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Abstract: Carbon steel AISI 1020 was exposed to environmental conditions along a transect of the
Atacama Desert to gather experimental evidence to identify the local atmospheric mechanism that
triggers corrosion through a buildup of water layer formation on the metal surface in addition to
corrosion evolution. Coupons initially left in selected sites were periodically collected to determine
weight loss and surface attributes by scanning electron microscopy and X-ray diffraction. In addition,
meteorological conditions were measured in addition to a fog water collector in one site. During
the study period, the predominant conditions were the absence of rain, clear skies, and large daily
oscillations in temperature and relative humidity. The evidence indicates a water film formation
on a metal surface either from a vertical water flux as fog water droplets and/or by the dew water
harvesting mechanism. The uptakes of oxygen and chlorides during the corrosion process were
highest in the coastal site P0 and gradually decreased with the increasing distance from the coast.
This is attributed to both humidity and saline marine fog intrusion from the coast. The oxide layer
evolved to form a compact layer with main constituents of lepidocrocite, goethite, and lesser amounts
of akageneite. The corrosion depth can be modelled by a simple power function d = AtB with B < 1,
indicating a deceleration process.

Keywords: atmospheric corrosion; carbon steel; Atacama Desert; fog formation; SEM; DRX; iron
oxides

1. Introduction

Atmospheric corrosion is a degradation of materials explained in terms of an electro-
chemical process occurring in corrosion cells consisting of base metal, metallic corrosion
products, surface electrolytes, and the atmosphere. A list of variables such as relative
humidity (RH), temperature (T), sulfur dioxide (SO2) content, hydrogen sulfide (H2S) con-
tent, chloride (Cl) content, amounts of rainfall, dust, and even the position of the exposed
metal exhibits marked influence on corrosion behavior of steel exposed to atmospheric
conditions. Because this is an electrochemical process, an electrolyte must be present on the
surface of the metal for corrosion to occur. In the absence of water/moisture, which is a
common electrolyte associated with atmospheric corrosion, metals corrode at a negligible
rate. For example, carbon steel parts left in the desert remain bright and tarnish-free over
long periods [1].

In carbon steels, iron oxides formed on the surface is loose, porous, and non-
protective [2]. Despite this inconvenience, carbon steel is the most widely used steel
material in engineering applications. This is because of its significant lower cost in com-
parison to those of more noble higher-grade alloys, good mechanical properties, and its
amenability to be safely operated in very corrosive service conditions under a meticulously
designed and implemented control system.
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There have been attempts to predict the performance of steel structures over prolonged
periods of time as affected by ambient conditions in terms of the corrosion rate and dynamic
properties. In a recent review [3], the existing corrosion models were categorized in
reference to ISO standards that consider low (C2 level), medium (C3 level), and high (C4
level) corrosivity class levels. In other reviews, a list of parametric models was proposed in
terms of parameters that depend on local conditions [4,5].

Atmospheric corrosion-monitoring sensors were employed to study the initial at-
mospheric corrosion of carbon steels. The results showed that rainfall was the strongest
environmental factor influencing the initial atmospheric corrosion rate [6]. The different
corrosion sensors that are suitable for corrosion evaluation in atmospheric conditions have
been previously published [7].

In the 1980s, three different cooperative studies involving the participation of a large
number of countries were carried out, with the first one having the aim of standardizing ISO
atmospheric corrosion tests, the second one to obtain the greater knowledge of atmospheric
corrosion mechanisms, choosing mathematical models for the calculation of atmospheric
corrosion as a function of climate and pollution parameters and elaborating atmospheric
corrosivity maps of the Ibero-American region, and finally the third one to perform a quan-
titative evaluation of the effect of main airborne pollutants as well as climatic parameters on
the atmospheric corrosion of important materials. From these studies, a simple correlation
for the annual corrosion rate C was developed [8]:

C = a1 + a2·RH + a3·P + a4·T + a5·TOW + a6·SO2 + a7·Cl, (1)

where a1 to a6 are constant parameters; RH is the annual average relative humidity in per-
cent; T is the annual average temperature in ◦C; P is the annual precipitation in mm, TOW
is the time of wetness corresponding to the annual fraction of number of hours/year in
which RH > 80% and T > 0 ◦C; SO2 and Cl are the sulfur dioxide and chloride precipitation
in mg/m2 per day respectively [8].

