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Abstract: The mutual interactions of Lamb waves in nonlinear elastic plates are studied in this
article. Many researchers have investigated the interactions of Lamb wave modes at nonlinear higher
harmonics. However, little is known about nonlinearity-driven Lamb modulations from two primary
modes with different frequencies. In this study, the existence of symmetric or antisymmetric mode
due to Lamb wave mutual interactions is firstly theoretically formulated. Then, an approach is
proposed to evaluate the intensity of phase velocity matching for selecting primary modes. Finally,
the characteristics of the modulated wave generation are investigated and demonstrated. The
generation of modulated waves in an aluminum plate and fatigue crack can be detected by mutual
interactions of Lamb waves. The main contribution of this work is the proposed mutual interaction
theory of Lamb waves in fatigue plates, which can guide fatigue detection in the metal plate.

Keywords: Lamb waves; nonlinear; mutual interactions

1. Introduction

Recent research has demonstrated that nonlinear ultrasonic-guided waves have the
capability to provide sensitivity to microstructural changes [1–10]. When incident Lamb
waves propagate in a media with a nonlinear mechanism such as a fatigue crack, nonlinear
components, including higher harmonics due to the primary mode self-interactions and
modulations due to mutual interactions, are generated from the nonlinear region [11–14].
These nonlinear components can be directly attributed to the nonlinear elastic properties
of a material, which are much more sensitive to the changes in microstructure than linear
elastic properties.

Many researchers have investigated higher harmonic generation from the primary
mode self-interactions [15–17]. Hong [18] investigated the nonlinear features extracted from
Lamb wave signals, which were demonstrably sensitive to impact damage. Pineda [19]
presented a theoretical development and experimental investigation into the nonlinear
guided wave for bolted joint health monitoring. The effect of load cycle numbers in
nonlinear guided wave features was investigated. Aseem [20] also studied the debonding
detection and location estimation method by nonlinear longitudinal guided waves in
rebar-reinforced concrete structures.

However, there has been little study of the mutual interactions of Lamb waves.
Liu et al. studied the interactions of guided waves in weakly nonlinear circular cylin-
ders and plates, but they only discussed the generation of the second harmonics mode [21].
Lim and Sohn et al. studied the binding condition of Lamb wave nonlinear modulation [22].
It was validated that a nonlinear modulation requires synchronism, nonzero power flux,
and simultaneous arrival. Then a fatigue crack detection technology using nonlinear ultra-
sonic wave modulation was proposed by Sohn et al. [11,23,24]. Based on low-frequency
S0 mode and A0-S0 Lamb wave mixing wave method, Ding [25] studied the early stage
damage by experiment investigation. It was shown that the Lamb mixing wave method
was practicable for detecting early-stage damage. Donatas [26] investigated the selection
of higher order Lamb wave mode for pipeline damage detection and detected the hidden
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corrosion defect. Kim [27] presented a nondestructive method for the quantitative assess-
ment of fatigue damage by the nonlinear ultrasonic method. SAFE method and experiment
investigation were carried out on the damaged SWO-V spring coil.

The contributions of this work are shown as follows:

(1) As the characteristics of the nonlinear modulation are practically important for its
applications, the mutual interactions of Lamb waves in nonlinear elastic plates are
studied in this study;

(2) The Lamb wave mutual interaction theory can be utilized to guide nonlinear
mode selection;

(3) The fatigue damage in the metal plate can be detected by the Lamb wave
mutual interaction.

The remainder of this paper is organized as follows: First, the existence of symmetric
or antisymmetric mode due to Lamb waves mutual interactions is theoretically formulated.
Then an approach is proposed to evaluate the intensity of phase velocity matching for
selecting primary modes. Next, the characteristics of the modulated wave generation are
investigated and demonstrated. Finally, the experiment is carried out on a 3 mm thick
6061-T6 aluminum plate to test the theoretical result and prove the effectiveness of fatigue
damage detection by mutual interaction.

2. Nonlinear Modulation Generation of Lamb Waves
2.1. Lamb Wave Propagation

The wave motion is assumed to take place in the x1x3 plane with propagation in the
x1 direction, as illustrated in Figure 1.
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Figure 1. Free-plate schematic showing geometry.

