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Abstract: Multifunctional magnetic composite nanoparticles (NPs) with antibiotics have demon-
strated symbiotic effects because of their promising antimicrobial properties. The antimicrobial agent
reduces side effects and dosage, and increases drug delivery efficiency. In this study, SiO2 coated over
Fe3O4 magnetic nanoparticles (MNPs) were prepared by a solvothermal method. The MNPs were
characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-
visible spectroscopy (UV-vis), and Fourier transform infrared spectroscopy (FTIR). The antimicrobial
tests were carried out using the disk diffusion method. The electrochemical sensing was investigated
by cyclic voltammetry with varying As(III) concentrations from 1–10 ppb. The microstructural results
showed the formation of spherical-shaped Fe3O4@SiO2 MNPs with 15–30 nm diameters. UV-vis
results showed that Fe3O4 NPs promote visible light absorption of Fe3O4@SiO2 MNPs because of
well-structured and unvarying shell thickness which is beneficial for the absorption of organic dyes.
With an increase in the concentration of As(III), there was a shift in potential and an increase in
oxidation peak current, showing the electrocatalytic capacity of the modified electrode. The SiO2

deposited on Fe3O4 displayed an admirable microbial operation. These Fe3O4@SiO2 MNPs are easily
absorbed by cells and have the potential to influence bacterial cells both within and outside of the cell
membrane, making them an intriguing candidate for use in a variety of biological applications in
the future.

Keywords: Fe3O4@SiO2 MNPs; magnetic nanoparticles; antibacterial; biomedical; Arsenic (III)

1. Introduction

The increased risk of bacterial infections is a serious issue for public health, exten-
sively, which decreases the regulation of standard antibiotics in the body and importantly
increases clinical complications [1,2]. The death rate has increased to 25% in the world
gradually. Therefore, antibiotics have been used rigorously to cure bacterial infections [3,4].
Some examples of antibiotics used are ampicillin, nystatin, and amphotericin. Contrary to
how antibiotics like ampicillin impact the kidney, neurological system, and blood, nystatin
is hydrophobic and prevents microbial infections. Therefore, to achieve the maximum ben-
efit of antibiotics, increasing drug efficiency is vital for cellular growth. New antibacterial
agents produced using nanomaterials have been developed in the past. Nanoparticles (NPs)
have unique properties such as surface-to-volume ratios, and different physical–chemical
and biological properties, and also provide wider usage in biomedical applications [5–7].
Popular iron oxide MNPs are highly susceptible to aggregation within the cellular environ-
ment. Thus, to protect from the aggregation of iron oxide NPs, various noble metal and
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oxide (Au, Ag, SiO2, etc.) NPs have been coated over iron oxide NPs. The type of coating
generally depends on the application. The right coating enables MNPs to target particular
areas while remaining non-toxic. In the last decades, there have been many nanomaterials
used as antibacterial agents such as Ag [7–10], Cu [11], Au [12,13], ZnO2 [14], SiO2 [15],
and graphene oxide [16,17]. Among all of these, SiO2 is the most exceptional antibacterial
agent due to its high toxicity for microorganisms and low toxicity for human beings.

In addition, the most significant transition metal oxides with various technological
implications are iron oxides. Various kinds of iron oxide polymorphs can be found in
the natural world. The most prevalent polymorphs of iron oxides are hematite (α-Fe2O3),
magnetite (Fe3O4), and maghemite (Υ-Fe2O3) [18]. Magnetite Fe3O4 is the most fascinating
of all iron oxides due to the presence of iron cations in two valence states, Fe3+ and
Fe2+, in the inverse spinel structure. The cubic spinel Fe3O4 exhibits ferromagnetism
below 585 ◦C [19]. However, two significant problems with magnetite NPs include fast
agglomeration and oxidation by airborne oxygen. The most popular method of surface
modification for conjugating organic or inorganic molecules to iron oxide nanoparticle
(IONPs) surfaces is coating. This technique not only keeps IONPs from oxidizing and
clumping together, but it also offers the chance for additional functionalization [20].

