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Abstract: Red mud desulfurization is an environmentally friendly desulfurization technology. After
desulfurization, the acidity of red mud slurry continues to be neutralized for processing new red mud,
and no waste acid is generated. At present, there is a lack of research on desulfurization intensification
in external fields, etc. To further enhance red mud desulfurization, this paper used an SO2 detector,
X-ray fluorescence spectrometer (XRF), and scanning electron microscope (SEM) to compare and
analyze red mud desulfurization under the action of ball mill and ultrasonic external fields. In this
study, experiments were conducted using a bubbling and stirring reactor device. The results showed
that the suitable red mud slurry concentration was 10 g/L. The raw red mud desulfurization (without
external field condition) could reach 100% absorption in the first 25 min, and the desulfurization rate
dropped to 81.3% at 80 min. The mechanism of red mud desulfurization was investigated by X-ray
diffractometer (XRD), XRF, and infrared spectroscopy. Under the action of the external field of the ball
mill, the red mud particles could be refined to prolong the desulfurization time. The red mud after
ball milling could reach 100% absorption within 33 min. Under the thermal effect of the ultrasound,
100% absorption could only be achieved within 23 min. From the desulfurization effect and XRF
results, it was found that the ball mill was more suitable for promoting red mud desulfurization in
the bubbling and stirring reactor.

Keywords: ball mill machinery outfield; desulfurization; desulfurization mechanism; red mud;
ultrasonic outfield

1. Introduction

Red mud is an alkaline solid waste produced in the process of producing alumina from
bauxite [1]. For every 1 ton of alumina produced, 1–2 tons of red mud are generated [2,3].
Approximately 120 million tons of red mud are produced annually [4]. Currently, most of
the red mud is disposed of by stockpiling. Long-term storage of highly alkaline red mud
will not only waste land resources but also cause environmental pollution [5,6].

The composition of red mud varies depending on the way in which alumina is pro-
duced. Red mud generally includes Al2O3, CaO, SiO2, Fe2O3, Na2O, and other chemical
components. According to the characteristics of red mud, it is of great significance to
reasonably treat and reuse red mud resources. Red mud has a high surface reactivity,
a large specific surface area, and a porous structure that allows it to adsorb harmful metals,
phosphates, and other inorganic salts and organic matter from aqueous solutions [7–9]. Red
mud contains a large amount of Al, Fe, Ti, Na, and other metal elements, and valuable metal
elements in red mud can be recovered [10,11]. The residual iron oxide, quartz, and sodium
silica-aluminate in red mud can be used as additives to condition and improve soil [12–15].
Red mud is used to construct ceramics [16], ceramic glazes [17], bricks, roof tiles [18,19],
cement [20], geopolymers [21], and other building materials. The characteristics of red mud,
such as strong alkalinity, fine particles, and large specific surface area, allow for mineralized
sequestration of CO2 [22]. Red mud can also be used to absorb and treat acidic waste gases,
such as nitrides [23,24], H2S [25], SO2, fluoride [26], etc.
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SO2, as an irritant gas, is harmful to the human body and the environment. Flue gas
desulfurization technologies are dry desulfurization, semidry desulfurization, and wet
desulfurization. Red mud for desulfurization is solid waste reused to purify flue gas. Red
mud desulfurization is also a way to solve red mud stockpiles. Red mud can be used
for dry adsorption desulfurization. At present, research on the dry desulfurization of
red mud is shown as follows. Yan et al. [27] used red mud instead of CaO for desulfur-
ization in a circulating fluidized bed with the highest desulfurization rate of more than
94%. Liu et al. [28] used red mud-modified limestone for desulfurization by adsorption in
a tube furnace. Niu et al. [29] used red mud as an additive to activated carbon to improve
the desulfurization capacity of activated carbon, and the maximum sulfur capacity was
increased by 17.9% compared with activated carbon alone. Red mud is highly alkaline,
and the slurry made from red mud for desulfurization is a wet desulfurization process.
There is a lot of work carried out in the field of red mud slurry for wet desulfurization.
Wang et al. [30] studied the effect of red mud slurry desulfurization and decarbonization
on red mud dealkalization. The main components of red mud residue after desulfurization
and decarbonization are SiO2, Fe2O3, and AlOOH. Wei [31] obtained the optimal oper-
ating conditions for desulfurization of an absorption tower with red mud slurry in an
absorption tower. The desulfurization rate was above 95%, and the red mud slurry lost its
desulfurization capacity after 10 h. Yang [32] performed red mud slurry desulfurization
in a desulfurization absorption tower and obtained the optimum operating conditions
with a maximum desulfurization rate of 98.8%. Li et al. [33] used ozone peroxidation
of red mud slurry desulfurization and denitrification in a spray absorption tower, and
the desulfurization rate was stabilized at 98% within 1 h. The reaction mechanism of
desulfurization and denitrification was investigated. Tao et al. [34] used red mud slurry
desulfurization in a bubbling reactor and found that the liquid/solid ratio had the most
significant effect on the desulfurization process. Liu et al. [35] used a yellow phosphorus
emulsion coupled with red mud for desulfurization and denitrification to optimize the
reaction conditions. Under the optimized conditions, the optimal desulfurization and deni-
trification rates were as high as 97.9% and 100%, respectively. Zhang et al. [36] established
an industrial demonstration of red mud-limestone with a desulfurization rate of 98.9%,
which can meet ultralow emissions requirements.

