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Andrzej N. Wieczorek and

Marcin Staszuk

Received: 21 September 2022

Accepted: 25 October 2022

Published: 30 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Crystallization of Fe-W-B Amorphous Powder Prepared by
Gas Atomization
Shuwang Ma 1,*, Zheng Lv 1 , Jian Wang 1, Haicheng Wang 1, Jian Yang 1,2, Zhimin Yang 1,2, Jingli Li 3

and Zhiyong Xue 3

1 Advanced Electronic Materials Institute, GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
2 State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd.,

Beijing 100088, China
3 Institute for Advanced Materials, North China Electric Power University, Beijing 102206, China
* Correspondence: mashuwang@grinm.com; Tel./Fax: +86-010-60662603

Abstract: In this work, the effects of master alloy composition and annealing temperature on the
amorphization and crystallization behavior of Fe-W-B powders prepared by gas atomization using
compacts of Fe, W and B powder mixture were systematically studied. The results show that only the
master alloy with high content of W (19.9 at.%) and B (13.6 at.%) of the six alloys studied yielded
amorphous Fe-W-B powders. The alloying elements W and B are believed to have a glass-forming
ability (GFA)-enhancing effect, which together with the high cooling rate of gas atomization leads
to the formation of amorphization. The difference in the average particle size of 3–10 µm for the six
atomized powders indicates that the master alloys with different W and B contents have different
superheat and melt viscosity at the same atomization temperature. The Fe-W-B amorphous powder is
structurally stable within 600 ◦C and crystallizes from the edge of the particles when the temperature
increases to 700 ◦C, and its crystalline precipitates include α-Fe, FeWB and Fe7W6. The nuclear
shielding tests and Monte Carlo N Particle Transport Code (MCNP) calculated results revealed that
the Fe-W-B amorphous powder has a much better shielding performance for γ-rays and neutrons than
that of iron. This work provides an efficient strategy for fabricating Fe-W-B amorphous powder with
promising nuclear shielding potential and sheds light on the crystallization behaviors of this alloy.

Keywords: amorphous powder; gas atomization; crystallization; shielding performance

1. Introduction

Fe-W-B system materials have many special physical and chemical properties, which
can be used in many promising potential applications, such as nuclear shielding, mi-
crowires, corrosion-resistant coating and wear resistant materials [1,2].

In recent years, several studies have been carried out on Fe-W-B-based alloys with
the consideration of function–structure integration [3–6]. However, the high contents of
intermetallics or borides (such as Fe7W6, FeWB, FexB and WxBy) within crystalline Fe-W-B
alloys, which is due to the phase transitions by continuous cooling from the liquid state,
restrict the mechanical properties and corrosion resistance [7–10]. Elaborated Metallic
glass can be prepared by various techniques, such as mechanical alloying, atomization and
chemical methods. An amorphous Al50(Fe2B)30Nb20 powder mixture was prepared by
mechanical alloying in a high-energy planetary ball-mill under argon atmosphere [11].

Metallic glasses have unique combinations of mechanical properties, corrosion re-
sistance and magnetic property due to their non-crystalline structure. In recent years,
more and more studies have focused on metallic glass, such as amorphous nanocrystalline
powder, amorphous strips and so on [12–16]. A kind of amorphous Fe-W-B nano-powder
was obtained via a chemical method [17]; nevertheless, the low yield makes it difficult to
realize mass production.

Metals 2022, 12, 1855. https://doi.org/10.3390/met12111855 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12111855
https://doi.org/10.3390/met12111855
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0003-3286-3030
https://doi.org/10.3390/met12111855
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12111855?type=check_update&version=3


Metals 2022, 12, 1855 2 of 11

Therefore, it is necessary to find a way to reduce the cost and simplify the manufac-
turing process. One of the technologies of rapid-solidification is gas atomization, which
is used to produce metal powder [18–20]. By comparison, gas atomization is commonly
used in the production of alloy powder by large-scale industry. This technique consists
of breaking a liquid metal stream into droplets using a high-velocity flow. These droplets
become powder particles after solidification. The droplet size is small, usually in the micron
range. The particle size of the atomized powder usually ranges from a few microns to tens
of microns.

Up to now, many Fe-B-based amorphous alloy powders have been successfully pre-
pared by gas atomization [21–24]. However, atomized Fe-W-B amorphous powder with
high content of W and B has not been prepared and studied to the best of our knowledge.