Around the world, heavy metals are a major cause of groundwater pollution where
arsenic (As), one of these heavy metals, is a major factor in several illnesses. Skin lesions,
skin cancer, Blackfoot disease, and ventricular fibrillation are a few examples of such skin
disorders impacting many countries, e.g., Poland, Argentina, Chile, Vietnam, Cambodia,
Malaysia, Taiwan, India, and Bangladesh [21]. Unfortunately, many of these places in
Southeast Asia are underdeveloped and lack the resources to combat these issues. On these
grounds, it becomes essential to choose a material with dual bactericidal mechanisms. In
other words, the co-existence of Fe3O4 and SiO2 NPs can activate antimicrobial as well
as sensing mechanisms simultaneously which eventually lead to the development of a
better antimicrobial behavior under visible light irradiation, seeming consistent with an
earlier investigation on TiO2-CuO NPs [22]. Both Fe3O4 and SiO2 have been used in
antibacterial and sensing mechanisms [23,24]. Due to this, it is necessary to evaluate the
sensing performance of Fe3O4@SiO2 using As(III) [25].

In this present work, SiO2 is coated over Fe3O4 to protect from antibacterial growth.
The Fe3O4@SiO2 MNPs with a diameter of less than 20 nm have shown reduced an-
tibacterial activity [21]. After coating with SiO2, the properties of Fe3O4 change and it
demonstrates chemical surface modifiability and low cytotoxicity [26]. Recent studies
show the importance of active sites in the surface functionalization of MNPs. Qu et al.
designed symmetric NiP1N3 atomic active sites for the electrochemical reduction of CO [27].
Recently, Huo et al. have synthesized Fe36Co44 bimetallic nanoclusters for catalytic hy-
drolysis of ammonia borane [28]. The surface of the SiO2 shell at the Fe3O4 particle core
provides the active sites for the attachment of bacteria. The catalytic active sites in the
Fe3O4@SiO2 MNPs are Fe+3. This Fe3+ ion possesses a Lewis acid character that further
promotes surface modification with functional groups, bacteria, and other derivatives to
demonstrate surface activity and antibacterial properties [29]. The Fe3O4@SiO2 MNPs have
a lower ability to eliminate Gram-positive bacteria than Gram-negative bacteria which
is related to the strength of SiO2 NPs opposing the microbial membranes. This stable
nature of SiO2 increases the difficulty in penetrating the Fe3O4 membrane for microbial
activity [5,30,31]. Moreover, the main cause of human death is Gram-positive bacteria.
The assemblage of SiO2 coating becomes an impediment to antibacterial growth. Silica is
the most auspicious and advantageous coating material, because it protects MNPs from
agglomeration and oxidation at diverse pH values, improving chemical stability. Thus, SiO2
has imperative properties, such as good compatibility, and hydrophilicity favors biomedical
application [32]. SiO2 has been frequently employed as a coating for magnetic nanoparticles
because of its biocompatibility, nontoxicity, chemical inertness, extremely high specific
surface area with many Si-OH bonds on the surface, non-magnetic characteristics, and
biostability [33,34]. Since environmentally friendly technologies might lessen biological
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threats to living cells, they can be advantageous for the production of nano-antibacterial
compounds [35]. Recently, several in-situ fabrication techniques were created in order to
get rid of harmful reducing agents such as KBH4 and hydrazine from the final system.
Ag nanoparticles of various sizes and coverage were coated onto the surface of PS/PDA
microspheres by leveraging the reducing property of polydopamine (PDA), and the re-
sulting antibacterial agent displayed improved performance against Escherichia coli and
Staphylococcus aureus [30]. The microemulsion method and Stober’s method, which involve
alkaline hydrolysis of tetraethyl orthosilicate, are now the two main techniques for coating
silica onto Fe3O4 NPs [18]. Micelles are used in the microemulsion technique to control and
contain the coating. It creates core-shell NPs with a surfactant layer on the silica surface,
partially negating the benefit of the silica surface’s simple bio-conjugations. Contrarily,
core-shell Fe3O4@SiO2 NPs without the need for a surfactant might be produced by the
alkaline hydrolysis of tetraethyl orthosilicate (TEOS), which is stable and simple to disperse.
The core-shell Fe3O4@SiO2 NPs are unquestionably the best model NPs for the finding of
bio-applications since they have a pristine silica surface. [14,36].