Several atmospheric corrosion studies for carbon steel have been developed. A mea-
surement campaign from a four-year MITCAT project [8] in 22 rural and urban atmospheres
in the Ibero-American region concluded that steel corrosion rates did not differ significantly
between them. The only common feature in all these sites was an increase in the passivation
character of the steel corrosion product layers with the increase in exposure time [9]. For
three years, carbon steel sheets have been exposed to different atmospheres in test sites
distributed along the western islands of the Canarian Archipielago in Spain; corrosion
values exceeded the established ones of the ISO 9223 norm [10].

Carbon steel test pieces were exposed to a variety of environmental conditions in Gran
Canaria Island. The chloride ions and the time of wetness were the most significant factors
in the corrosive process, while SO2 was of significance only in marine-industrial areas [11].
A significant compaction of the rust layers was found in low polluted-areas during a
long-term atmospheric corrosion of mild steel in different rural and urban localities in
Spain [12].

In the coastal and inland areas of the Atacama Desert, the availability of water is
restricted to dew formation and occasional rains that occur approximately once every
10 years apart [13–16]. Several investigations have found a direct relationship between air
pollution and high concentration of pollutants in collected water samples during foggy
days [17–19]. Fog water collected from non-polluted air have been found to be an attractive
source of water for human consumption as is the case of Northern Chile. Among the large
amount of available information concerning atmospheric corrosion of carbon steel, there
is little information on Atacama’s analog conditions dealing with corrosion mechanism.
Given its extreme aridity, the Atacama Desert has been chosen as a model for the planet
Mars to develop several studies on life-limiting conditions [20–22].

In this work, we investigated the atmospheric corrosion of carbon steel coupons along
a transect of the Atacama Desert to gather experimental evidence to identify the local
atmospheric mechanism that triggers corrosion through a buildup of water layer formation
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on the metal surface. Thus, the novelty of this research lies in its focus of devising the
mechanism of water layer formation on a metal surface with subsequent corrosion in the
absence of rainfall as is the case of the Atacama Desert. The hypothesis of this research is
that in the absence of rainfall, a water layer thickness on the metal surface can be formed
by an advective mechanism by which water fog droplets grow at mid altitudes and further
precipitates and/or by a radiative mechanism overnight as the air near the ground cools
and stabilizes. For this purpose, carbon steel coupons were deposited in selected sites
of the Atacama Desert with temperature and relative humidity sensors and removed
at predetermined times for data retrieval and morphological inspection of the coupons.
The interpretation of the observed oxide features is linked with moisture indicators of
ambient conditions.

2. Materials and Methods
2.1. Material Preparation

Five experimental sites were selected within 80 km along the local road to the Chilean
Escondida Mining complex from the coast of Antofagasta up to 900 m above sea level
situated in a west–east (W–E) direction, which are described in Table 1.

Table 1. Geographical locations of the selected experimental sites.

Site
Coordinates

Coupons and Devices
Position (WGS84) Altitude (m)

P0 23◦43.020′ S
70′25.187′ W

20
11 coupons on the ground and one T/RH sensor

One meteorological station with 9 sensors:
University of Antofagasta (UA)