In this paper, a large number of studies on wet desulfurization of red mud slurry were
investigated using a bubbling and stirring reactor. In addition, the mechanism of red mud
desulfurization was discussed in relation to XRD, XRF, and infrared spectroscopy. Red mud
slurry desulfurization could make the Na2O content in red mud lower than 1% and realize
the reduction of red mud alkalinity, thus making red mud more effective for the production
of cement, geopolymers, etc. The existing studies on red mud desulfurization concern the
process of desulfurization, and there are fewer studies on red mud desulfurization under the
action of external field intensification. Mechanical energy can initiate and promote chemical
reactions. The mechanical ball milling method can easily induce chemical reactions by
reducing the reaction activation energy through shear, abrasion, impact, extrusion, and
other mechanical force effects. When an ultrasound propagates in the gas-liquid-solid
phase, it produces cavitation phenomena and is accompanied by mechanical, thermal,
chemical, and biological effects. Therefore, to better enhance the promotion of red mud
slurry desulfurization, the external field of the mechanical energy of the ball mill and the
external field of the ultrasonic mechanical wave were used in this paper. The effect of
two external fields on the desulfurization of red mud slurry was investigated.

2. Experimental Section
2.1. Experimental Procedures

In this study, the red mud slurry desulfurization reaction was carried out in a bubbling
and stirring reactor (Tianjin Tianke Glass Instrument Manufacturing Co., Tianjin, China)
at room temperature. The experimental setup is shown in Figure 1. It mainly includes
a gas supply device, absorption device, and analysis device. The specific experimental
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process is as follows: SO2 gas is supplied by a compressed stainless steel bottle, controlled
by a gas flow meter, and the SO2 inlet flow rate is 400 mL/min. SO2 is refined by aeration
stones, and bubbles escape at the bottom of the reactor to react with the red mud slurry.
The stirring paddle in the reactor continuously disperses the red mud and renews the
absorption reaction interface. The speed of the stirring paddle was controlled at 350 r/min.
The pH change of the slurry was measured by a Thunder Magnetic pH Meter (PHSJ-3F,
Shanghai Jingke Company, Shanghai, China) during the absorption reaction. SO2 gas
after the reaction was measured by an SO2 detector (Leibo 3040, Jiangsu Leibo Scientific
Instruments Co., Jiangyin, China) for concentration. The unreacted SO2 tail gas is passed
into the NaOH solution. The desulfurized red mud residue was filtered and dried for
characterization and determination.
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Figure 1. Experimental setup diagram.

