)3CNH2, pH = 7.4.

3. Results and Discussion
3.1. Chemical, Microstructural, and Mechanical Properties of Initial/As-Received (AR)
TNTZ Alloy

The SEM-EDS technique was used to investigate the chemical composition of initial/as-
received (AR) TNTZ alloy. Figure 3a shows a representative SEM image for the TNTZ
alloy in the AR state. Figure 3b shows the maps for the dispersion of the main alloying
elements within the structure of the TNTZ (Titanium, Niobium, Zirconium, and Tantalum)
alloy. A fine uniform distribution can be observed for all alloying elements, indicating
a good chemical homogeneity. No other alloying elements were identified within EDS
spectra of initial/as-received (AR) TNTZ alloy (Figure 3c). Table 1 shows the computed
global chemical composition. It can be seen that the measured global chemical composition
is almost identical with the imposed one, proving that the synthesis in inert controlled
atmosphere (argon) by cold crucible induction in levitation is a suitable synthesis technique
for titanium-based alloys.
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Table 1. Computed global chemical composition of TNTZ alloy in AR state.

Element At. No. Mass, [% wt.] Abs. Error, [%] Rel. Error, [%]

Titanium 22 62.29 1.61 2.77
Niobium 41 25.26 0.47 2.76
Zirconium 40 7.94 0.10 3.33
Tantalum 73 4.51 0.11 3.10

Sum 100.00 - -

The microstructure and the grain size distribution of AR TNTZ alloy are shown in
Figures 4 and 5. The microstructure is relatively homogeneous, with equiaxed grains, most
of the grains having a grain-size between 100–150 µm and an average grain-size close to
141 µm. The mechanical properties of the AR TNTZ alloy are shown in Table 2.
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Table 2. Mechanical characteristics of TNTZ alloy in AR state.

Structural State Ultimate Strength,
σUTS [MPa]

Yield Strength,
σ0.2 [MPa]

Fracture Strain,
εf [%]

Elastic Modulus,
E [GPa]

AR TNTZ alloy 708 ± 10 512 ± 13 10 ± 2 59 ± 2

3.2. Microstructural and Mechanical Properties of Cold-Rolled (CR) TNTZ Alloy

Figure 6 illustrates the microstructure of the TNTZ alloy, as resulted after the cold-
rolling deformation (CR), with a total reduction ratio of 60%. The microstructure shows
the presence of deformation bands, deformation twins, and dislocation bands, which are
well outlined, indicating a high degree of deformation texturing. Also, the microstructure
morphology suggests that the mechanisms of deformation are conventional dislocation
glide and twinning. Figure 6 shows that no discontinuities are presented in the volume,
which demonstrates that the alloy can withstand cold deformations with high reduction
ratios (at least 60%).
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In order to study the evolution of grain deformation degree, the samples were ex-
amined in RD–ND cross-section (RD—rolling direction; ND—normal direction) and to
emphasize the main microstructural characteristics, only the most representative images
were selected.

Table 3 shows the mechanical characteristics of the TNTZ alloy in CR state. It can
be observed that after cold rolling, the strain hardening effect is quite strong, increasing
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the strength properties (expressed by the ultimate tensile strength σUTS and the yield
strength σ0.2) and decreasing the ductility (expressed by the fracture strain εf) compared to
initial/as-received (AR) state (Table 2). On the other hand, it can be noted that cold rolling
decreases the elastic modulus from 59 to 50 GPa, which can be attributed to deformation
texture formation. This result also confirms that one of the best ways to increase tensile
strength while maintaining a low elastic modulus is to increase the dislocation density into
the alloy structure by cold working.

Table 3. Mechanical characteristics of CR TNTZ alloy.

Structural State Ultimate Strength,
σUTS [MPa]

Yield Strength,
σ0.2 [MPa]

Fracture Strain,
εf [%]

Elastic Modulus,
E [GPa]

CR TNTZ alloy 1261 ± 12 1166 ± 10 4 ± 1 50 ± 3

3.3. Microstructural and Mechanical Characteristics Evolution during Solution Treatment of
TNTZ Alloy

In Table 4 are given the grain-size evolutions of TNTZ alloy microstructure during
ST treatment performed at different temperatures (800, 900, and 1000 ◦C, respectively)
and variable holding times (5, 10, 15, and 20 min, respectively). All the grain dimensions
presented in Table 4 are averaged values obtained from a series of parallel measurements.

Table 4. Grain-size distribution during solution treatment of TNTZ alloy.