P1 23◦45.563′ S
70′15.769′ W 570 11 coupons on the ground and T/RH sensor

P2, P2A 23◦44.773′ S
70′11.106′ W

655
P2: 11 coupons on the ground and one T/RH sensor
P2A: one T/RH sensor above 3 m over the ground

P3, P3A 23◦51.964′ S
69′50.956′ W

789
P3: 11 coupons on the ground and one T/RH sensor
P3A: one fog water collector and one T/RH sensor

above 3 m over the ground

P4 23◦56.606′ S
69′43.781′ W 915 11 coupons on the ground and one T/RH sensor

In all experimental sites (Figure 1), 16 identical squared coupons with dimensions of
12 × 12 × 2 mm3 and one temperature and relative humidity sensor were placed on the
bare ground together with complementary devices described as follows: In the P0 site at
the campus of the Antofagasta University, there was a meteorological station HOBO Model
RX3000 Station (ONSET Corp., Bourne, MA, USA) with temperature, relative humidity,
velocity, and direction of wind, pressure and solar radiation sensors on a lab roof which was
5 m over the ground. In the P2 and P3 sites, one additional temperature−relative humidity
sensor was attached to a pole at 2 m above the ground surface. In addition, in the P3 site, an
apparatus to collect water from fog according to a design described in a former work [23]
was installed (Figure 2). This fog collector consisted of a 35% shade polypropylene Raschel
mesh secured by a 1× 1 m2 rigid metal frame held in place by equally spaced high-strength
wires as lateral supports. The frame orientation was along the E−W axis, the prevailing
direction of the wind. Below the frame, an inclined trough allowed water to flow toward
an automatic rain gauge. The collected fog water was automatically recorded in a logger
from a tipping recorded bucket type rain gauge (Hobo Onset logging rain gauge model
RG2-M—ONSET Corp., Bourne, MA, USA). Time and date stamps were stored in the
logger for each 0.2 mm tip event for detailed analysis. A T/RH Hobo sensor was placed at
the side of the fog water collector.
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right side) and a Hobo Onset logging rain gauge model RG2-M (bottom left side).

2.2. Corrosion Density Rate Measurements

The test material was carbon steel AISI 1020 coupons with chemical composition (in
wt %) of 98.5% Fe, 0.2% C, and 0.6% Mn and traces of P, S, Si, Sn, Cu, Ni, Cr, and Mo. At
each site, four coupons at three different dates during 234 days of exposure were collected
for corrosion rate measurements and morphological characterization. Corrosion rates by
loss of weight were measured according to standard procedures [24].

2.3. Morphological and Patterns Characterization

A Zeiss EVO MA 10 scanning electron microscope (SEM) (Zeiss, Oberkochen,
Germany) equipped with an energy-dispersive X-ray (EDS) analyzer was used for mor-
phological characterizations. A Shimadzu XRD-600 diffractometer (Shimadzu Corp.,
Kyoto, Japan) using Cu Kα radiation at an angular step of 0.02◦ (2θ) and a counting
time per step of 4 s was used for the determination of the main corrosion products.
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3. Results and Discussion
3.1. Meteorological Characterization and Daily Cyclic Precipitation of Water

Meteorological data in all experimental sites were measured from 24 October 2021 to
18 June 2022 (Table 1). In general, temperature and relative humidity values (Figure 3) had
a daily cyclic variation with the maximum and minimum relative humidity daily values
taking place at early morning and afternoon hours, respectively, as opposed to temperature
values. The daily cyclic amplitudes for both T and RH were heavily dependent upon
their distances to the coast with a trend starting from the lowest amplitude values at the
coastal P0 site and gradually increasing toward inland sites (Table 2). This amplitude
trend is due to a combination of the quasi-permanent influence of the southeast Pacific
subtropical anticyclone in Northern Chile that forces year-round equatorward cold winds
along the coast flowing inland from the Pacific [25,26] and high solar irradiance [27,28].
The wind speed and its direction exhibited a daily pattern of a distinctive wind direction
emanating from the SE direction during afternoon hours; over this period, the maximum
wind velocities (between 2 and 6 m/s) took place (Figure 4); during the rest of the day, wind
velocities were lower than 2 m/s with a randomly changing direction between W and N.
This wind pattern associated to predominant periods of radiative air heat and cooling [29]
was coincident with 1997 wind data reported at Yungay, an inland location 50 km south of
the P4 site [16].
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level sensors.

Table 2. Global average and average oscillations of temperature and relative humidity values from
24 October 2021 to 18 June 2022.

Site

Average Values Average Daily Oscillations

Temperature
◦C

Relative Humidity
% Site Temperature

◦C

P0 20.6 58.0 P0 20.6
UA 18.1 73.9 UA 18.1
P1 17.3 54.9 P1 17.3
P2 18.1 49.8 P2 18.1

P2A 18.4 63.7 P2A 18.4
P3 18.8 40.2 P3 18.8

P3A 17.0 59.2 P3A 17.0
P4 19.6 27.6 P4 19.6
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Figure 4. Wind directions and speeds at the coastal station (P0) measured between 22 January 2022
and 24 January 2022.