In this study, several types of Fe-W-B powder were prepared using the gas atomization
method. The influence of alloy composition on the phase structure of the powder was
investigated. It is important to remark that the powder with amorphous and crystalline
structures was obtained successively after atomization and subsequent annealing treatment.
To reveal the crystallization behavior of Fe-W-B amorphous powder, the influence of an-
nealing temperature on phase transformation and thermal characteristics was investigated.
The γ-ray- and neutron-shielding properties of Fe-W-B amorphous powder were calculated
to evaluate its nuclear shielding performance.

2. Materials and Methods
2.1. Preparation of Powder

The precursors for the gas atomization are compacts of Fe, W and B powder mixture.
The purity of Fe, W and B powders were 99.9 wt%, 99.9 wt% and 99.5 wt% and the FSSS
particle sizes of Fe, W and B powders were 6 µm, 3 µm and 2 µm, respectively. Commercial
elemental Fe, W, and B were weighted to give the required six compositions of master
alloys as shown in Table 1. Tungsten content increases gradually from Sample 1 to Sample
6. All samples can be divided into two series. The tungsten content of Series 1 (Sample 1 to
Sample 3) is less than 36 wt.% and Series 2 (Sample 4 to Sample 6) is higher, which is more
than 44 wt.%. Generally, the liquidus temperature of the master alloy, which mainly varies
with the content of tungsten and boron, is closely related to the atomization process.

Table 1. Compositions of Fe-W-B master alloys used in this work.

Serial Number Sample Number
Compositions of Master Alloys

Percentage
Elements

Fe W B

Series 1

Sample 1
Mass (wt.%) 81.3 18 0.7

Atomic (at.%) 89.9 6.1 4

Sample 2
Mass (wt.%) 71.4 25.8 2.8

Atomic (at.%) 76 8.4 15.6

Sample 3
Mass (wt.%) 61.9 35.6 2.5

Atomic (at.%) 72.5 12.7 14.9

Series 2

Sample 4
Mass (wt.%) 53.7 44.2 2.1

Atomic (at.%) 68.7 17.2 14.1

Sample 5
Mass (wt.%) 54.5 44.8 0.7

Atomic (at.%) 75.9 19 5.2

Sample 6
Mass (wt.%) 49.4 48.6 2

Atomic (at.%) 66.4 19.9 13.6
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The elemental mixtures of Fe, W and B were alloyed by vacuum induction melting.
Each ingot was re-melted at least three times for homogeneity. Atomization was performed
in an industrial-scale supersonic gas atomizer with nitrogen as the atomizing gas. The alloy
was melted in a magnesia crucible utilizing a medium-frequency induction furnace under
a nitrogen atmosphere. The alloy was heated to 1700 ◦C and a homogenization time of
about 10 min was adopted. The value of the atomization gas pressure was 4.0 MPa. The
melt droplets were quenched in the atomization and cooled down to room temperature in
the collecting chamber. The residence time of atomization was about 1~2 minutes.

2.2. Performance Testing Method

The structures of the Fe-W-B powder were examined by X-ray diffraction (XRD,
X’Pert PRO MPD from PANalytical, Westborough, MA, US) with Cu Kα radiation, in
the 2θ range from 10◦ to 90◦, in steps of 0.02◦ and at a scanning rate of 5◦/min. The
crystallized phases were identified by using the Crystallographica Search-Match (CSM)
X-ray diffraction phase analysis software. The crystallization temperature (Tx) of Fe-
W-B powder annealed at different temperatures was measured by differential scanning
calorimetry (DSC, Netzsch STA 449 F3 from NETZSCH-Gerätebau GmbH, Selb, Germany)
at a heating rate of 10.0 K/min under flowing high purity argon. The microstructures of
Fe-W-B powder were carried out using scanning electron microscopy (SEM, JSM-6700F
from JEOL, Tokyo, Japan) and transmission electron microscopy (TEM, FEI Tenai G2 F20
from Thermo Fisher Scientific, Waltham, MA, US). Selected area electron diffraction (SAED,
FEI Tenai G2 F20 from Thermo Fisher Scientific, Waltham, US) was also utilized to identify
the phase and crystal structure of Fe-W-B powder.

3. Results and Discussion
3.1. Effect of Alloy Composition on the Morphology and Structure of Gas Atomized Fe-W-B Powder
3.1.1. Morphology and Microstructure Analysis

The morphology of atomized powder with various compositions is shown in Figure 1.
It can be observed that most of the particles are nearly spherical, but a few are irregular in
shape. The irregular particles might be ascribed to the adhering aggregation of the melted
droplets caused by an unsuitable air flow rate in the atomization process. In the condition
of very high air flow, the speed of spheroidization is less than solidification. Thus, when
the droplets have completed solidification, spheroidization has not been completed in time.
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Figure 1. Morphology of atomized powder obtained at 1700 ◦C with different compositions
(SEM).(a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

It can also be seen that the particle size of the powders from sample 1 to sample 4 is
small, with an average particle size of 3–7 µm, while the particle size of the powders for
sample 5 and sample 6 is larger, with an average particle size of 9–10 µm. The average
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particle size of the atomized powder is directly proportional to the viscosity and surface
tension, both of which are related to the superheat of the molten master alloy.

