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Abstract: In this study, we deformed the single β phase Mg–Li alloy, Mg–16Li–4Zn–1Er (LZE1641),
with conventional rolling (R) and multi-directional rolling (MDR), both at cryogenic temperature.
Results showed that the nano-precipitation phase MgZn2 appeared in the alloy after MDR, but this
phenomenon was not present in the alloy after R. The finite element simulation result showed that
the different deformation modes changed the stress distribution inside the alloy, which affected
the microstructures and the motion law of the solute atoms. The high-density and dispersively
distributed MgZn2 particles with a size of about 35 nm were able to significantly inhibit the grain
boundary migration. They further hindered the dislocation movement and consolidated the disloca-
tion strengthening and fine-grain strengthening effects. Compared with the compressive strength
after R (273 MPa), the alloy compressive strength was improved by 21% after MDR (331 MPa). After
100 ◦C compression, the MgZn2 remained stable.

Keywords: bcc Mg–Li alloy; cryogenic; multi-directional rolling; nano–grains; dislocation;
MgZn2 phase

1. Introduction

Magnesium (Mg) alloys not only have the advantages of low density, high specific
strength, and high specific stiffness, but also have excellent damping and electromagnetic
shielding properties [1,2]. These properties enable Mg alloys to adapt well to the high de-
mands of aerospace, military equipment, medical equipment, and 3C electronics. However,
in the production process, Mg alloys have a strong basal texture and are difficult to deform
due to the close-packed hexagonal (hcp) lattice structure of Mg [3–5], which weakens their
advantages when competing with other lightweight alloys.

The addition of Li into Mg alloys gradually changes the hcp structure to body-centered
cubic (bcc) structure. Depending on the Li content, the lattice type of magnesium alloys
present three states: α phase (<5.7 wt.%), α + β phase (5.7–10.3 wt.%), and β phase
(>10.3 wt.%) [6–8]. Moreover, the density of Li is 0.53 g/cm3, which can further reduce the
density of the Mg alloy. To cope with the strict demands for lightweight alloys, 14 wt.% or
more Li is added to the Mg alloy. However, the addition of Li introduces a new problem,
namely that it is difficult to improve the strength of the alloy beyond 200 MPa. The increase
of active slip systems in bcc lead to the easy deformation of the alloy and the easy activation
of dislocations [9]. Therefore, improving the strength of single-β-phase Mg–Li alloys has
become a particularly urgent focus.

To overcome such problems, research has mainly focused on plastic deformation [10,11].
Plastic deformation processes such as extrusion, rolling, and torsion are effective means to
improve the strength of β-phase magnesium–lithium alloys. The bcc structure has high
stacking fault energy, wide spreading dislocations, and low critical shear stress (CRSS). These
characteristics make the dislocation prone to slip [12]. However, to counteract the stress-
concentration state, dynamic recrystallization (DRX) prematurely enters the stage of grain
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growth after nucleation, which causes dislocations to be prematurely eliminated during the
accumulation process. Thus, the effect of work-hardening and fine-grain strengthening cannot
continue to proliferate with the amount of deformation.

Changing parameters such as temperature and deformation can effectively improve
the strength of β-phase Mg–Li alloys by regulating DRX and dislocations [13–16]. Further-
more, solid solution strengthening and second-phase strengthening play important roles
in Mg–Li alloys [17,18]. In addition to the primary second phase in the as-cast state, the
dispersive reinforced phase dynamically precipitated during the deformation process also
enables the optimization of the mechanical properties [19].

The present study compared the microstructures and mechanical properties at different
temperature and deformation modes (R and MDR). High-density, dispersively distributed,
nano-scale MgZn2 particles and refined grains were found in the specimen deformed by
cryogenic MDR. The relative strengthening mechanisms in the specimen are discussed.