Figure 5 shows the daily average temperature and relative humidity values during all
measurement campaigns. Two main interesting features observed from these data were
the seasonal temperature trend by which the minimum and maximum values occurred
in winter (May to September) and summer (December to April), respectively, and the
apparent vertical temperature profile that emerged from measurements from ground and
aboveground positioned sensors. For instance, aboveground sensors at P2A and P3A
sites indicate significant lower temperature values than ground sensors; this difference
was notoriously higher in warmer seasons. In contrast, the RH aboveground values were
significantly higher than those at ground RH values. Specifically, while homogeneous RH
values up to 90% occurred above the ground, ground-level RH values followed a seasonal
trend with values up to 60% and 40% RH in warmer and colder seasons, respectively.
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18 June 2022, measurements by ground-level sensors.

Figure 6 shows the typical daily patterns for the T and RH vertical gradients in three
different sites. In the coastal site, the daily temperature cycle started at night hours as a
constant positive value until early morning, then increased up to the maximum at midday
and finally decreased to the minimum negative value at late afternoon. Vertical gradient
patterns observed in P2 and P3 sites, which resembled each other, differed from that of
P0 pattern in several aspects. First, the maximum peaks for P2 and P3 had significant
larger values. Second, the maximum peaks for P2 and P3 were delayed in at least 3 h in
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comparison to the P0 maximum peaks. Third, instead of the constant peak values observed
for P2 and P3, a decreasing trend up to the minimum negative value during the morning
was identified for P0.
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Figure 6. Temperature (a) and relative humidity (b) vertical gradients in 3 different sites expressed
as differences between measured values from sensors positioned at the ground and 5 m above the
ground, respectively (refer to Table 1).

Fog formation, a process that is associated to high relative humidity values, occurs
preferentially at certain topographical formations in the Atacama Desert where air cool-
ing occurs [14,15,30]. Figure 7 shows periods of fog precipitation that occurred in the
fog collector (Figure 2) at site P3A, whose design efficiency have been proven in earlier
investigations [23,31]. Fog water collection above the ground is an evidence of soil wetting
in terms of falling water droplets formed above the ground, where RH values were much
higher than those at the ground level. This RH vertical profile that converged from high
values above the ground to low values at the ground level could be originated from differ-
ing cooling rates between air mass and soil surface. Figure 5 indicates a significantly larger
relative humidity values at UA, P2A, and P3A with respect to the corresponding ground
values (P0, P2, and P3) between March and the end of July 2022, a period when frequent
fog collection was recorded.
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3.2. Time of Wetness (TOW)

A definition of TOW is the time during which the RH of the ambient environment is
greater than a threshold RH value at temperatures above 0 ◦C. This definition is based on
the idea that above a certain humidity threshold, corrosion increases substantially due to
sorption of water on the surface. The basis for a critical humidity value is unclear, and this
threshold has been shown to be a highly inaccurate estimate for actual surface wetness in
certain outdoor environments [32]. The chosen limiting relative humidity value for this
calculation depends on the metal and many local conditions; for iron, the critical value is in
the range of 60–80% [33,34].

For the present investigation, the time of wetness in the absence of rainfall was
determined as the time in hours per month, during which the relative humidity values
were equal or higher than 80% and the temperature were higher than 0 ◦C [35]. An
important local condition is an exceptionally low content of contaminants in fogs [36].
Experimental TOW values measured in all sites as h/month are shown in Figure 8. Three
important features of these values were as follows: first, all TOW values that ranged
between 0 and 20 h/month (equivalent to 0 to 240 h/year) fell within categories 1 and
2 [35]; the most severe case of category 5 corresponded to values exceeding 5500 h/year.
Second, the TOW values in all sites took place in shorts periods at nighttime approximately
between 12 p.m. and 8 a.m. Third, the inland Atacama Desert is exceptionally free of clouds
with high solar radiation; this condition is prevalent over the years [16,23,37].
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Figure 8. Time of wetness values determined from the measured relative humidity values at
all sensors.