Recently, Fe3O4 MNPs have fascinated researchers because of their most promising
magnetic properties, especially for medical applications such as targeted drug delivery,
magnetic resonance imaging (MRI), hyperthermia therapeutic agents, and biomolecules
separation because of low toxicity, biocompatible and surface-modifiable property [37,38].
Cu-based antimicrobial surfaces are enabling a revival in the fight against the epidemiology
of healthcare-associated infections. Several strategies exist to create and change surfaces
with superior antibacterial characteristics because of recent improvements in biotechnology
and material science methodologies [39,40]. Though there are many other material or
elements i.e., Au, Ni, Co, etc., we prefer using iron oxide because it has competitive
advantages compared to others. Iron oxide is formed by a chemical combination of iron with
oxygen, and it stands as the backbone of the current infrastructure. The synthesis of Fe3O4
is easily proceeded by the co-precipitation method using salts of ferric and ferrous under an
inert atmosphere, using nitrogen gas keeping pH 12 for the solution. Iron oxide disperses
well in a variety of liquid media with varying pH levels [41]. To improve the antimicrobial
properties of Fe3O4, SiO2 coatings have been investigated for enhancing their stability and
biocompatibility [42]. The surface of the magnetic nanoparticles must be functionalized
to increase their biocompatibility [33]. Silica has been utilized extensively as a coating
for magnetic nanoparticles because of its biocompatibility, nontoxicity, chemical inertness,
extremely high specific surface area with many Si-OH bonds on the surface, non-magnetic
characteristics, and biostability [43,44]. One of the most used methods for silica coating
is the Stöber synthesis method. The advantages of silica shell include its ease of further
functionalization, improved water solubility, protection of the core from oxidation and
degradation, increased resistance to highly acidic solutions, and ease of further conjugation
with various functional groups. These features make it possible to couple and label bio
targets with selectivity and specificity. The bio-toxicity analysis of the nanomagnetic
silica-coated (Fe3O4@SiO2) composite shows that it is biocompatible [45]. Fe3O4 NPs may
therefore make good candidates for their prospective application in antimicrobial therapy.
The objective of the current study is to create, characterize, and assess the antibacterial
activity of microemulsion-produced Fe3O4 and silica-coated Fe3O4 MNPs [46]. We report
on a modified Stöber approach to creating water-soluble core-shell Fe3O4@SiO2 MNPs
without the need for a surfactant in this study [36]. Environmentally friendly techniques
are advantageous for creating nano-antibacterial agents since they can lessen the biological
risk to cell life [35,47].

2. Experimental
2.1. Materials

Merck provided the tetraethyl orthosilicate (TEOS, 98%) and citric acid trisodium
salt dehydrate (C6H5Na3O7.2H2O, 99%), while Alfa Aesar provided the Ferric chloride
hexahydrate (FeCl3.6H2O, 99%), ammonia hydroxide (25 wt%), ethylene glycol, and ethanol
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(99.9%). All the chemicals were of reagent grades. We used all of the chemicals as received
without further purification.

2.1.1. Synthesis of Fe3O4 MNPs

Using salts of ferrous and ferric under an inert atmosphere created by nitrogen (N2)
gas, we were able to create Fe3O4 MNPs. In 250 mL of ultra-pure de-oxygenated Millipore
water (18.2 MΩ.cm), we varied FeCl3 from 15 to 18 g and FeCl2 from 5–7 g. The combined
solution was stirred magnetically for two hours. After adding 2 M NaOH aqueous solution
in the presence of N2 gas, the solution precipitated at room temperature. The process was
maintained at 700 ◦C for six hours with the solution’s pH remaining at 12.

According to Sophie et al., the precipitation of Fe3O4 was completed as anticipated at
pH values ranging between 8 and 14. Following precipitation, the solution was cooled to
room temperature, the precipitate was separated using a permanent magnet (2500 Gauss),
and the precipitate was repeatedly washed with ultra-pure deoxygenated Millipore water
until the pH of the solution was neutral. Finally, we used pure acetone to clean the Fe3O4
before drying it at 700 ◦C in a vacuum oven.

The overall precipitation reaction can be written as follows:

Fe2+ + 2Fe3+ + 8OH− ↔ Fe (OH)2 + 2Fe(OH)3→Fe3O4↓ + 4H2O

2.1.2. Synthesis of Fe3O4@SiO2 MNPs

According to the Stöber method, core-shell Fe3O4@SiO2 MNPs were created by hy-
drolyzing tetraethyl orthosilicate (TEOS) in the presence of Fe3O4 MNPs [48]. Using a
solvothermal coating technique first, ethylene glycol (80 mL) and FeCl3.6H2O (3.2 g) were
mixed by stirring for 30 min. Anhydrous sodium acetate (4.8 g) was then added to the
mixture, and the mixture was stirred for the next 30 min. Yellow citrate (0.8 g) was also
added to the solution mixture. After hydrothermal synthesis, the resulting black substance
was cleaned and dried. Fe3O4 NPs (0.1 g) were dispersed in a water–ethanol mixture in
100:25 ratios to create the Fe3O4@SiO2 structure. Next, NH3.H2O (1.5 mL) was added. The
entire content was then submerged in an ultrasonic bath for 10 min. Following thorough
mixing, 1 cc of TEOS was added, and the mixture was agitated for a further 6 h. The
resultant product was then magnetized to separate it from the finished product, and it was
then dried for 12 h at 80 ◦C in a vacuum oven.