For a given frequency, the displacement fields of the Lamb mode in the complex-value
representation are given by [28].

u1(x1, x3, t) = (ikA cos αx3 + βB cos βx3)ei(kx1−ωt)

u3(x1, x3, t) = (−αAsinαx3 − ikB sin βx3)ei(kx1−ωt) (1)

for the symmetric modes, where A and B are given as an eigenvector of[
−2ikα sin αh

(
k2 − β2) sin βh(

k2 − β2) cos βh −2ikβ cos βh

](
A
B

)
=

(
0
0

)
(2)

On the other hand, for the antisymmetric modes,

u1(x1, x3, t) = (ikC sin αx3 − βD sin βx3)ei(kx1−ωt)

u3(x1, x3, t) = (αC cos αx3 − ikD cos βx3)ei(kx1−ωt) (3)

where C and D are given by [29]
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[
2ikα cos βh

(
k2 − β2) cos βh(

k2 − β2) sin αh 2ikβ sin βh

](
C
D

)
=

(
0
0

)
(4)

Here, ω and k are the angular frequency and the wave number of the Lamb mode,
respectively. In addition,

α =

√(
ω

CL

)2
− k2, β =

√(
ω

CT

)2
− k2. (5)

CL and CT are the longitudinal and transverse wave speeds, respectively,

c2
L =

λ + 2µ

ρ
, c2

T =
µ

ρ

λ, µ are the Lamé parameters.

2.2. The Dispersion Property

Dispersion curves of the 3 mm isotropic aluminum plate are shown in Figure 2. The
mass density (ρ), Young’s modulus (E), and Poisson’s ratio (υ) of the 3 mm isotropic
aluminum plate are 2700 kg/m3, 71 GPa, and 0.33, respectively. As shown in Figure 2, with
a frequency of under 520 kHz, there are only S0 and A0 modes. The investigation frequency
is under 520 kHz.
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2.3. Mutual Interaction

The wave motion is assumed to take place in a stress-free plate of thickness 2 h
(x3 direction) with propagation in the x1 direction. Consider the interactions of two Lamb
wave modes ua and ub propagating in the free plate. The total displacement field can be
decomposed into fundamental and secondary wave fields

u = u(1) + u(2), u(1) = ua + ub, u(2) = uaa + ubb + uab, (6)

where uaa and ubb are the secondary wave fields due to the self-interactions of mode a and
mode b, respectively, and uab is the displacement field due to the mutual interactions of the
two modes. The mode interaction problem can be solved by the normal mode expansion
technique of Auld [30]. The secondary solution is written as

v(2)(x1, x3, t) = 1
2

∞
∑

m=1

i
(

psur f
n +pvol

n

)
4Pmn [k∗n−(ka±kb)]

vm(x3)

·
(

ei(ka±kb)x1 − eik∗nx1
)

e−i(ωa±ωb)t + c.c., k∗n 6= (ka ± kb),
(7)
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v(2)(x1, x3, t) = 1
2

∞
∑

m=1

x1

(
psur f

n +pvol
n

)
4Pmn

vm(x3)

·ei(ka±kb)x1−i(ωa±ωb)t + c.c., k∗n = (ka ± kb),
(8)

where vm is the particle velocity of the mth secondary wave mode at ωa ±ωb, and Pmn is
the complex power flux in the propagation direction. For a propagating wave, the complex
power flux exists only when m equals n. That is because mode n is orthogonal to all the
other modes except itself, i.e., Pnn. psur f

n , and pvol
n , are interpreted as power fluxes through

the surface and the volume, respectively [22], due to the nonlinear surface traction and
body force exerted by the fundamental waves in the plates. Here,

Pmn = −1
4

∫ h

−h
(v∗n · Tm + vn · T∗m) · n1dx3, (9)

pvol
n =

1
2

∫ h

−h
v∗n ·

¯
f dx3, (10)

psur f
n = −1

2
v∗n ·

¯
T · n3

∣∣∣∣x3=h

x3=−h
, (11)

where T and
¯
T are the linear and nonlinear parts of the stress tensor for the mode mutual

interactions, respectively, which can be obtained by [14]

Tij = λ
∂uk
∂xk

δij + µ

(
∂uj

∂xi
+

∂ui
∂xj

)
(12)