The absorption reactor was a 1 L four-neck flask with a red mud slurry volume of
700 mL. The red mud is mechanically refined by a planetary high-energy ball mill (Fritz
Instrument Equipment Co., Hamburg, Germany) to refine the particles. The ball milling
speed was 300 r/min, and the ball milling time was 1 h. The ultrasonic mechanical wave for
the reaction process was provided by a 40 kHz ultrasonic cleaner (CJ-060B, Shenzhen Super
Clean Technology Industrial Co., Shenzhen, China). Figure 2 illustrates the two modes of
action of red mud desulfurization performed under external fields.

Metals 2022, 12, x FOR PEER REVIEW 3 of 13 
 

 

In this study, the red mud slurry desulfurization reaction was carried out in a bub-

bling and stirring reactor (Tianjin Tianke Glass Instrument Manufacturing Co., Tianjin, 

China) at room temperature. The experimental setup is shown in Figure 1. It mainly in-

cludes a gas supply device, absorption device, and analysis device. The specific experi-

mental process is as follows: SO2 gas is supplied by a compressed stainless steel bottle, 

controlled by a gas flow meter, and the SO2 inlet flow rate is 400 mL/min. SO2 is refined 

by aeration stones, and bubbles escape at the bottom of the reactor to react with the red 

mud slurry. The stirring paddle in the reactor continuously disperses the red mud and 

renews the absorption reaction interface. The speed of the stirring paddle was controlled 

at 350 r/min. The pH change of the slurry was measured by a Thunder Magnetic pH Meter 

(PHSJ-3F, Shanghai Jingke Company, Shanghai, China) during the absorption reaction. 

SO2 gas after the reaction was measured by an SO2 detector (Leibo 3040, Jiangsu Leibo 

Scientific Instruments Co., Jiangyin, China) for concentration. The unreacted SO2 tail gas 

is passed into the NaOH solution. The desulfurized red mud residue was filtered and 

dried for characterization and determination. 

 

Figure 1. Experimental setup diagram. 

The absorption reactor was a 1 L four-neck flask with a red mud slurry volume of 

700 mL. The red mud is mechanically refined by a planetary high-energy ball mill (Fritz 

Instrument Equipment Co., Hamburg, Germany) to refine the particles. The ball milling 

speed was 300 r/min, and the ball milling time was 1 h. The ultrasonic mechanical wave 

for the reaction process was provided by a 40 kHz ultrasonic cleaner (CJ-060B, Shenzhen 

Super Clean Technology Industrial Co., Shenzhen, China). Figure 2 illustrates the two 

modes of action of red mud desulfurization performed under external fields. 

 
Figure 2. The two modes of action of the external field.



Metals 2022, 12, 1887 4 of 13

There are also some test devices as follows: X-ray fluorescence spectrometer (XRF,
ZSXPrimus, Hitachi Co., Tokyo, Japan) was used to detect the component content of
the phase; the specific surface area physical adsorption analyzer (ASAP2020, American
Micromachined Instruments, Atlanta, GA, USA) was used to analyze the pore structure
of the phase; X-ray diffractometer (XRD, Bruker Co., Karlsruhe, Germany) was used to
determine the phase composition; field emission scanning electron microscope (SEM,
Zeiss Sigma 300, Carl Zeiss AG, Oberkochen, Germany) was used to detect the phase
micromorphology; Fourier transform infrared spectrometer (Nicolet IS 50, Thermo Fisher,
Waltham, MA, USA) was used to measure the change in the mid-infrared absorption peak.

2.2. Experimental Materials

The concentration of SO2 gas used in the experiment was 5000 ppm, balanced with N2
(Shenyang Shuntai Special Gas Co., Shenyang, China). The red mud used in the experiment
came from an aluminum factory in Shanxi, China. The ingredients of the raw materials
are listed in Table 1. To better promote the absorption of SO2 in red mud, the red mud
particles were broken by mechanical ball milling. The absorption reaction rate can be
improved by refining the particles and increasing the specific surface area of the particles
from a macroscopic point of view. The adsorption–desorption isotherms before and after
ball milling are shown in Figure 3. The curves of the red mud samples before and after
ball milling showed a typical type IV adsorption–desorption isothermal curve. According
to the adsorption–desorption isotherm, the specific surface area of the raw red mud is
98.35 m2/g, and the specific surface area after ball milling is 32.46 m2/g, as defined by the
Brunauer–Emmett–Teller (BET) gas adsorption method [37]. The red mud is dried and
filtered through an 80 mesh sieve before being added to the reactor.