3. Characterization

The characterization techniques were utilized to gain a better knowledge of surface
chemistry and crystal structure. We employed X-Ray Diffraction (XRD) and UV-vis spec-
troscopy to study the structural and absorption characteristics of MNPs, respectively.
Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy
(FTIR) were also employed to evaluate the structural and absorption properties of MNPs
at high resolution. The chemical bonds between the Fe3O4 core and the surface covering
were revealed by FTIR findings. Finally, we performed antibacterial tests and electro-
chemical sensing studies. The samples for electron microscopy studies were prepared by
ultrasonication of MNPs in ethyl alcohol and drying them on copper−carbon mesh grids.

3.1. Phase Evolution Studies

To study the phase evolution, we used XRD (Philips X’Pert PRO diffractometer)
operated at 30 mA current and 40 kV. The XRD scans were performed in the range from
26–66◦ with the Cu Kα radiation (wavelength = 0.154 nm) and a scan rate of 0.05◦/s. The
phase analysis and evolution studies of various phases were done by matching the peaks
in the XRD spectrum with the standard international center for diffraction Data- joint
committee on powder diffraction standards (ICDD-JCPDS) database using X’pert High
Score software provided in the XRD machine. The powder XRD diffraction technique was
used to characterize magnetic nanoparticles and to gather basic data on the lattice parameter
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and size [49]. The well-known Scherer’s equation, d = 0.89λ
β cos θ was used to determine the

particle size. Here, “d” stands for average crystal size, 0.89 is Scherer’s constant, λ is the
X-ray wavelength, β is the full width at half-maximum of the diffraction peaks, and θ is
the Bragg’s diffraction angle. The lattice parameter of Fe3O4 and Fe3O4@SiO2 MNPs was
calculated from Bragg’s law via the Nelson–Riley equation [49].

3.2. Surface Morphology Studies

Advanced transmission electron microscopy (TEM) was used to analyze the size and
surface morphology of nanoparticles of each sample. To know surface morphology more
deeply, transmission electron microscopy (JEOL-JEM 2100) operating at 20 kV was used.
TEM images were acquired in bright field mode. The selected area diffraction patterns
were recorded to examine the crystallinity of the produced nanoparticles. ImageJ version
4.0 was used to estimate the nanoparticle size and distribution.

3.3. UV-vis Spectroscopy

UV-vis spectroscopy (UV-vis) was carried out using a UV-vis spectrometer (Agilent
Cary 60). The UV-vis diffuse reflectance spectra were recorded with solvent baseline
correction in the range of 250 nm to 800 nm and a scanning rate of 24,000 nm min−1.

3.4. FTIR Studies

FTIR studies were performed using a Perkin Elmer Spectrum One with a resolution of
4 cm−1, using a scanning range of 500−4000 cm−1 and a scanning rate of 0.20 cm/s.

3.5. Animicrobial Tests

Gram-positive (Bacillus pumilus), Gram-negative (Bacillus halodurons), and Candida
albicans fungus were the targets of the antimicrobial testing. The various microbial strains
were purchased from the biotechnology lab at SGT University. The microbial bacteria
cultures were kept alive at a temperature of 35 ± 2 ◦C on nutrition Muller-Hinton agar. The
bacteria cultures were kept in an appropriate media slant and kept at 51 ◦C until they were
needed. In this study, dimethyl sulfoxide (DMSO) served as the negative control and the
all-purpose antibiotic ampicillin served as the positive control. Additionally, Fe3O4@SiO2
was tested for its antibacterial action using a variety of Fe3O4 concentrations, and the
results were analyzed using a modified version of the agar well disc diffusion method
from [30]. We made sterile nutritional plates and gave them a set amount of time to solidify
(5 min). Using a chosen borer, 5 mm agar wells were punched in randomly chosen areas
of various plates. A homogenous 1 mL inoculum suspension of Candida albicans, Bacillus
pumilus, and Bacillus halodurons, as well as Gram-positive and Gram-negative bacteria, was
applied to the agar plate surfaces. Furthermore, 15 mL and 20 mL of DMSO were used to
solutionize 120 mg of pristine Fe3O4 and 150 mg each of Fe3O4 and Fe3O4@SiO2 MNPs.
As a result, solutions with concentrations of 15 mg/mL and 20 mg/mL were created. The
agar well was then filled with 100 L of each prepared MNPs solution. The agar plates
were set for overnight incubation at 35 ± 2 ◦C. Using a millimeter scale, the antimicrobial
activity was assessed and recorded in mm with regard to the zone of inhibition. Around
the agar well, crystal-clear inhibition zones were seen, which showed the development of
the antimicrobial activity.