Tij =
λ
2

∂uk
∂xl

∂uk
∂xl

δij + (λ + B) ∂ul
∂xl

∂uj
∂xi

+ C ∂uk
∂xk

∂ul
∂xl

δij

+ B
2

(
∂uk
∂xl

∂uk
∂xl

+ ∂uk
∂xl

∂ul
∂xk

)
δij + B

(
∂ul
∂xl

∂ui
∂xj

)
+ A

4
∂ui
∂xk

∂uk
∂xj

+
(

µ + A
4

)(
∂uk
∂xi

∂uj
∂xk

+ ∂ui
∂xk

∂uj
∂xk

+ ∂uk
∂xi

∂uk
∂xj

) (13)

Finally, the nonlinear body force is given by the divergence of the nonlinear stress

¯
f = ∇ ·

¯
T. (14)

The quantities in Equation (13) are the real primary displacement field ui; Lamé’s
constant λ; the shear modulus µ; and the third-order elastic material constants A, B, and C.

The nonlinear forcing terms for mode mutual interaction problems can be obtained by
substituting ua and ub into Equations (13) and (14) while retaining terms up to the second
order for the nonlinear stress and the nonlinear body forces. Therefore, the nonlinear stress
for the mode of mutual interactions is given by [14]

TM
ij = (λ + B)

(
∂ua

k
∂xk

∂ub
j

∂xi
+

∂ua
j

∂xi

∂ub
l

∂xl

)
+

(
λ

∂ua
l

∂xk

∂ub
l

∂xk
+ 2C ∂ua

k
∂xk

∂ub
l

∂xl

)
δij

+B
(

∂ua
k

∂xk

∂ub
i

∂xj
+

∂ua
i

∂xj

∂ub
l

∂xl

)
+ B

2

(
∂ua

k
∂xl

∂ub
k

∂xl
+

∂ua
l

∂xk

∂ub
k

∂xl
+

∂ua
l

∂xk

∂ub
l

∂xk
+

∂ua
l

∂xk

∂ub
l

∂xk

)
δij

+
(

µ + A
4

)(
∂ua

k
∂xi

∂ub
j

∂xk
+

∂ua
j

∂xk

∂ub
k

∂xi
+

∂ua
i

∂xk

∂ub
j

∂xk
+

∂ua
j

∂xk

∂ub
i

∂xk
+

∂ua
k

∂xi

∂ub
k

∂xj
+

∂ua
k

∂xj

∂ub
k

∂xi

)
+ A

4

(
∂ua

i
∂xk

∂ub
k

∂xj
+

∂ua
k

∂xj

∂ub
i

∂xk

)
+ O

((
∂ua

j
∂xi

)3
)
+ O

((
∂ub

j
∂xi

)3
)

,

(15)

and the nonlinear body force for the mode of mutual interaction is given by
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f
M
i =

3

∑
j=1

∂TM
ij

∂xj
. (16)

Equations (15) and (16) give the nonlinear forcing terms for the mode of mutual
interaction, and the result is shown in the Appendix A.

The matrix forms of the nonlinear forcing terms can be written in matrix form as

¯
T

M

=

TM
11 0 TM

13
0 0 0

TM
31 0 TM

33

 (17)

¯
f

M

=


f

M
1
0

f
M
3

 (18)

which enables the determination of the possible types of cumulative secondary wave fields
due to guided wave mutual interactions with two Lamb modes.

With regards to Lamb mode secondary wave fields, the power flux from an arbitrary
fundamental mode to a prescribed Lamb secondary mode via the nonlinear stress is given by

psur f
n = −1

2
{

v∗1(x3) 0 v∗3(x3)
}
·

TM
11(x3) 0 TM

13(x3)
0 0 0

TM
31(x3) 0 TM

33(x3)

 ·


0
0
1


∣∣∣∣∣∣∣
x3=h

x3=−h

, (19)

Additionally, the power flux resulting from the nonlinear body force is given by

pvol
n =

1
2

∫ h

−h
{v∗1(x3), 0, v∗3(x3)} ·


f

M
1 (x3)

0

f
M
3 (x3)

dx3. (20)

3. Nonzero Power Flux

From Equations (7) and (8), one of the binding conditions that must be satisfied for the
mutual interactions is nonzero power flux (psur f

n + pvol
n 6= 0) [31]: nonzero power transfer

from the selecting primary waves to the modulated waves should be ensured. For this
purpose, the power flux from symmetric–symmetric, antisymmetric–antisymmetric, or
symmetric–antisymmetric mutual interaction fundamental fields to a prescribed Lamb
secondary mode were analyzed in this study to clarify the existence of symmetric or
antisymmetric mode due to Lamb wave mutual interactions.