Table 1. Compositions of raw red mud (wt.%).

Sample Al2O3 SiO2 Fe2O3 TiO2 Na2O CaO SO3

Raw red mud 17.78 11.88 39.82 6.93 5.94 2.38 0.48
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From Figure 4, it can be seen that the original red mud is formed by cohesions,
agglomerates, and agglomerates to form a loose structure. There are spherical particles
attached to the surface. In addition, some particles have agglomeration behavior. The
microscopic morphology of the red mud after ball milling is not significantly changed.
Combined with Figure 3, it can be seen that the collision of steel balls in the ball mill can
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transfer more mechanical energy to the particles, thus changing the specific surface area of
the red mud particles.
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2.3. Calculation of Desulfurization Rate

The experimental parameter of the desulfurization rate can better reflect the desulfur-
ization efficiency of red mud. The equation of desulfurization rate is shown in Equation (1).

Desulfurization rate =
Cinlet − Coutlet

Cinlet
× 100% (1)

where Cinlet is the SO2 concentration at the reactor inlet, ppm; Coutlet is the SO2 concentration
in the tail gas at the reactor outlet, ppm.

3. Results and Discussion
3.1. The Effect of Red Mud Slurry Concentration on Desulfurization

From the study of Tao et al. [34], we know that the liquid–solid ratio has the most
significant effect on the desulfurization of red mud. Therefore, this paper focuses on the
effect of slurry concentration on desulfurization, which is used to select the optimal slurry
concentration. The influence of slurry concentration on the desulfurization process was
characterized by the change in slurry pH value. As shown in Figure 5, in the red mud
slurry desulfurization process, the pH value changes over time into three stages: a rapid
decline stage, a slow decline stage, and an unchanged stage. When the concentration of red
mud slurry increases from 7 g/L to 10 g/L, the time of pH drop is prolonged. This means
that an increase in concentration can prolong the absorption reaction time and absorb
and process more SO2. When the slurry concentration of red mud increases from 10 g/L
to 15 g/L, the increase in slurry concentration does not prolong the absorption reaction
time in the first 10 min. With the increase in slurry concentration, the free alkali in red
mud and other substances that react with SO2 cannot be dissolved in a short time. With
increasing time, 15 g/L red mud can have a longer absorption reaction time. However, as
its absorption reaction time is not much different from that of 10 g/L red mud, the red mud
slurry concentration is selected as 10 g/L in the following experiments after comprehensive
consideration. In addition, the slurry after desulfurization can neutralize the new red mud
and no waste acid is generated.
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3.2. The Effect of Red Mud Slurry Concentration on Desulfurization
3.2.1. Changes in Slurry pH and Desulfurization Efficiency during Red
Mud Desulfurization

As shown in Figure 6, the changing trend of the red mud after ball milling is the
same as that of the raw red mud. The raw red mud (without external field conditions) can
completely absorb low-concentration SO2 in the first 25 min, and the desulfurization rate
is maintained at 100%. After 25 min, the absorption of SO2 in red mud gradually reaches
saturation, and the concentration of SO2 in tail gas increases continuously. The red mud
desulfurization rate drops to 81.3% after 80 min. After ball milling, red mud desulfurization
uses mechanical energy to refine the red mud particles, promote the decomposition of the
red mud particles, and prolong the desulfurization time. It can completely absorb low
concentrations of SO2 in the first 33 min, and the desulfurization rate is maintained at 100%.
After 33 min, the absorption capacity of SO2 decreases gradually, and the concentration of
SO2 in the tail gas increases continuously. The desulfurization rate of red mud after ball
milling is still at 88.2% at 80 min.
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As a kind of high-frequency mechanical wave, an ultrasound provides a cavitation
effect, thermal effect, and mechanical effect, and a study on the effect of an ultrasonic
external field on red mud desulfurization was conducted. Under the effect of an ultrasonic
field, the desulfurization rate of raw red mud reaches 100% in the first 23 min, and the
desulfurization ability gradually decreases after 23 min. The desulfurization rate drops to
80.4% at 60 min. Compared to desulfurization without ultrasound that can absorb 100%
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in the first 25 min, ultrasound instead reduces the slurry desulfurization time. Under the
action of an ultrasonic field, the desulfurization rate of ball-milled red mud is 100% in the
first 29 min, and the desulfurization capacity decreases gradually after 29 min. Then, the
desulfurization rate drops to 85.4% at 60 min. The SO2 in the exhaust gas is detected earlier
in the presence of an ultrasonic field, considering that the thermal effect of ultrasound
increases the temperature of the slurry, and the temperature affects the solubility of SO2.
Therefore, through the above study, it is found that in the bubble stirred reactor, the thermal
effect of ultrasonic waves would reduce the solubility of SO2 in the slurry by increasing
the slurry temperature, leading to a decrease in the desulfurization rate. Furthermore,
the ball mill outfield can make the slurry have a longer absorption time and improve the
desulfurization capacity of red mud by refining the red mud particles. In the practical
application of red mud desulfurization, the ball mill can be selected to refine the particles
to extend the desulfurization time.