The relationship between the viscosity coefficient and the temperature is given as
follows [25]:

η = Ae
E

KBT (1)

where E is the activation energy, A is the constant, KB is the Boltzmann constant, T is the
absolute temperature and η is the viscosity coefficient. The higher the melting temperature,
the lower the viscosity.

The relationship between the surface tension and the temperature is given as follows [26]:

σm

(
M
ρm

)−2/3
= K(TC − T) (2)

where σm is the surface tension, ρm is the density, M is the molar mass of the metal melt,
TC is the critical temperature and K is the experimental constant. The higher the melting
temperature, the lower the surface tension.

For Series 1 (Sample 1 to Sample 3), the master alloy with low tungsten content has
lower liquidus temperature (Tl), which relates to higher superheat and lower melt viscosity
at the same atomization temperature. Under this condition, it is easy to prepare fine
powder. For Series 2 (Sample 4 to Sample 6), the master alloy with high tungsten content
has higher Tl than that of Series 1. Higher tungsten content will increase the Tl of the
master alloy, while a higher boron content will reduce it. Sample 4 has a lower tungsten
content (17.2 at.%) and a higher boron content (14.1 at.%) than sample 5 and sample 6.
Thus, Sample 4 should have higher superheat and lower melt viscosity than sample 5 and
sample 6 at the same atomization temperature, which leads to the smaller particle size
(average particle size of 4 µm) of Sample 4 and the larger particle size (average particle size
of 9–10 µm) of Sample 5 and Sample 6.

Figure 2 shows that the microstructures of the particles with various compositions
are quite different. The microstructure of Sample 6 is relatively uniform, and there is no
obvious precipitated phase structure within the particle. For other types of particles, there
are more or less precipitated phase structures, showing bright blocks or dendritic.
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Figure 2. Microstructure of the particles with different compositions (SEM). (a,b) Sample 1; (c,d) Sam-
ple 2; (e,f) Sample 3; (g,h) Sample 4; (i,j) Sample 5; (k,l) Sample 6.

3.1.2. Phase Analysis

XRD patterns of atomized powder with various compositions at room temperature
are shown in Figure 3. The XRD pattern of Sample 6 displays a broad peak between 35◦
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and 55◦, indicating the existence of particles with an amorphous character. It reveals that
only Sample 6 shows an amorphous phase (named as Fe-W-B amorphous phase), while
other types of powder show crystallized phases or the coexistence of an amorphous phase
and crystalline phase. The crystallized phases mainly contain α-Fe or mix with a small
number of WxFeyBz-type phases, such as FeWB and Fe7W6.
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Figure 3. XRD patterns of atomized powder with different compositions at room temperature.

Regarding the successful preparation of Sample 6 amorphous powder, we believe
that the intrinsic mechanisms involved include two main aspects. The first is related to
the high cooling rate of the gas atomization. It is known that in the most usual method of
amorphization, the high cooling rate should be applied to form an undercooled liquid or a
metallic glass. The small size of the droplets, typically in the micron range, and the high
velocity of the gas enable a fast heat transfer; in this way, it is possible to achieve very high
cooling rates during the gas atomization.

Secondly, glass-forming ability (GFA) is very crucial for understanding the origins of
glass formation. It has been indicated that any alloying element added to the finemet com-
position means that the GFA increases and crystallization transformation is delayed [27].
Tx/Tl is a reasonable indication of GFA based on the crystallization process of an under-
cooled liquid. The system with a larger Tx/Tl ratio could have a higher GFA [28]. In this
study, the addition of tungsten and boron to the iron melt increased GFA and delayed the
crystallization transformation, which promoted the formation of amorphization. Generally,
an alloy with the composition of deep eutectics has a high GFA [29]. The master alloy
of Sample 6 with higher tungsten and boron content is close to the composition of deep
eutectic region, where the four-phase invariant reaction is conducted at 1365 ◦C: eutectic
types, L⇔ µ+WFeB+α-Fe [30]. Furthermore, the addition of a high melting point W into
Fe-B system will tend to increase the crystallization temperature. Thus, the Fe-W-B system
of Sample 6 has a higher crystallization temperature (Tx) and lower liquidus temperature
(Tl) at once. Therefore, Sample 6 should have higher GFA than other samples, which makes
it show an amorphous phase only.