Grain-Size [µm]

Treatment Temperature [◦C]
Holding Time [min]

5 10 15 20

800 43 48 54 62
900 57 63 72 79

1000 91 104 117 162

Figure 7 illustrates the evolution of the microstructure of the TNTZ alloy as resulted
after the solution treatment performed at 800 ◦C. The microstructure shows the presence of
recrystallized β-Ti phase grains, with and increasing grain-size from 43 µm for a treatment
duration of 5 min (Figure 7a), to 62 µm for a treatment duration of 20 min (Figure 7d),
showing that the treatment duration moderately influences the increase of grain-size. The
same observations can be made in the case of solution treatment performed at 900 ◦C
(Figure 8), when the grain-size increases from 57 µm for a treatment duration of 5 min
(Figure 8a), to 79 µm for a treatment duration of 20 min (Figure 8d). Also, in the case
of solution treatment performed at 1000 ◦C (Figure 9), one can observe that the grain-
size increases from 91 µm for a treatment duration of 5 min (Figure 9a), to 162 µm for a
treatment duration of 20 min (Figure 9d). It is obvious that, during solution treatment the
most influential factor on grain-size is the heating temperature, since for 20 min treatment
duration the grain-size is increasing from 62 µm at 800 ◦C, to 79 µm at 900 ◦C, and to
162 µm at 1000 ◦C.
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A graphical representation of the grain-size evolutions during ST treatment of the
TNTZ alloy as a function of holding time and treatment temperature is given in Figure 10,
which shows that the grain-size increases with both maintenance time and temperature.
The error bars (Figure 10a) represent the standard deviation of grain dimensions ob-
tained from parallel tests. In this graphical representation, it can be seen that the holding
time of solid state treatment has less influence on grain-size evolution compared to the
treatment temperature.
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Tables 5–7 present the mechanical characteristics for the Ti-Nb-Ta-Zr alloy solution
treated at 800, 900, and 1000 ◦C, with variable holding times of 5, 10, 15, and 20 min.
Generally, it can be seen that the solution treatment improves the ductility (expressed by
the fracture strain εf) and decreases the strength properties compared to those in the CR
state (expressed by the ultimate tensile strength σUTS and the yield strength σ0.2), but this
influence depends on the temperature and duration of the solution treatment.

Table 5. Mechanical characteristics of TNTZ alloy solution treated at 800 ◦C with holding times of:
5 min (ST 1.1), 10 min (ST 1.2), 15 min (ST 1.3), and 20 min (ST 1.4).

Structural State Ultimate Strength,
σUTS [MPa]

Yield Strength,
σ0.2 [MPa]

Fracture Strain,
εf [%]

Elastic Modulus,
E [GPa]

Solution treated (ST 1.1) 1166 ± 10 1052 ± 12 6 ± 1 54 ± 4
Solution treated (ST 1.2) 1083 ± 12 978 ± 12 7 ± 1 55 ± 3
Solution treated (ST 1.3) 1034 ± 13 916 ± 10 7 ± 1 55 ± 4
Solution treated (ST 1.4) 997 ± 11 814 ± 12 8 ± 2 54 ± 4

Table 6. Mechanical characteristics of TNTZ alloy solution treated at 900 ◦C with holding times of:
5 min (ST 2.1), 10 min (ST 2.2), 15 min (ST 2.3), and 20 min (ST 2.4).

Structural State Ultimate Strength,
σUTS [MPa]

Yield Strength,
σ0.2 [MPa]

Fracture Strain,
εf [%]

Elastic Modulus,
E [GPa]

Solution treated (ST 2.1) 1004 ± 11 720 ± 12 10 ± 2 56 ± 4
Solution treated (ST 2.2) 944 ± 10 615 ± 14 12 ± 2 55 ± 2
Solution treated (ST 2.3) 863 ± 12 573 ± 12 16 ± 1 55 ± 4
Solution treated (ST 2.4) 767 ± 11 531 ± 12 21 ± 2 56 ± 3

Table 7. Mechanical characteristics of TNTZ alloy solution treated at 1000 ◦C with holding times of:
5 min (ST3.1), 10 min (ST 3.2), 15 min (ST 3.3), and 20 min (ST 3.4).