According to the air pollutant emission standards in various parts of China, the
desulfurization rate should be at least 90%. In this paper, the amount of red mud slurry
required to absorb 1 kg of SO2 under the influence of external field is calculated based on
the absorption time for a desulfurization rate of 90%. The calculation results are shown in
Table 2.

Table 2. The amount of red mud slurry required to absorb 1 kg of SO2.

Desulfurization Method Desulfurization
Time (min)

The Amount of Red Mud
Slurry (kg/m3)

Raw red mud 72 24.3
Red mud after ball milling 77 22.7
Red mud under ultrasound 52 33.7
Red mud after ball milling under ultrasound 55 31.8

3.2.2. Changes in Red Mud Composition during Red Mud Desulfurization

XRF was used to detect the composition changes of red mud in the desulfurization
process under various conditions, and the detection results are shown in Table 3.

Table 3. XRF results of the compositions of red mud in the desulfurization process (wt.%) (raw red
mud desulfurization (RR), ball mill red mud desulfurization (BR), raw red mud desulfurization
under an ultrasonic external field (RU), ball mill red mud desulfurization under ultrasonic external
field (BU)).

Samples Al2O3 SiO2 Fe2O3 TiO2 Na2O CaO SO3

RR t = 20 min 19.24 12.23 42.13 7.39 5.02 0.69 0.82
RR t = 40 min 18.89 6.41 47.94 8.58 1.07 0.11 2.32
RR t = 60 min 16.63 4.91 52.73 9.53 0.8 0.07 1.55
RR t = 80 min 14.44 3.75 55.25 10.31 0.45 - 1.01
BR t = 20 min 19.33 12.72 42.08 7.63 4.02 0.36 0.9
BR t = 40 min 18.03 4.6 49.98 9.25 0.42 - 2.24
BR t = 60 min 14.95 3.66 54.77 10.45 0.4 - 1.49
BR t = 80 min 13.56 3.31 56.42 10.94 0.39 - 0.97
RU t = 20 min 19.76 12.29 41.5 7.34 4.29 0.57 0.86
RU t = 40 min 21.12 7.26 43.89 7.66 1.16 - 3.2
RU t = 60 min 16.95 4.41 52.25 9.43 0.41 - 1.54
BU t = 20 min 19.56 12.71 40.94 7.32 4.27 0.75 0.91
BU t = 40 min 20.76 8.11 43.6 7.78 1.19 - 2.58
BU t = 60 min 17.42 5.19 47.27 8.71 0.41 - 3.14
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From the XRF results of red mud in the desulfurization process in Tables 1 and 2, it
is clear that Al and Na are more easily dissolved in the initial stage of the reaction. As
the desulfurization reaction proceeds, the slurry becomes more acidic, and the aluminum
and silicon in the red mud begin to dissolve in large amounts [38]. The iron minerals
are relatively stable, and the Fe2O3 content is almost unaffected by the desulfurization
reaction. With the continuous dissolution of Na, Al, and Si, the mass of red mud decreases,
which is also the reason for the increase in Fe2O3 content. CaO and TiO2 were partially
dissolved with the reaction. The dissolution rate of Ti and Ca metal substances increased
with the intensification of ultrasonication [39]. The Na2O content in the red mud of the
desulfurization process in Table 2 is represented in Figure 7. Figure 7 clearly shows the
decreasing content of Na2O in the red mud as desulfurization proceeds. The Na2O content
in red mud is further reduced by the action of ball milling and ultrasonic external fields.
This shows that the external field is more conducive to red mud dealkalization. For the red
mud after 60 min of desulfurization under the above conditions, the content of Na2O is
<1%, which can meet the composition requirements of cement, brick, geopolymer, and other
construction materials [40]. The S content in the desulfurized red mud did not increase
significantly, indicating that the red mud is mainly dissolved in the liquid phase.
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Figure 7. Changes in Na2O content in red mud during desulfurization (raw red mud desulfurization
(RR), ball mill red mud desulfurization (BR), raw red mud desulfurization under an ultrasonic
external field (RU), ball mill red mud desulfurization under ultrasonic external field (BU)).