As in Ref. [32], similar generic symmetric and antisymmetric functions (S = S(x3) and
A = A(x3), respectively) were defined to investigate symmetries along the x3-axis.

(1) Symmetric–symmetric or antisymmetric–antisymmetric mutual interactions.

When the two mutually interacting fundamental excitations are the same mode
type, the nonlinear forcing terms will have the same symmetry properties as mode self-
interaction, as shown in Refs. [21,32]. Thus,

psur f
n + pvol

n = 0 for secondary antisymmetric Lamb waves
psur f

n + pvol
n 6= 0 for secondary symmetric Lamb waves

(21)

The results indicate that both a symmetric–symmetric and an antisymmetric–antisymmetric
mutual interaction can excite a symmetric type secondary mode. In contrast, neither a symmetric–
symmetric nor an antisymmetric–antisymmetric mutual interaction can excite an antisymmetric
type secondary mode.
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(2) Symmetric–antisymmetric mutual interaction.

Now, let a fundamental mode a be symmetric Lamb mode and the other fundamental
mode b be antisymmetric Lamb mode, whose displacement field is given in Equations (1) and
(3). Thus, the symmetries of the displacement are given by

ua
1 = S(x3), ua

3 = A(x3), ub
1 = A(x3), ub

3 = S(x3) (22)

By using these results, the symmetries of v,
¯
T

M

,
¯
f

M

are shown in Table 1.

Table 1. The symmetries of velocity and nonlinear forcing terms for different secondary modes from
the symmetric–antisymmetric mode mutual interaction.

Secondary Mode Type v ¯
T

M ¯
f

M

Symmetric {S 0 A}

A 0 S
0 0 0
S 0 A




A
0
S


Antisymmetric {A 0 S}

Hence, for secondary symmetric modes, Equations (19) and (20) become

pvol
n =

1
2

∫ h

−h

{
S 0 A

}
·


A
0
S

dx3 =
1
2

∫ h

−h
(S · A + A · S)dx3 = 0 (23)

psur f
n = −1

2
{

S 0 A
}
·

A 0 S
0 0 0
S 0 A

 ·


0
0
1


∣∣∣∣∣∣
x3=h

x3=−h

= −1
2
(S · S + A · A)

∣∣∣∣x3=h

x3=−h
= 0 (24)

Whereas for secondary antisymmetric modes, we obtain

pvol
n =

1
2

∫ h

−h

{
A 0 S

}
·


A
0
S

dx3 =
1
2

∫ h

−h
(A · A + S · S)dx3 6= 0 (25)

psur f
n = −1

2
{

A 0 S
}
·

A 0 S
0 0 0
S 0 A

 ·


0
0
1


∣∣∣∣∣∣
x3=h

x3=−h

= −1
2
(A · S + S · A)

∣∣∣∣x3=h

x3=−h
6= 0, (26)

By summarizing these results, it can be concluded that only symmetric secondary wave
fields can be excited for symmetric–symmetric mode mutual interaction or antisymmetric–
antisymmetric mode mutual interaction, while only antisymmetric secondary wave fields
can be excited for symmetric–antisymmetric mode mutual interaction.

Table 2 lists all the possible secondary wave fields due to Lamb wave mode mutual
interactions.

Table 2. Possible secondary wave fields due to Lamb wave mode mutual interactions.

Fundamental Wave Field Secondary Modulation

Symmetric–symmetric Symmetric
Antisymmetric–antisymmetric

Symmetric–antisymmetric Antisymmetric
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4. Synchronism Condition

Besides nonzero power flux, synchronism (or phase velocity matching) is the other
binding condition that must be satisfied for the mutual interactions [31]; that is,
k∗n = (kb ± ka) when fb > fa is assumed.

A parameter kd was employed to evaluate the intensity of phase velocity matching at
different primary frequencies pairs, which is given by

kd±( fb, fa) = −
‖k∗n − (kb ± ka)‖

‖k∗n‖
, (27)

where ‖·‖ is the absolute-value norm; fb, fa, and fn are the central frequencies of primary
wave b, a, and modulated wave, respectively. Its value is closer to zero, and the intensity of
phase velocity matching is higher.