3.6. Cyclic Voltammetery Studies

Further, the electrochemical sensing of produced MNPs was carried out by using
As(III) concentration from (1–10 ppb) by cyclic voltammetry studies. The measurements
were conducted with a conventional three-electrode geometry system. The various elec-
trodes used were a working electrode (unmodified or modified), a Ag/AgCl reference
electrode saturated with 3 M KCl solution, and a platinum foil electrode as a counter,
respectively. The different electrochemical measurements were carried out using Autolab
potentiostat PGSTAT 302N (Metrohm Eco Chemie, Utrecht, The Netherlands). The Autolab
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machine was provided with the General Purpose Electrochemical Systems software module
for data acquisition and analysis (software version 4.9). All the current-potential curves
were referred to the AgAgCl reference electrode. The solution pH values were measured
with a digital pH meter (model 827, Switzerland make).

4. Results and Discussion
4.1. UV-vis Spectroscopy

Figure 1 shows the UV-vis spectra of Fe3O4 and Fe3O4@SiO2 MNPs. Due to a narrow
band gap, Fe3O4 MNPs exhibit a broad band in the UV and visible spectrum [50]. Fe3O4
NPs were used to synthesize Fe3O4@SiO2 MNPs, which resulted in a notable increase in
visual absorption. This shows that Fe3O4 NPs efficiently increase Fe3O4@SiO2 MNPs ability
to absorb visible light due to their well-structured and uniform shell thickness, which may
be important for the adsorption of organic dyes from the ambient. Previous studies have
shown that the shell thickness of nanoparticles could effectively control the absorbance and
antibacterial properties [51]. The visual absorbance dramatically enhanced following the
fabrication of the Fe3O4@SiO2 core-shell utilizing Fe3O4 NPs.
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It was also seen that when the loading amount of Fe3O4 increased, the composites’
visual absorption gradually increased, and showing Fe3O4 could effectively promote
visible light absorption. This shows that Fe3O4 NPs, which have a well-structured and
homogeneous shell thickness, will actively participate in adsorption, as well as substantially
increase the visible light absorption of Fe3O4@SiO2. The formation of new peaks around
300 nm in the Fe3O4@SiO2 core-shell are observed. A similar observation is reported
by Nazarbady et al. [52], where a new absorbance peak was noticed in the case of 3-
methacryloxypropyltrimethoxysilane around the wavelength of 300 nm. The authors
attributed this observation to the extension of conjugation brought on by polymerization
activity. In the present case, TEOS have been used for the fabrication of Fe3O4@SiO2 MNPs
and the peaks observed around 300 nm may be due to similar activity.

4.2. XRD Analysis

Figure 2 shows the XRD patterns of Fe3O4 and Fe3O4@SiO2 MNPs. Fe3O4 XRD
patterns showed sharp peaks, indicating that hydrothermal synthesis was successful in
producing pure Fe3O4 MNPs. There was no other peak associated with the Fe3O4 NPs.
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It was discovered that the peaks of Fe3O4@SiO2 MNPs were wider than those of Fe3O4
nanostructures. This indicated the refinement of the crystallite size of Fe3O4 after the
introduction of SiO2 NPs. The size of Fe3O4 NPs does not vary noticeably, but the SiO2-
shell coating increases because of the existing distance between NPs. According to the XRD
patterns, magnetite’s typical crystal phase matches all of the highly crystalline peaks quite
well. The presence of a bumpy peak between 20–30◦ is assigned to be amorphous SiO2 [53].
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The signals produced by Fe3O4 nanoparticles were thought to have been decreased by
the SiO2 layer. The fact that the XRD peaks for Fe3O4 and Fe3O4@SiO2 MNPs were identical
shows that the Fe3O4 structure was preserved in the core, where the SiO2 cover did not
affect the crystal structure of the Fe3O4 MNPs [54]. The Fe3O4 nanoparticle’s predicted
mean crystallite size was discovered to be 25 ± 5 nm.