3.2.3. Changes in Red Mud Composition during Red Mud Desulfurization

Figure 8 shows the SEM image of the red mud with a desulfurization time of t = 60 min.
Compared with the undesulfurized SEM image in Figure 4, the microscopic morphology of
the red mud changed significantly after desulfurization. In red mud desulfurization, the
solid phase material in the red mud is involved in the reaction, where it is continuously
consumed. After desulfurization, the red mud is broken down into many small spherical
particles, and the microstructure of the red mud becomes loose as a result. The microstruc-
ture of red mud is more fluffy after desulfurization by ball milling. The ultrasonically
dispersed particles are more uniform, and the desulfurized red mud has more small spheri-
cal particles and smaller pores. In conclusion, the change of desulfurization rate shows that
the mechanical external field of the ball mill can extend the desulfurization time by refining
the red mud particles. The ultrasonic external field disperses the red mud particles, and the
XRF results show that the dispersed red mud particles promote the dissolution of metals
such as Ti and Ca.
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3.3. Mechanism of Red Mud Desulfurization

As shown in Figure 9, the diffraction peaks of sodium aluminosilicate hydrate and
calcium aluminosilicate hydrate mainly change during the desulfurization of red mud.
In the initial stage of the reaction, hydrated sodium aluminosilicate first decomposes
and dissolves aluminum and sodium. As the desulfurization reaction proceeds, the XRD
diffraction peaks of both sodium aluminosilicate hydrate and calcium aluminosilicate
hydrate gradually weaken. When desulfurization was carried out for 40 min, the pH was
approximately four, and the phases of sodium aluminosilicate and calcium aluminosilicate
hydrate were not observed in the desulfurized red mud. The raw red mud will have
decomposed Al3+ combined with OH− in the form of Al(OH)3 in the desulfurized red mud.
Some of the Si is present as a stable structure of amorphous SiO2, which is also detected in
the desulfurized red mud. After 20 min of reaction, CaCO3 in the red mud decomposed,
and the final desulfurized red mud did not contain Ca2+, which was consistent with the
XRF results in Table 2. Part of the hematite (Fe2O3) reacts with TiO2 in a solid-state to form
iron-titanium oxide (Fe2Ti3O9). Finally, Fe exists in the form of Fe2O3 and Fe2Ti3O9 in the
desulfurized red mud.

Figure 10 shows the infrared spectra of the raw red mud desulfurization process. As
shown in Figure 10, the main mid-infrared band that appears at 900–1000 cm−1 is the
stretching vibration of the Si-O-Si bond [41]. The main mid-infrared band that appears at
approximately 802 cm−1 is the bending vibration of the Si-O bond [42]. The reason is that
as the desulfurization reaction proceeds, a large amount of Si in sodium aluminosilicate
hydrate (1.08Na2O·Al2O3·1.68SiO2·1.8H2O) and hydrated garnet (CaO·Al2O3·SiO2·2H2O)
dissolves in the aqueous solution, resulting in a weaker absorption band for the Si-O bond.
The infrared band near 1410 cm−1 is the stretching vibration of the C-O-C bond in the
CO3