3.2. Thermal Characteristics and Crystallization Behavior of the Fe-W-B Amorphous Powder

Information concerning the structure change with temperature is quite important for
the physical properties of amorphous material. To further study the stability of the amor-
phous structures of the Fe-W-B powder, the annealing treatment at different temperatures
was designed for Sample 6. Therefore, several kinds of powder were annealed in vacuum
at different temperatures ranging from 100 ◦C to 1000 ◦C for 1 h, respectively.

As shown in Figure 4, the amorphous structures of the Fe-W-B powder remain even as
the temperature reaches 600 ◦C, which indicates that the amorphous structures are stable.
When the temperature reaches 700 ◦C, it begins to generate a small number of α-Fe and
Fe7W6 phases while the amorphous phase still exists. When the temperature reaches 800 ◦C
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or 1000 ◦C higher, all amorphous phases are transformed into crystalline phases, which are
mainly composed of α-Fe, FeWB and Fe7W6.
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Figure 4. XRD patterns of FeWB amorphous powder processed by annealing at different temperatures.

The thermal stability of Fe-W-B amorphous powder was investigated by DSC, and the
DSC curves of as-atomized and annealed Fe-W-B amorphous powder are shown in Figure 5.
The DSC traces exhibit exothermic reactions corresponding to the crystallization of Fe-W-B
amorphous powder as atomized. It shows a two-step process for the crystallization of
amorphous structure. The first crystallization temperature (Tx1) of Fe-W-B amorphous
powder is determined to be 607.73 ◦C, and the second crystallization temperature (Tx2) is
determined to be 805.01 ◦C. After annealing at 800 ◦C or 1000 ◦C, the DSC curves show no
exothermic reactions because Fe-W-B amorphous powder has completed the crystallization
process, which is also consistent with the previous XRD analysis.
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Focused ion beam (FIB) sample image and EDS area microanalyses of as-atomized
Fe-W-B amorphous powder are shown in Figure 6. EDS microanalyses show that the
distribution of W and B elements are uniform within the Fe matrix, which conforms to the
amorphous characteristic.

It can be seen from the XRD analysis that when the temperature reaches 700 ◦C, Fe-W-B
amorphous powder begins to crystallize while the amorphous phase still exists. To further
study the microstructure of Fe-W-B amorphous powder annealed at 700 ◦C, a TEM sample
was prepared by FIB, as shown in Figure 7.
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The morphology and microstructure of Fe-W-B amorphous powder annealed at 700 ◦C
are shown in Figure 8. Annealing induces crystallization. However, the crystallinity
is inhomogeneous in the whole range of the particle. Crystallization occurs preferen-
tially at the edge of the particle due to heat conduction. As shown in Figure 8a, the
TEM sample can be divided into two regions, i.e., the amorphous-nanocrystalline dual
phase region and the fully crystalline region. The microstructure morphology of the
amorphous-nanocrystalline dual phase region is shown in Figure 8b. The SAED pattern of
the amorphous-nanocrystalline dual phase region is shown in Figure 8c. The precipitated
α-Fe nanocrystals are obvious. The corresponding SAED pattern shows {1 1 0}, {2 0 0},
{2 1 1}, {3 1 0}, {2 2 2} and {3 2 1} planes of α-Fe nanocrystals. Thus, the α-Fe phase should
be precipitated before other compounds during crystallization annealing.

The microstructure morphology and EDS microanalyses of the fully crystallized region
in Figure 8a is shown in Figures 8d and 8e, respectively. It can be seen from the HAADF
image that there is a dendrite structure in the fully crystallized region. EDS microanalyses
show that the bright phase corresponds to the tungsten enrichment area, and the dark
phase corresponds to the iron enrichment area. Combined with XRD analysis results, it is
expected that α-Fe and the compounds (i.e., Fe7W6 and FeWB) should be precipitated.

The HRTEM morphology of the fully crystallized region in Figure 8a is shown in Figure 8f.
The SAED patterns of marked areas labeled with “SAED 1”, “SAED 2” and “SAED 3” within
the fully crystallized region are displayed in Figures 8g, 8h and 8i, respectively. The three
SAED patterns correspond to three types of single crystals. The calibration of the three SAED
patterns indicates the precipitates of α-Fe, FeWB and Fe7W6, respectively.
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image; (b) Microstructure morphology of the amorphous-nanocrystalline dual phase region; (c) SAED
pattern of the amorphous-nanocrystalline dual phase region; (d) HAADF image of the fully crystal-
lized region; (e) EDS microanalyses of the fully crystallized region; (f) HRTEM morphology of the
fully crystallized region; (g) SAED pattern of “SAED1” within the fully crystallized region; (h) SAED
pattern of “SAED2” within the fully crystallized region; (i) SAED pattern of “SAED3” within the fully
crystallized region.