It was observed that a metal surface wetting took place at early hours every day, only
if RH is greater than 80%, in other words during TOW periods. Once a water film was
formed during early morning, an evaporation process began because of the increasing solar
intensity that was combined with a decreasing trend of RH values in the air (Figure 3). In
comparison to the water evaporation rate in open ponds (whose values in Atacama Desert
ranges between 7 to 12 mm/day [35]), the water film deposited on a bare metal surface
directly exposed to a sunshine evaporated faster because of a rapid temperature increase of
sun-heated surfaces together with a decrease of RH values. Thus, the water film formation
on the metal surface exposed to Atacama’s ambient condition took place as a sequential
dry/wet daily cycling with a maximum average wet period of 40 min.
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The absolute humidity (AH) expressed as kg water/kg dry air is a measure of the
actual amount of water vapor (moisture) in the air, regardless of the air’s temperature; this
value was computed using the following standard correlation [38]:

AH =
Mw·Pw

MA·(Patm − Pw)
, (2)

where Mw is the molecular weight of water with a value of 18.02 g/mol, MA is the molecular
weight of air equivalent to 28.97 g/mol, Patm is the atmospheric pressure equal to 760 mm
Hg, and Pw is the partial pressure of water in mm Hg.

Pw was computed from RH and Ps values as:

Pw =
RH
100
·Ps, (3)

where Ps is the saturated pressure of water at a defined temperature T and a pressure of
1 atm.

Pw was computed as:

AH =
0.622·RH·Ps

(760− 0.8·Ps)
. (4)

Considering a fitted Ps expression valid for a T range between 5 and 30 ◦C, the value
in mmHg can be determined by:

Ps = 0.026·T2 + 0.0833·T + 5.6768, (5)

where T is in ◦C.
From those expressions, AH values of 0.0084, 0.0097, and 0.0134 g water/g dry air

for 15, 17, and 21 ◦C, respectively, were computed at an RH value of 80%. These values
demonstrate a significant temperature influence on the water content of ambient air at a
fixed RH where TOW is computed.

3.3. Corrosion Distribution and Patterns

A necessary condition for corrosion of carbon steel coupons in the absence of rain is
a water film formation on the metal surface. As discussed in the preceded section, this
took place as daily sequential wet/dry periods only in those occasions when the maximum
daily RH values exceeded over 80%. It was also shown that the amount of available water
(absolute humidity) under a fixed RH humidity value was greater at higher temperatures.
This circumstance creates a need to also define a temperature as a reference.

Corrosion expressed as mass loss (also called corrosion depth) per area measured at
32, 74, and 241 days of exposure in sites P0 to P4 (Figure 9) indicated that the highest values
for coupons collected at times t1 and t2 took place at the coastal site P0. In this site, the
measured temperature and RH values (Figure 5) were highest at ground and aboveground
sensors, respectively. In contrast, for time t3, these values were quite similar in comparison
to those measured in the other sites; the highest mass loss shown by P1 was corroborated
by the highest RH values ever measured of all ground sensors (Figure 5). Although no
aboveground RH measurements were made at the P1 site, the evidence from sites P0, P2,
and P3 suggests high RH values for P1. The lowest corrosion values observed in P4 site
were again compatible with comparatively high T and low RH values. The corrosion trend
in P2 is inconsistent in that the low corrosion rates were not compatible with temperature
and RH measurements shown in Figure 5. The lowest temperature values at the P2 site
during the first three months of exposure as compared with all other sensors could explain
this anomaly. An interesting observation in site P3 is the occasional presence of wind-driven
dust over the surface of coupons. In considering the corrosion values such as those of P2
and P4, the effect of dust deposition can be disregarded.
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The lowest atmospheric corrosion depth for carbon steel ever reported as mass loss
indicates values between 8 and 30 g/m2 during 250 days of exposure [39]; no details were
given about ambient conditions. In a previous detailed investigation [40], carbon steel
exposed to outdoor wet-dry cyclic ambient conditions categorized as C3 [35] presented the
maximum mass loss value of 240 g/m2 after 200 days which is twice as much the maximum
value obtained in the present investigation.

Among the existing numerical models to simulate atmospheric corrosion for a long-
term, a simple power function model is shown as follows [3,5]:

d = A·tB, (6)

where d is the corrosion depth, t is the time of exposure in year, and A and B are constants. If
B > 1, the corrosion process is accelerated. Alternatively, in the case of B < 1, the deceleration
of process governs the corrosion loss, and if B = 1, the corrosion rate is constant.