In this study, the generation of modulated waves from fundamental modes (S0 mode
and A0 mode) interactions in an aluminum plate (thickness 3 mm, density 2700 kg/m3)
were discussed. Only four mode types satisfy the nonzero power flux condition: A0A0-S0,
S0S0-S0, S0A0-A0, and A0S0-A0. Here, S0A0-A0 represents the generation of the A0 mode
Lamb wave due to the mutual interactions of S0 mode wave a with low frequency and
A0 mode wave b with high frequency. The intensity of phase velocity matching shows that
S0S0-S0 and S0A0-A0 have the potential for a nonlinear modulation test since there are
many pairs that satisfy both phase velocity matching and nonzero power flux condition, as
shown in Figure 3c–f. Contrarily, A0A0-S0 and A0S0-A0 cannot generate modulated waves
since phase velocity matching did not occur at any pairs, as shown in Figure 3.
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5. Experimental Research
5.1. Experimental Setup

An experiment was carried out on a 3 mm thick 6061-T6 aluminum plate to test the
theoretical result. A fatigue crack was introduced to the specimen by applying a sinusoidal
tensile load of 10 Hz using a fatigue testing machine SDS200. It took about 160,000 cycles to
produce a 30 mm long fatigue crack from the hole at the center of the specimen, as shown
in Figure 4.
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Figure 4. Schematic diagram of the experimental setup: (a) top view (b) front view.

Four identical piezoelectric discs (APC 851) were installed on the specimen, whose
diameter and thickness was 6.6 mm and 0.24 mm, respectively. A dual-PZT scheme was
applied to generate and receive selective symmetric and antisymmetric modes.

The summation of two sinusoidal tone-burst signals enclosed in a Hanning window at
a central frequency of the low and the high frequencies with a 1 ms duration were applied
as input.

The input signal was generated by an arbitrary waveform generation unit (Agilent®

33220A, Santa Clara, CA, USA), then it was amplified to 45 (V) using a linear amplifier (T&C
power conversion, Inc. AG series, Rochester, NY, USA) to drive the PZT actuators. Wave
signals were captured using an oscilloscope (Agilent® DSO5032A, Santa Clara, CA, USA) at a
sampling rate of 10 MHz with 25 times averaging. Then the measured signals were analyzed
in the frequency domain by applying a short-time Fourier transform (STFT) up to the first
arrival wave packet.

5.2. Experimental Results

Four pairs (pair A~D) of primary mode were chosen for the demonstration shown in
Figure 3. Details for these pairs are given in Table 3. For the S0S0-S0 type, the synchronism
condition was matched at pair A, and the modulation frequency was 195 + 273 = 468 kHz,
as well as pair B with modulation frequency 456 − 210 = 246 kHz. As shown in Figure 5,
the S0 mode modulation is generated at 468 kHz from 195 kHz S0 and 273 kHz S0 mode
primary waves only when the nonzero power flux and synchronism condition are matched.
In the same way, the S0 mode modulation was generated at 246 kHz when both primary
waves at 210 kHz and 456 kHz were S0 mode, as shown in Figure 6.
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Table 3. Four pairs of primary mode for the demonstration.

No. Waves Primary
Mode Frequency Synchronism Theoretical

Modulation

1
a S0 195 kHz Only for fb + fa S0 mode at 468 kHzb S0 273 kHz

2
a S0 210 kHz Only for fb − fa S0 mode at 246 kHzb S0 456 kHz

3
a A0 20 kHz Both fb + fa and fb − fa A0 mode at 170 kHz

and 130 kHzb S0 150 kHz

4
a A0 40 kHz

None Noneb S0 150 kHz
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For the S0A0-A0 type, the synchronism condition was matched at pair C, and the
modulation frequencies are 150± 20 kHz. Therefore, The A0 mode modulation is generated
at both 130 kHz and 170 kHz, as shown in Figure 7a. On the other hand, the synchronism
condition was not satisfied when fa was shifted to 40 kHz at pair D; therefore, no modulation
was generated, as shown in Figure 7b.