The crystal structure of the Fe3O4 NPs conforms to a cubic system with lattice parame-
ters and d-spacing of 0.29 nm for the miller index of the major peak (311). For the lattice
parameter and particle size of Fe3O4 NPs generated at varied temperatures, comparable
findings were noticed. It was shown that when the temperature increased, both surfactants
produced slightly larger NPs, which may be ascribed to the kinetics of agglomeration. The
reaction temperature shift for such a method does not favor large particle formation. The
mechanisms of growth and nucleation are significantly influenced by temperature. The
particle size increases, and the particle size distribution becomes irregular as the tempera-
ture rises. Magnetite (Fe3O4) is a ferrimagnetic substance with a high Curie temperature
of 592 ◦C among several nanoscale magnetic materials. In the past, navigators employed
magnetite, one of the elements studied extensively, to locate the north pole of the earth.
Fe3O4 loses its magnetic property above 700 ◦C, hence these materials can only be used
below that temperature. For optimal use of ferrite NPs, one must have a thorough under-
standing of the stability, structure, thermodynamics, and reactivity of iron oxides at high
temperatures [55].

As a result, the approach chosen makes it possible to synthesize the material at ambient
temperature. It was discovered that both surfactants created slightly larger NPs as the
temperature rose, which may be related to the kinetics of agglomeration. Large particle
production is not encouraged by the reaction temperature change for such a technique. The
temperature has a significant impact on the mechanisms of growth and nucleation [56].
When the temperature rises, the particle size increases, and the particle size distribution
become erratic. The kinetic energy of collision increases as a result of an increase in collision
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frequencies, which gives nanoparticles a strong tendency to aggregate into larger particles
and cross potential barriers between them. The apparent inverse spinel Fe3O4 MNPs has
diffraction peaks at 30.21◦, 35.63◦, 43.34◦, 53.71◦, 57.40◦, and 63.11◦, which correspond to
the orientations of face-centered cubic crystals (220), (311), (400), (422), (511), and (440)
planes, respectively [57]. The rest of the peaks are identical to those seen in XRD patterns
of Fe3O4, and the amorphous character of the peak correlates to SiO2 materials [46].

4.3. FTIR Analysis

The FTIR analysis of Fe3O4 and Fe3O4@SiO2 MNPs is demonstrated in Figure 3. The
presence of Fe3O4 in the Fe3O4@SiO2 NPs was confirmed by the IR band at 640 cm−1 in
the Fe3O4@SiO2 spectra, which is caused by the stretching vibration of Fe-O-Fe. This was
strengthened even more by the peak’s appearance at 1400 cm−1, which was attributed to
the stretching vibration of Fe-O-Si. The stretching and bending vibrations of O-Si-O were
assigned to the bands at 1102 and 790 cm−1 for silica-coated magnetic NPs, respectively [58].
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The IR bands, which exhibit the vibrations Mt-O-Mo (600–550 cm−1) and MO-O
(440–470 cm−1), respectively, where Mt and Mo represent the metal occupying tetrahedral
and octahedral positions, again supported the existence of an inverse spinel type structure
for Fe3O4 [33]. The presence of OH is shown in Figure 3 by the peaks at 3421 cm−1, which
are likely caused by air moisture. The bending vibration of (Si-OH) silanols is well suited
to the infrared band at 960 cm−1 [58]. Si-O-H stretching vibrations can be assigned the
frequency at 1102 cm−1 [59]. The signal at 1059 cm−1 is attributed to Si-O-Si vibrations,
according to the FTIR spectrum of Fe3O4@SiO2 MNPs [60]. The result is consistent with
those reported in the past where Alkoxysilanes’ 3-aminopropyl amino groups were attached
to MNPs [61]. Two strong absorption bands at approximately 636 cm−1 and 588 cm−1

are indicative of the formation of magnetic nanoparticles. Additionally, the tetrahedral
and octahedral sites of the spinel structure may be identified by the absorption bands at
545 cm−1 and octahedral sites can be confirmed by the band at 588 cm−1 [62].