It is clear from the shape of the mass loss curves for different sites that B < 1 which
suggests that under Atacama’s ambient conditions, the exposed carbon steel passivates
with time. This deceleration shape seen on corrosion rates plots (Figure 9) was validated at
a longer time with a single mass loss value of carbon steel coupons in triplicate left at the P0
site on 6 October 2020. This mass value measured at the time of the present investigation
was 176 g/m2 after 710 days of exposure.

The argument that the metal surface wetting mechanism is through a falling water
droplet generated at high RH values above the ground level clearly invalidates the use
ground RH values for TOW calculation. In fact, Figure 8 indicates too low TOW values
for all ground sensors, while the TOW from aboveground sensors had reasonable values.
In addition, the significant effect of temperature on the available water also indicates that
TOW based on an RH threshold is an inadequate index to be used in arid regions. Perhaps
a reference temperature, in addition to an RH value of 80%, should be defined to determine
an absolute humidity value as a threshold. Then, experimental temperature and RH values
must be used to calculate absolute humidity for a subsequent TOW determination.

3.4. Surface Morphology and Elemental Analyses

Surface and elemental analyses of the coupons at different corrosion times
(Figures 10–15 and Table 3) illustrated progressive changes in surface morphology and
composition. From the overall results, distinctive morphological features were observed.
From Figure 10, the initial coupons showed a smooth surface with superficial scratches left
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from using sandpaper during the abrading process. It can be observed that the coupons
exposed to atmospheric corrosion in the Atacama Desert were already oxidized during the
first 32 days of exposure with the random formation of corrosion products on the metallic
surface (Figures 11a, 12–14 and 15a). It is apparent that the corrosion was initiated in
random spots that further evolved to large aggregates that increased at longer exposure
times (Figures 11d, 12–14 and 15d). The largest initial mass loss value for 32 h of exposure
at the P0 site (Figure 9) was compatible with the largest number of oxides seen at this
time (Figure 11a). During this period, the corrosion rate, visualized as the slope of the
mass loss curve in Figure 9, had the maximum values. It is interesting to note that the
rust layer was dense and attached to the surface so that it acted as a barrier to effectively
inhibit the diffusion of oxygen and corrosive electrolytes, leading to a decreasing corrosion
rate evolution.
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Table 3. Elemental analyses of the surface coupons after 32-day exposure, measured by EDS analysis.

Element (%) AISI 1020 Composition
Sites

P0 P1 P2 P3 P4

Fe 98.5 67.3 77.6 86.2 86.4 88.3
O - 24.4 13.8 5.8 5.6 4.3
C 0.2 5.7 5.8 5.5 4.8 4.6
Si Traces 0.7 1.2 0.6 1.4 1.5
Cl - 0.5 0.2 0.1 0.1 -
Na - 0.4 0.3 0.1 0.3 0.2
Mn 0.6 0.3 0.5 0.6 0.5 0.6
Al - 0.3 0.3 0.3 0.5 0.2
Ca - 0.1 0.3 0.2 0.2 0.3
S Traces 0.1 0.1 0.1 0.1 -

Cr Traces 0.1 - - - 0.1
Co - - - 0.4 - -

All the samples had similar corrosion morphologies, and the damaged areas can
be categorized as a general corrosion mechanism containing pits (symbol
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Additionally, cracks formation observed in the metallic surface and the corrosion

product layer are a result of the daily wetting−drying cycles. No distinctive morphological
features can be attributed to any of the coupons, in other words, the morphological evolu-
tion of the oxide layer that is location-independent is in direct relation with its corrosion rate
value. It can be observed after many months of exposure time the presence of a dense oxide
layer on all coupons, with areas containing flowery structures typical of a lepidocrocite
phase (γ-FeOOH) (Figures 11d, 12–14 and 15d). This oxide layer pattern has been observed
by many investigators [2,12,41].