2. Material and Methods
2.1. Preparation and Processing of Raw Materials

Mg–16Li–4Zn–1Er (wt.%) alloy was prepared in a vacuum medium-frequency in-
duction furnace under the protection of Ar atmosphere. The ingots for the alloy were
pure metals of Mg (>99.9 wt.%), Li (>99.9 wt.%), Zn (>99.9 wt.%), and a master alloy of
Mg–20 wt.%Er. Then, the melt was poured into a permanent mold with dimensions of
120 mm × 110 mm × 40 mm. The 20 mm × 20 mm × 20 mm blocks for rolling were
cut from the as-cast alloy. The rolling modes were R and MDR. The intended reduction
between each pass was set at 0.8 mm. The specific steps of the processing are shown in
Figure 1 (RD, rolling direction; TD, transverse direction; ND, normal direction). The total
reduction of R was 60%, while thr A-side was always maintained as an RD–TD surface.
The formula for the equivalent strain law of rolling process is as follows [20]:

ε =
2√
3

∣∣∣∣ln(h0

h

)∣∣∣∣
In this experiment, the equivalent strain of MD rolling was stipulated to be in line with

R, that is, εMDR = εR60% = 1.05804. In MD rolling, A-side and B-side act as the RD–TD surface
and successively consume half of the equivalent strain (εA−MDR = εB−MDR = 1/2εMDR). The
details are shown in Figure 1. Importantly, after many experimental operations, it was shown
that in the actual rolling process, due to the lateral flow of metal, when the thickness of sample
was reduced from 20 mm to 12.6 mm, the width expanded from 20 mm to 23 mm.

For cryogenic rolling, the specimens were steeped in liquid nitrogen for 10 min before
rolling. Similarly, they were placed back into liquid nitrogen for 5 min between each lane.

2.2. Microstructural Characterization

Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used for
the analysis of the microstructures. The average grain size and second-phase size were
determined by the mean linear intercept method.

2.3. Compression Test

The gleeble experiments were carried out at 25 ◦C and 100 ◦C. The size of the sample
was φ8 mm × 12 mm. The position of the compression sample in the rolled samples is
shown in Figure 1. The strain rate was 1.0 × 10−2 s−1, and the engineering strain was 70%.
The mean value for each state was determined by the five compressed samples.
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nanocrystal, it contained all ring-shaped spots. 
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second phase is a micron-sized second-phase particle, and there is no nano-sized second 

Figure 1. Schematic diagram of rolling and the positions of compression samples in as-rolled samples.

3. Results
3.1. Microstructures

The TEM bright-field images of the areas without the second-phase fragments were
analyzed as shown in Figure 2. When the alloy grains were rolled in multiple directions
at cryogenic temperature, a large range of uniformly distributed nano-grains appeared,
with a size of about 56 nm. When a diffraction spot image was collected in any area of the
nanocrystal, it contained all ring-shaped spots.
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spot image.
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It is worth noting that the nano-MgZn2 phase was detected in the matrix of the
cryogenic MD-rolled alloy. Figure 3a shows the bright-field TEM image area that was
selected from the cryogenic MD rolled alloy for the measurement of diffraction spots.
Figure 3b is a composite spot image of the β-Li and MgZn2 phases. Figure 3c,d show
dark-field TEM images of MgZn2 under different crystal planes. In the LZE1641 alloy
system, the primary second phase is a micron-sized second-phase particle, and there is
no nano-sized second phase. Based on the results of our previous study [13], we inferred
that this nanometer-sized densely distributed second phase was precipitated during the
deformation process; that is, the morphology of small particles and diffraction spots in
the dark field can be identified as the MgZn2 precipitated phase. According to the present
results, the precipitated phase was densely and uniformly distributed in the matrix with a
size of about 35 nm. Figure 4 shows the XRD image of MD rolling at cryogenic temperature.
In XRD, the peak of the MgZn2 phase appeared on the (301) crystal plane.