Structural State Ultimate Strength,
σUTS [MPa]

Yield Strength,
σ0.2 [MPa]

Fracture Strain,
εf [%]

Elastic Modulus,
E [GPa]

Solution treated (ST 3.1) 847 ± 14 546 ± 10 13 ± 2 57 ± 4
Solution treated (ST 3.2) 844 ± 13 597 ± 12 9 ± 2 55 ± 4
Solution treated (ST 3.3) 859 ± 14 613 ± 11 5 ± 2 54 ± 4
Solution treated (ST 3.4) 856 ± 12 723 ± 13 5 ± 2 56 ± 3
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The solution treatment performed at 800 ◦C (Table 5) shows that the increase of
treatment duration from 5 (ST 1.1) to 20 min (ST 1.4) leads to a sharp decrease in strength
properties and to a moderate increase in ductility, compared to the CR state. Similar
observations can be made in the case of solution treatment performed at 900 ◦C (Table 6),
with the difference that the ductility increases drastically, the maximum fracture strain
(close to 21%) being recorded in the case of the sample treated for 20 min (ST 2.4) (Table 6).

In the case of the alloy solution treated at 1000 ◦C (Table 7), one can observe that
the ductility is decreasing with increasing the treatment duration, the minimum fracture
strain (close to 5%) being recorded in the case of sample treated for 20 min (ST 3.4),
while the strength properties are maintained at approximately constant values during
solution treatment.

Taking into account that the objective of the experiments was to obtain a biocompatible
TNTZ alloy with homogeneous, equiaxed structure, and convenient mechanical properties
(good ductility, high strength, and low elastic modulus), the TMP schemes consisting of
cold deformation followed by solution treatment at 900 ◦C (variants ST 2.1–ST 2.4), with
water quenching (WQ), can be considered as the most appropriate. In these conditions,
the TNTZ alloy presented a fully recrystallized equiaxed microstructure, with an average
grain size between 57–79 µm, and the best combination of mechanical properties (high
strength, good ductility and low elastic modulus); for this reason, these samples were
further corrosion tested in SBF.

3.4. Corrosion Testing of TNTZ Alloy in SBF

The TNTZ samples showing the best results from microstructural and mechanical
point of view (ST 2.1 to ST 2.4) were further tested for corrosion resistance in SBF solution,
in order to assess the best candidate as implant material for medical applications. The
variation of the open circuit potential (EOC) corresponding to the investigated samples is
presented in Figure 11a, and the potentiodynamic curves (Tafel curves) in Figure 11b.
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TNTZ alloy.

Using the Tafel curves, the following parameters characterizing the corrosion resistance
of the investigated samples were determined: the open circuit potential (EOC); the corrosion
potential (Ecorr); the corrosion current density (icorr); the slope of the cathodic curve (βC);
the slope of the anodic curve (βa).

Also, with the help of Tafel extrapolation, the polarization resistance was calculated,
through which the corrosion resistance can be assessed. The polarization resistance was
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evaluated according to ASTM G59-97(2014), Standard Test Method for Conducting Poten-
tiodynamic Polarization Resistance Measurements [45], using the relation:

Rp =
1

2.3
· βa|βC|
βa + |βC|

· 1
icorr

(1)

where:

βa—slope of the anodic curve;
βC—the slope of the cathode curve;
icorr—the corrosion current density (µA/cm2).

The corrosion rate (CR) was calculated according to the standard ASTM G102-89
(2004)e1, Standard Practice for Calculation of Corrosion Rates and Related Information
from Electrochemical Measurements [46], using the relation:

CR = Ki·
icorr

ρ
·EW (2)

where:

Ki—constant that defines the units for the corrosion rate (3.27 × 10−3);
ρ—density (g/cm3); icorr—the corrosion current density (µA/cm2);
EW—equivalent weight (grams/equivalent).

Table 8 presents the main parameters of the electrochemical corrosion process. It can
be considered that the more electropositive values of the open circuit potential (EOC) denote
a nobler character from the electrochemical point of view. Thus, the ST 2.3 sample, having
the most electropositive value (−280 mV), has a better corrosion behavior than the other
samples, being closely followed by the AR (−281 mV) and ST 2.4 (−282 mV) samples.

Table 8. Main corrosion parameters for TMP processed TNTZ alloy.