6. Conclusions

In summary, it was demonstrated that only symmetric secondary wave fields could be
generated by symmetric–symmetric or antisymmetric–antisymmetric mode mutual inter-
actions, while only antisymmetric secondary wave fields can be generated by symmetric–
antisymmetric mode mutual interactions. The theory of Lamb wave mutual interaction
can be utilized to guide nonlinear mode selection with a frequency range under 520 kHz.
The fatigue damage in the metal plate can be detected by the Lamb wave mutual inter-
action. The theoretical results agree with that of cumulative harmonic generation [4,32];
therefore, it was shown that the interactions (both self-interactions and mutual interactions)
of two Lamb modes of the same nature (symmetric or antisymmetric) leads to secondary
wave fields that are symmetric modes, while interactions between two modes of opposite
nature lead to secondary wave fields that are antisymmetric modes.

The ability to effectively select primary pairs is also demonstrated by experimental re-
sults. These results are important for the development of nonlinear modulation technology
in nondestructive evaluation (NDE) and structural health monitoring (SHM) applications.
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Appendix A

Appendix A.1 Nonlinear Forcing Terms

The nonlinear forcing terms for the mode mutual interactions of two Lamb modes
can be obtained via Equations (15) and (16) by considering u2 = 0 and requiring ui to be
independent of x2. The nonzero terms of the nonlinear part of the first Piola–Kirchhoff
stress for the mode mutual interactions of two Lamb mode fundamental wave fields are
given by
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TM
31 =

(
µ + B + A

2

)(
∂ua

3
∂x3

∂ub
3

∂x1
+

∂ua
3

∂x1

∂ub
3

∂x3
+

∂ua
3

∂x1

∂ub
1

∂x1
+

∂ua
1

∂x1

∂ub
3

∂x1

)
+
(

λ + 2µ + B + A
2

)(
∂ua

3
∂x3

∂ub
1

∂x3
+

∂ua
1

∂x3

∂ub
3

∂x3
+

∂ua
1

∂x3

∂ub
1

∂x1
+

∂ua
1

∂x1

∂ub
1

∂x3

)
,

(A3)

TM
33 = (3λ + 6µ + 2C + 6B + 2A)

∂ua
3

∂x3

∂ub
3

∂x3
+
(

µ + B + A
2

)(
∂ua

1
∂x3

∂ub
3

∂x1
+

∂ua
3

∂x1

∂ub
1

∂x3

)
+(λ + 2C + 2B)

(
∂ua

1
∂x1

∂ub
1

∂x1
+

∂ua
1

∂x1

∂ub
3

∂x3
+

∂ua
3

∂x3

∂ub
1

∂x1

)
+
(

λ + 2µ + B + A
2

)(
∂ua

1
∂x3

∂ub
1

∂x3
+

∂ua
3

∂x1

∂ub
3

∂x1

)
.

(A4)

References
1. Li, W.; Xiao, J.; Deng, M. Micro-defect imaging with an improved resolution using nonlinear ultrasonic Lamb waves. J. Appl.

Phys. 2022, 131, 185101. [CrossRef]
2. Li, W.; Lan, Z.; Hu, N.; Deng, M. Modeling and simulation of backward combined harmonic generation induced by one-way

mixing of longitudinal ultrasonic guided waves in a circular pipe. Ultrasonics 2021, 113, 106356. [CrossRef] [PubMed]
3. Li, W.; Lan, Z.; Hu, N.; Deng, M. Theoretical and numerical investigations of the nonlinear acoustic response of feature guided

waves in a welded joint. Wave Motion 2021, 101, 102696. [CrossRef]
4. Krishna Chillara, V.; Lissenden, C.J. Interaction of guided wave modes in isotropic weakly nonlinear elastic plates: Higher

harmonic generation. J. Appl. Phys. 2012, 111, 124909. [CrossRef]
5. Zhao, J.; Chillara, V.K.; Ren, B.; Cho, H.; Qiu, J.; Lissenden, C.J. Second harmonic generation in composites: Theoretical and

numerical analyses. J. Appl. Phys. 2016, 119, 064902. [CrossRef]
6. Liu, Y.; Chillara, V.K.; Lissenden, C.J.; Rose, J.L. Third harmonic shear horizontal and Rayleigh Lamb waves in weakly nonlinear

plates. J. Appl. Phys. 2013, 114, 195. [CrossRef]
7. Duan, W.; Niu, X.; Gan, T.-H.; Kanfoud, J.; Chen, H.-P. A numerical study on the excitation of guided waves in rectangular plates

using multiple point sources. Metals 2017, 7, 552. [CrossRef]
8. Jankauskas, A.; Mazeika, L. Ultrasonic guided wave propagation through welded lap joints. Metals 2016, 6, 315. [CrossRef]
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