4.4. Microstructural Analysis using TEM

The morphology and size of Fe3O4@SiO2 MNPs were analyzed by TEM. The typical
bright field image of NPs along with the particle size distribution is shown in Figure 4a,b.
The bright field image of the Fe3O4@SiO2 MNPs can be seen in Figure 4a. In Figure 4b,
the histogram shows the particle size distribution, and the size of the particle varies from
15–30 nm with an average size of 21 nm.
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The high-resolution TEM image shows the core-shell structure of Fe3O4@SiO2 MNPs
in Figure 4c. In Figure 4d, the selected area electron diffraction pattern (SAD) shows the
different interplanar spacing of (220), (311), (400), (422), (511), and (440) with diffracting
conditions and matched well with the XRD pattern, which also confirms that the prepared
material is highly polycrystalline. The high-resolution TEM images shown in Figure 4e,f
further depict the SiO2 layer of the Fe3O4 core with a thickness of 2 nm. The measured in-
terplanar spacing of the Fe3O4 is known to be 0.29 nm corresponding to plane (311) [43,63].

4.5. Antimicrobial Test

Antimicrobial activities of Fe3O4 and Fe3O4@SiO2 MNPs examined by the disk dif-
fusion method are illustrated in Figure 5. The test was performed in different cultures
of Bacillus pumilus and Bacillus halodurons. The amount of sample had an inhibition
zone Fe3O4 of 8.5 ±1.0 mm, 12 ± 1.5 mm, 13 ± 1.5 mm, 14 ± 1.0 mm with Fe3O4@SiO2
MNPs 10 ± 1.2 mm, 12.5 ± 1.5 mm, 15 ± 1.0 mm, and 16 ± 1.8 mm with an increase
in weight from 5 mg to 20 mg with the step of five in the Bacillus pumilus and Bacillus
halodurans culture. Figure 5a,b shows the growth of Gram-positive and Gram-negative
bacterial activity on Fe3O4@SiO2 MNPs. The Bacillus pumilus grows in a nourishing
environment depleted of SiO2 in presence of some water activity; moreover, the Bacillus
halodurans is a moderate halophilic bacteria. It has been observed that with the increase of
SiO2 concentration, the inhibition zone is also increased. The SiO2 composited on Fe3O4 is
a corporal contributory to the repression of the culture of Fe3O4 owning to magnetic dipole
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interaction. The bond of SiO2 with the cell membrane in the inhibition zone can alter the
structure of bacteria because of attraction in NPs in microbial activity; as a result, there is
leakage of cellular content in microbial activity. The presence of SiO2 on the Fe3O4 surface
stops the antibacterial activity of MNPs; generally, SiO2 acts as a molecular link between
Fe3O4 and microorganisms.
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Previous studies have shown that Gram-positive bacteria have thicker membranes
as compared to Gram-negative bacteria, making the former more stable [64]. Accord-
ing to Chen et al., Escherichia coli was more susceptible to Fe3O4@SiO2-Ag nanospheres
than Staphylococcus aureus [64–66]. While Gram-negative bacteria are thin layered with a
thickness of 8–10 nm and have a 20–30% lipid content, Gram-positive bacteria are thick
layered or single layered with a thickness of 20–80 nm. It has been noted that the inhibitory
zone grows along with an increase in SiO2 concentration. Due to its biocompatibility,
biodegradability, and surface-modifiability, Fe3O4 is the most promising magnetic material
for medical applications [37,38]. In order to separate MNPs in water following antibacterial
treatment, Fe3O4 superparamagnetic characteristics are mostly advantageous [65]. Addi-
tionally, according to Asab et al. [47], Gram-positive bacteria are typically more resistant
to Fe3O4 NPs than Gram-negative bacteria concerning the composition of their cell walls,
cellular physiology, metabolism, or level of interaction [66]. Moreover, Fe3O4 is loaded
with the SiO2 NPs in the form of Fe3O4@SiO2 MNPs, which helps in removing the bacteria
present over there. The combination of several antibacterial modalities helps in reducing
the dosage, increasing efficiency, and reducing side effects [67].
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4.6. Cyclic Voltammetry