No. Sample EOC (mV) Ecorr (mV) icorr
(nA/cm2) βc (mV) βa (mV) Rp

(MΩ·cm2)
CR

(µm/year)

1 AR −281 −258 3.141 176.66 787.94 19.975 0.0257
2 CR −289 −274 1.368 155.81 298.67 32.544 0.0112
3 ST 2.1 −311 −288 1.445 165.62 244.69 29.718 0.0118
4 ST 2.2 −284 −260 2.227 170.04 518.33 24.997 0.0182
5 ST 2.3 −280 −267 2.252 172.20 245.81 19.550 0.0184
6 ST 2.4 −282 −265 2.201 170.27 428.88 24.076 0.0180

Considering the value of the corrosion potential (Ecorr), the higher the electropositive
corrosion potential Ecorr, the better corrosion resistance; one can observe that the AR sample
has the most electropositive Ecorr value (−258 mV), followed by ST 2.2 (−260 mV), ST 2.4
(−265 mV), and ST 2.3 (−267 mV) samples. It is known that a low corrosion current density
(icorr) indicates a better corrosion resistance. According to this criterion, it can be observed
that the lowest value for icorr was recorded in the case of CR sample (1.368 nA/cm2),
followed by the ST 2.1 sample (1.445 nA/cm2), demonstrating a better corrosion resistance
in SBF than the other samples.

Analyzing the polarization resistance, it can be seen that the highest value was ob-
tained in the case of CR sample (32.544 MΩ·cm2), closely followed by the ST 2.1 sample
(29.718 MΩ·cm2). In terms of corrosion rate, it can be observed that the CR and ST 2.1
samples have registered the smallest values of 0.0112 and 0.0118 µm/year, respectively,
which represents a decrement of ~50%, in comparison to the value of the AR samples,
indicating the beneficial effect of the thermo-mechanical processing.

It is already known that the maximum accepted corrosion rate for implantable mate-
rials is 0.13 mm/year and that the corrosion rate of titanium in passive state is less than
0.02 mm/year [47–49]. Thus, by comparison, it can be observed that the proposed materials
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have registered values of corrosion rates that are of 1000 times smaller than 0.02 mm/y,
indicating their potential use as implantable biomaterials. Likewise, similar results of the
corrosion parameters have also been reported by Surmeneva, M. et al. [26], which have
developed a TNTZ alloy by electron beam melting technique.

Overall, the corrosion tests show that the CR sample has higher electrochemical
values (it has the lowest corrosion current density, the highest polarization resistance,
and the smallest corrosion rate) and thus a better corrosion behavior in SBF than all the
other investigated samples, being closely followed by the ST 2.1 sample. Based on the
biomechanical properties determined by microstructural, mechanical, and corrosion tests,
it can be concluded that the best candidate as an implant material suitable for medical
applications is the state ST 2.1, due to the most favorable combination of properties (high
values for strength, ductility, and corrosion resistance in SBF and low elastic modulus)
compared to all other TMP processed samples.

4. Conclusions

• A β-type Ti-25.5Nb-4.5Ta-8.0Zr wt%—TNTZ alloy was fabricated by melting in a
cold crucible furnace (in levitation) and then subjected to different thermo-mechanical
processing schemes (cold rolling and solution treatments), in order to improve biome-
chanical properties;

• SEM-EDS analysis showed a fine uniform distribution for all alloying elements, indi-
cating a good chemical homogeneity;

• SEM analysis revealed that the microstructure of TNTZ alloy after solution treatment
consists of a homogeneous β-Ti single-phase with equiaxed polyhedral grains and
tight grain-size distribution;

• 60% cold rolling deformation decreased the elastic modulus from 59 to 50 GPa, which
can be attributed to deformation texture formation;

• During solution treatment the most influential factor on grain-size was the heating
temperature;

• TMP schemes consisting of cold deformation, followed by solution treatment at 900 ◦C
(variants ST 2.1–ST 2.4), with water quenching (WQ), were the most appropriate TMP
routes, as the alloy presented a fully recrystallized equiaxed microstructure, with
an average grain size between 57–79 µm, and the best combination of mechanical
properties: high strength (σUTS = 767–1004 MPa), good ductility (εf = 5–13%), and low
elastic modulus (E = 54–55 GPa);

• The corrosion tests show that the cold-rolled sample had higher electrochemical values
(the lowest corrosion current density, the highest polarization resistance, and the
smallest corrosion rate) and thus a better corrosion behavior in SBF than all the other
investigated samples, being closely followed by the sample CR and ST at 900 ◦C with
a treatment duration of 5 min (ST 2.1) and water quenched (WQ);

• Based on registered biomechanical properties (microstructural, mechanical, and cor-
rosion resistance), the best candidate as implant material for medical applications is
the one resulted after a TMP route consisting of a cold deformation (CR) followed
by solution treatment (ST) at 900 ◦C, with a treatment duration of 5 min (ST 2.1) and
water quenching (σUTS = 1004 MPa, εf = 10%, E = 56 GPa).
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