3.3. Nuclear Shielding Performance

Fe-W-B amorphous powder with high W and B contents should have good γ-ray and
neutron shielding performance [31–35].

When the fluence rate of the γ-ray decays to half of the incident value, the correspond-
ing medium thickness is called half attenuation thickness, which is often expressed by the
symbol d1/2, given as follows:

d1/2 =
ln 2
µl

=
ln 2

µm·ρm
(3)

where µl is the linear attenuation coefficient, µm is the mass attenuation coefficient, and ρm
is the density of the shielding material.

The measured tap density of Fe-W-B amorphous powder is 7.2 g/cm3, which was
used in the calculation of γ-ray and neutron shielding performance. The corresponding
density of iron is 7.8 g/cm3.
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Figure 9 shows the comparison of half attenuation thickness of Fe-W-B amorphous
powder and iron under different γ-ray energy conditions. The smaller the half attenuation
thickness, the better the shielding performance of the material to γ-rays. It can be seen
from the figure that the half attenuation thickness of Fe-W-B amorphous powder is smaller
than that of iron in the range of 0.1MeV~1.0MeV. In the range of 1MeV~5MeV, the half
attenuation thickness of Fe-W-B amorphous powder is close to that of iron. When the γ-ray
energy is greater than 5MeV, the half attenuation thickness of Fe-W-B amorphous powder
is smaller than that of iron again. This is mainly because when interacting with γ-ray,
tungsten has a better photoelectric effect than iron at lower energy and a better electron
pair effect at higher energy, respectively.
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Figure 9. The comparison of half attenuation thickness of Fe-W-B amorphous powder and iron under
different γ-ray energy conditions.

The neutron shielding properties of Fe-W-B amorphous powder and iron with a
thickness of 30 cm to Cf-252 source neutrons are calculated by the Monte Carlo N Particle
Transport Code (MCNP) program, as shown in Figure 10. The corresponding calculations
are also carried out when there is no shielding material.
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Figure 10. Neutron energy spectrum of Cf-252 source neutrons passing through Fe-W-B amorphous
powder, iron and sample-free.

Neutron shielding performance can be quantified by neutron fluence attenuation ratio,
which is calculated according to the following formula:

FΦ(En) = Φ0/Φ1 (4)
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where FΦ(En) is the fluence attenuation ratio of the sample to neutrons with energy En, Φ0
is neutron fluence at the detection point in the non-attenuated free field, and Φ1 is neutron
fluence at the detection point in the radiation field attenuated by sample.

According to the simulation results, the fluence attenuation ratio of Fe-W-B amorphous
powder to Cf-252 source neutron is 37.0 and that of iron is 23.5. Meanwhile, the weight of
Fe-W-B amorphous powder is lighter than that of iron at the same thickness. Therefore,
compared with iron, Fe-W-B amorphous powder has better shielding performance for
Cf-252 source neutrons.

Fe-W-B amorphous powder was loaded into an aluminum container with a thickness
of 3 mm to prepare a testing sample for γ-ray and thermal neutron shielding performance.
The test thickness of Fe-W-B amorphous powder is 10 mm and its tap density is 7.2 g/cm3.
The test results show that the attenuation ratios of the testing sample to 137Cs γ-ray (662
kev) and 60Co γ-ray (1250 kev) are 2.34 and 1.70, respectively. The absorption rate of the
testing sample to thermal neutron is 98.5%.

4. Conclusions

In this study, Fe-W-B powders of various compositions were fabricated by gas atom-
ization at 1700 ◦C. Fe-W-B amorphous powder was obtained with a high content of W and
B under the high cooling rate of the gas atomization. The conclusions are summarized
as follows:

1. Whether the atomized powder was crystalline or non-crystalline depends on the
specific composition of the master alloy. Fe-W-B amorphous powder was formed
under the master alloy composition of tungsten 19.9 at.%, boron 13.6 at.% and iron
66.4 at.%.

2. The structure of Fe-W-B amorphous powder is stable, which remains even as the
temperature reaches 600 ◦C. After annealing at 700 ◦C, crystallization occurs preferen-
tially at the edge of the particle. The precipitates in crystallization were α-Fe, FeWB
and Fe7W6, respectively.

3. Compared with iron, Fe-W-B amorphous powder has better shielding performance
for γ-rays and neutrons.
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