The bright-field TEM images of the cross-section after compression at 100 ◦C are
shown in Figure 5. After the hot compression, the grain size of the cryogenic rolled alloy
was about 2~4 µm while the grain size of the cryogenic MD-rolled alloy was 1 µm. In
addition, a large number of MgZn2 particles still remained in the matrix. The TEM image of
the nano-precipitated MgZn2 phase area and the detection result of the element distribution
are shown in Figure 6. We found that the average size of the nano-phase MgZn2 phase
was about 40 nm, which is the same as the size before compression. The distribution of
Zn was consistent with the distribution of the nano-precipitated phase. This demonstrates
that the MgZn2 phase could not be fragmented after hot compression and is conducive to
hindering the migration of grain boundaries during said compression [21].
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As shown in Figure 7, while the dislocations are arranged in a disordered manner at
the grain boundary, the nano-precipitation particles further aggravated the proliferation
and packing of the dislocations. Multiple dislocation lines are intertwined and entangled
with each other, providing an effect for the work-hardening of the alloy. Based on these
results, MgZn2 only existed in the MD-rolled alloy at the cryogenic temperature. This
indicates that MgZn2 is a stress-induced nano-precipitation phase. The type, structure,
and shape of the second phase depend on the elastic strain energy inside the alloy [22]. To
eliminate the concentrated stress level of the cryogenic MD-rolled alloy, spherical nano-
MgZn2 with hcp structure is precipitated. This nano-precipitated phase is difficult for
dislocations to cut and can effectively pin their movement. This promotes the intertwining
phenomenon of dislocations [23]. In the cryogenic environment, dislocations cannot be
released immediately, which further enhances the number of dislocations and the degree of
dislocation packing in the matrix. Thus, dislocation strengthening was further optimized.
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3.2. Mechanical Properties

The true stress–strain curves of cryogenic rolled alloys compressed at 25 ◦C (room
temperature) and 100 ◦C are shown as Figure 8. The compressive strength of the MDR alloy
was 331 MPa, which was 21% higher than that of the conventional rolled alloy (273 MPa).
After compression at 100 ◦C, the compressive strength of the conventional rolled alloy was
192 MPa, while the MDR alloy could still maintain its compressive strength of 238 MPa.
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4. Discussion
4.1. Precipitation of the MgZn2 Phase

In our previous experimental results, we proved that low temperature deformation
accumulates more stress concentration and deformation energy storage in the matrix com-
pared with the same process at room or elevated temperature [13]. This energy storage
provides a huge impetus for DRX nucleation and atomic diffusion. The phase precipitation
and growth are essentially behaviors of the polarization and growth during atomic diffu-
sion [24,25]. Deformation can form a large number of defects, such as dislocations. They
can provide more nucleation sites for second-phase precipitation, and can also become fast
diffusion channels for the solute atoms and accelerate the atomic diffusion.

According to the results, the sequence of precipitation for the Mg–Zn phase was
β′1(Mg4Zn7)→β′2(MgZn2)→β(MgZn) [25,26]. In this experiment, due to the limitation
of the detection means, it cannot be determined whether there was a Mg4Zn7 or MgZn
mixture, and only MgZn2 was detected. Thus, we concluded that MD rolling mainly led to
the precipitation of the MgZn2 phase. Under the stress input provided by rolling, solute
atoms still have a certain diffusion capacity, so an oversaturated matrix still has the ability
to produce a second-phase precipitation. However, the low-temperature environment is
not conducive to this reaction. That is, low temperature inhibits the precipitation of an
equilibrium precipitation phase [27]. The balance between high energy storage and low
temperature conditions causes an incomplete reaction. This prompts the emergence of the
non-equilibrium precipitate product. This is why MgZn2 exists as a non-primary phase in
the matrix of MD-rolled alloy at cryogenic temperature.

However, it is noteworthy that the presence of the MgZn2 phase was not detected in
conventional low-temperature rolling. The type, structure, and shape of the second phase
depends on the strain energy inside the alloy [22]. The shear stress in the XY direction
inside the alloy during stress loading is shown in Figures 9 and 10. The difference in the
shear stress inside the alloy also reflects the difference in the diffusion law of the solute
atoms in the alloy [28]. Compared with conventional rolling, there is a stress-loading
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axis transformation in the MDR process, which increases the crystal defects inside the
alloy (dislocations, vacancies, etc.). Such a change raises the energy of the alloy, and the
whole system reaches an unstable state. To stabilize the system, a new phase forms cores
at the defect positions to release energy, thus reducing the free energy of the system. In
other words, MDR makes MgZn2 phase precipitation more prone. The critical radius of
nucleation for the precipitated phase is the following [29]:

r∗ =
2γ

∆Gv + ∆Gε + ∆GD
,

where γ is the interface energy between the new phase and the parent phase; ∆Gv is the
free energy difference between new phase and the matrix in the unit volume; ∆Gε is the
strain energy of the new phase per unit volume; and ∆GD is the reduced-system free energy
caused by the nucleation of MgZn2 on the defect. Therefore, the increasing of the defect
increases ∆GD, decreases the radius of the critical nucleation, and the number of nuclei
increases, so that the driving force of the nuclei increases. This results in the fine-grained
size of the precipitated phase. A large number of MgZn2 phases triggers a huge total
surface energy. The spherical particles have the lowest surface energy in all shapes, so the
precipitated phase gradually tends to globularity after nucleation. Thus, to eliminate the
concentrated stress level, a spherical (2H) Laves nano-MgZn2 phase with hcp structure
was precipitated in the cryogenic MD-rolled alloy [30]. The coupling of stress direction to
crystal orientation reduces the lattice mismatch and solute diffusion rate. In the process of
uniform isothermal precipitation, the driving force of the precipitation ∆G can be described
by the following formula [31]:

∆G = − kT
Vat

ln
(

C
Ceq

)
where Vat is the solute atomic volume; Ceq is the solubility of MgZn2 in the alloy at equilib-
rium; C is the current solubility of MgZn2 in the alloy; k is the Bozmann constant; and T is
the absolute temperature. Therefore, the lower the T, the smaller the precipitation driving
force of the second phase. The second-phase nucleus does not necessarily grow up directly,
but only grows up when the size exceeds a certain critical value. At low temperatures, the
driving force is insufficient to sustain the MgZn2 phase size. The explosive uniform nuclear
barrier and the tendency to coarsening of the precipitated phase are suppressed. Therefore,
we ultimately obtained a high-density and uniformly distributed MgZn2 nanoparticle
precipitate phase in the cryogenic MDR alloy.

4.2. The Strengthening Effect of MgZn2

MgZn2 hinders the migration of grain boundaries [32,33]. The velocity v of the grain
boundary when passing through a single particle obeys the following formula [34]:

v =

(
L

σgb

)(
∆ f − ∆ fdrag

)
where L is the mobility; σgb is the grain boundary energy; ∆ f is driving force; ∆ fdrag is
the dragging force. Obviously, in the process of grain boundary migration, the contact
area between the precipitated phase and the grain boundary becomes larger and larger.
The drag force of particles on grain boundary migration increases, and the speed of grain
boundary migration decreases accordingly. When there are multiple second-phase particles,
the pinning force FA received by the grain boundary follows the following formula [34]:

FA = σgbsinθ′
(

2
d− 2rcosθ

− 1
)
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The significance of each parameter is indicated in Figure 11. Both the large number
of precipitated phases and the fine particle spacing can effectively enhance the hindrance
of grain boundary migration. Thus, nano-particles can reduce the peak of the function
between grain-size distribution and time. This implies that MgZn2 can effectively impede
the disappearance of small-size grains [35]. Therefore, the cryogenic MD-rolled alloy
possesses the smallest grains, and the grains still maintain the finest size among the six
states after high temperature compression.
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This nano-precipitated phase is difficult for dislocations to cut and can effectively
pin their movement. This promotes the intertwining phenomenon of dislocations [23]. In
the cryogenic environment, dislocations cannot be released immediately, which further
enhances the number of dislocations and the degree of dislocation packing in the matrix.
Thus, dislocation strengthening is further optimized.

5. Conclusions

1. Cryogenic MDR triggers the formation of a large number of nano-grains.
2. The differences in MDR and R deformation lead to shear-stress changes inside the

alloy.
3. A large amount of uniformly dispersed nano-precipitation-phase MgZn2 appears only

in the cryogenic MDR LZ1641 alloy.
4. MgZn2 has an obstructive effect on the migration of grain boundaries.
5. MgZn2 cannot be cut by dislocations, by which the effect of dislocation strengthening

is consolidated.
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