The electrochemical sensing studies of the Fe3O4 and Fe3O4@SiO2 were done by
the cyclic voltammetry (CV) curves recorded using the As(III). Figure 6 shows the CV
voltammogram response of Fe3O4@SiO2 MNPs and Fe3O4@SiO2 MNPs with varying
As(III) concentrations from 1–10 ppb recorded at 10 mVs−1 scan rate within the potential
window of−0.2–0.8 V. It was seen that with different concentration of As in the solution, CV
response curves change their shape and size appreciably. By increasing the concentration
of arsenic, there was a shift in potential and an increase in the oxidation peak current,
showing the electrocatalytic capacity of the modified electrode. As the pH 6.0 was close to
the physiological solutions, the oxidation peak was lower in this study.
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The curves of the electrodes trend towards cathodic and anodic peaks back to pseu-
docapacitive behavior as the redox reactions are established at the electrodes and the
reversible reaction between the Fe2+/Fe3+ ions of the electrodes and the solution inter-
face [68]. Fe3O4@SiO2 MNPs displayed a well-defined oxidation wave. For Fe3O4@SiO2
MNPs, the oxidation peak potential is noticed at +0.3 V. The anodic peak current response
was higher when As(III) concentration was increased from 1 ppb to 10 ppb. The greater
accessible surface area of the modified electrode was attributed to the electrocatalytic effect
due to the nanoscale dimensions of the sample and the presence of SiO2, which is essential
for electrocatalytic oxidation [69,70].

Furthermore, we notice that the Fe3O4@SiO2 provides a bigger CV response area than
that of pristine Fe3O. This indicates higher capacitive charge storage. The CV response
peak of the hybrid Fe3O4@SiO2 was larger than that of the pristine magnetite. Thus, it
was inferred that SiO2 coating enhances the capacitance of Fe3O4. At different gravimetric
As(III) concentrations, the discharge curves of Fe3O4 and Fe3O4@SiO2, and the potential
shifted to the negative side gradually as depicted in Figure 6. According to a previous
report, the specific capacitance of Fe3O4 and Fe3O4@SiO2 samples can be calculated by
using the following equation [68]:

Cs =
I∆t

m∆E
Here, Cs, I, ∆t, m, and ∆E are specific capacitance, discharge current, discharge time,

the active mass of electrodes, and IR discharge drops. According to these findings, the
specific capacitance of these prepared electrodes appears to fall as the current densities
increase. This observation shows the pseudocapacitive behavior with favorable electro-
chemical sensing characteristics. A reduced specific capacitance can be attributed to the
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increase in current that reduces the discharge time of ions needed to enter through the
electrodes. Additionally, these observations support the fact that the discharge time is
reducing as the current density rises, signifying an increase in the drop voltage. The specific
capacitance of Fe3O4 and Fe3O4@SiO2 modified electrodes, calculated according to the
above equation, were 166 and 201 A/g, respectively, at the charge current of 10 A/g. This
shows that the SiO2 coating on the Fe3O4 electrode is increasing the specific capacitance by
enhancing the nucleation sites for energy storage. Therefore, the coating of SiO2 to Fe3O4
offers significant electron transport on and within Fe3O. All of these phenomena have led
to the improvement of the electrodes for electrochemical sensing and reduced electrode
resistance [71].

5. Conclusions

1. The solvothermal approach has been used to successfully create Fe3O4 NPs coated
with SiO2 NPs. The XRD, UV-vis, and FTIR results demonstrate the creation of spinal
Fe3O4@SiO2 structure. A thorough examination of the TEM reveals the formation
of Fe3O4 cell structure. Additionally, the size distribution of Fe3O4@SiO2 MNP size
distribution ranges from 10 to 30 nm.

2. The antimicrobial tests showed a larger inhibition zone of Fe3O4 coated by SiO2
as compared to the pure Fe3O4 NPs. Fe3O4@SiO2 MNPs showed strong antibac-
terial characteristics by killing bacteria on the exterior, as well as inside, of their
cell membranes.

3. The electrochemical sensor based on Fe3O4 coated with SiO2 NPs is capable of reduc-
ing and oxidizing arsenic with outstanding electrocatalytic activity. Fe3O4 covered
with SiO2 naturally enhances the sensitivity of the determination of arsenic (III) with
a low detection limit because of its distinctive qualities, which include subtle electrical
characteristics, good interaction, and strong adsorptive capacity.

4. Varying the arsenic content resulted in a shift in potential and an increase in the oxida-
tion peak current, which illustrates the improved electrode’s electrocatalytic capability.

5. It was concluded that the combination of SiO2 with the Fe3O4 NPs improves the
antibacterial property of Fe3O4 and reduces the adverse effects. Additionally, the
composite Fe3O4@SiO2 can be used against bacteria as well as for the detection of
arsenic pollutants as an electrochemical sensor.
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