The elemental composition measured after 32 days of exposure (Table 3) showed a
significant oxygen uptake that was more pronounced in the coastal site P0 and decreased
in P1 and approximately constant in P2, P3, and P4. The similar trend, but at much lower
concentration, shown for sodium and chloride, suggests marine fog intrusion had the
maximum intensity in the P0 site and from there experienced a notorious decrease in
intensity from P2 to P4. Intriguing is the apparent carbon uptake by oxidized coupons from
0.2% to more than 5%; although no reference has been found concerning atmospheric carbon
uptake associated to metal corrosion processes, abiotic CO2 uptake from the atmosphere
in semiarid desert soils is a controversial issue that arose from positive experimental
measurements [42]. Probably the source of carbon is deposited dust on a coupon surface
that actively uptake CO2 from the atmosphere. Dust deposited on coupons in this work
was evidenced from the positive presence of Si, Ca, and S (Table 3).

3.5. Oxide Evolution

Diffraction peaks due to the oxide layer were observed in Figure 16. Goethite, lepi-
docrocite, and akageneite were the three main oxides identified in each corrosion coupon.
Visual identification of lepidocrocite at longer exposure time indicated gradual evolution
from amorphous oxides toward crystalline oxide forms. According to the literature [43,44],
in the wet periods, the dissolution of iron is balanced by the cathodic reduction of Fe(III)
oxides, usually γ− FeOOH, giving rise to magnetite that later in dry periods is re-oxidized
by oxygen. After several wet–dry cycles, the reduction of thin dense electrodeposited
γ−FeOOH layers to form magnetite do not occur; in addition, the formation of α−FeOOH
in such conditions is also possible. Many other iron oxides species can be formed under
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specific conditions. For example, under the condition with a low salt deposition rate, the
accumulation of salt without wash effects is essential for akaganeite formation [45].
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3.6. Remarks on Corrosion Prevention and Pending Issues

Atmospheric corrosion in Northern Chile is a particular case of perpetual daily
dry−wet cycling corrosion in the absence of rainfall. From the perspective of corrosion
prevention in this region, metal coating is the only feasible technological alternative to be
applied in carbon steel structures exposed to ambient conditions. However, important com-
plementary issues must be considered at the moment of choosing the appropriate coating
technique. Firstly, for structure installation, frequent fog-forming areas must be avoided to
minimize the risk of corrosion by droplet precipitation. Secondly, adequate coating must
be chosen to minimize the risk of dew-point condensation, and finally, coatings must cope
with the high local solar irradiation.

The topography of the Atacama Desert is highly varied; it includes coastal and inland
mountain ranges, isolated ridges and mesas, and broad interior valleys known for their
salt flats, or dry salt lake beds. The present investigation was developed along flat areas
where topographic effects are restricted to “shadowed areas” influenced by nearby hills or
depressions. Thus, pending issues to be investigated are corrosion evolution within such
relevant topographic accidents where geometric effects provoke interesting situations, such
as long-standing fog that sustains isolated plant communities and the so-called adiabatic
cooling effect that takes place alongside hill slopes.

4. Conclusions

Studying the atmospheric corrosion evolution of carbon steel AISI 1020 as coupons de-
posited in several sites along a transect in the Atacama Desert together with meteorological
characterization, the following points can be emphasized:

• Vertical temperatures and RH gradients starting with low RH values at the ground
level were observed in all sites;

• The vertical gradient generated a significant distortion in the TOW calculation when
using RH values measured at the ground level. The use of RH values measured at 5 m
above the ground level was found adequate for TOW determination;

• Water precipitation as small water droplets were demonstrated by using a fog wa-
ter collector;

• The use of a limiting absolute humidity value is suggested instead of a limiting RH for
the TOW determination;

• Metal corrosion in the Atacama Desert takes place as a sequence of wet−dry periods.
The duration of wet periods is of a few hours during nighttime;
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• Morphological examination showed that the corrosion was initiated by pits that
gradually evolved to cover the complete metal surface in a maximum period of
250 days.

• It was found after 32 days of exposure a significant oxygen uptake in coupons oxide
layer that was highest in the coastal site P0 and gradually decreased with the increasing
distance from the coast. Similarly, but in lower extent, the chloride content in coupons
decreased with the increasing distance from the coast. This is attributed to both relative
humidity and saline marine fog intrusion from the coast.

• The oxide layer evolved in all sites to form a compact layer whose main constituents
were lepidocrocite, goethite, and small amounts of akageneite. The corrosion depth
can be modelled by a simple power function d = AtB with B < 1, indicating a decelera-
tion process.
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