2− group of the red mud [43–45]. This is consistent with the XRD results, which prove
the presence of CaCO3 in the raw red mud. The IR peak gradually decreases to disappear,
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and there is no CO3
2− in the desulfurized red mud, indicating the participation of CaCO3 in

the desulfurization reaction. The infrared band at 1636–1640 cm−1 is the bending vibration
of the H-OH bond. This indicates that there is more free water interacting with the reaction
products to become bound water in the desulfurization process [46]. The infrared band at
2100 cm−1 is the stretching vibration of the Si-H bond. The broader infrared absorption
band at 3140 cm−1 is the absorption peak of the interlayer molecule H2O [47,48].
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Figure 10. Infrared spectrum of the raw red mud desulfurization process.

In summary, the process of red mud slurry desulfurization is divided into three steps:
(1) SO2 gas is dissolved in the slurry. At this point, the dissolution of SO2 in water to
form H2SO3 and the ionization of H2SO3 to produce SO3

2− and H+ mainly occur. The
unstable H2SO3 decomposes to produce HSO3

− and H+. (2) The free alkali in the red mud
slurry reacts with H+ to neutralize it. Neutralization and oxidation reactions of alkaline
metal compounds with H+ also occur at this time. Al3+ metal ions combine with OH−

to generate precipitates. (3) Dissolution of insoluble sodium salts of red mud (sodium
aluminosilicate hydrate, hydrated garnet) and the physical phase transfer of reaction
products. The main reactions occurring in the red mud desulfurization process are shown
in Equations (2)–(10), where OH− is provided by the free base [33–36]. The dissolution of
the red mud desulfurization process and the reaction mechanism are shown in Figure 11.

SO2 + H2O = H2SO3 (2)
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H2SO3 = HSO3
− + H+ (3)

HSO3
− = SO3

2− + H+ (4)

Na2O + 2H+ → 2Na+ + H2O (5)

Al2O3 + 6H+ → 2Al3+ + 3H2O (6)

Fe2O3 + 3TiO2 → Fe2Ti3O9 (7)

CaCO3 + 2H+ → Ca2+ + CO2 ↑ + H2O (8)

2OH− + SO2 → SO3
2− + H2O (9)

Al3+ + 3OH− → Al(OH)3 (10)
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4. Conclusions

In this study, the use of red mud desulfurization is an economic technology to treat
waste with waste. It can not only solve the industrial flue gas SO2 pollution problem
but also reduce the stockpiling of red mud. Acid desulfurization slurry is recycled, and
no waste acid is produced. In the bubbling and stirring reactor, the appropriate slurry
concentration for red mud desulfurization is 10 g/L. The raw red mud can absorb 100%
of SO2 in the first 25 min, and the ability of red mud to absorb SO2 decreases as the
reaction time increases. Based on the result of 10 g/L raw red mud slurry desulfurization,
24.3 kg/m3 of red mud slurry is required to absorb 1 kg SO2. The red mud is mainly free
alkali involved in the reaction at the beginning stage. Sodium aluminosilicate hydrate
(1.08 Na2O·Al2O3·1.68 SiO2·1.8 H2O), hydrated garnet (CaO·Al2O3·SiO2·2 H2O), and
CaCO3 are dissolved in the liquid phase of the solid phase. Part of Fe2O3 reacts with
TiO2 in the solid phase to synthesize Fe2Ti3O9. The metal oxides react with H+ to form
metal ions. Al3+ metal ions combine with OH− to generate precipitates. Under the present
experimental conditions, S is mainly present in the liquid phase after the reaction. After
60 min of red mud desulfurization, the Na2O in red mud is <1%. This can meet the highly
stringent requirements for the production of cement, geopolymers, etc. Under the external
field of the ball mill, 100% SO2 absorption can be achieved in 33 min, and under the external
field of ultrasonic waves, 100% SO2 absorption can only be achieved in 23 min. Therefore,
comparing these two external field effects, it can be found that the ball mill external field is
more suitable for improving the desulfurization rate in the bubbling and stirring reactor.
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