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Abstract: As a sustainable manufacturing technology, selective laser melting (SLM) is a typical
additive manufacturing (AM) method with high flexibility and material efficiency. However, SLM
is intrinsically energy-intensive than conventional machining processes. By contrast, part quality,
especially the tensile strength, is critical for applying SLM technology. Therefore, this study aims
to minimize the process energy consumption and maximize the part tensile strength by optimizing
three essential process parameters, namely laser power, scan speed, and overlap rate. First, single
track and single layer experiments are applied to determine the constraints of process parameters.
Then, analytical and statistical models are used to calculate energy consumption and part tensile
strength. Finally, the process parameters to achieve compromised optimal solutions are located
using the nondominated sorting genetic algorithm II (NSGA-II). A case study of a waveguide part
manufactured via the SLM process is employed to demonstrate the effectiveness of the proposed
approach. Results showed that both energy consumption and part tensile strength could be improved
moderately using the proposed method. This study can potentially guide the process parameter
selection for new material AM processes and improve the AM product quality.

Keywords: response surface methodology (RSM); second-order polynomial model; width of a single
track; aluminum alloy; mechanical property; multi-objective optimization

1. Introduction

With increasing concerns about industry environmental issues, manufacturing is
now underway for a transition toward sustainability [1,2]. Additive manufacturing (AM),
which builds parts layer-by-layer, is considered an environmentally benign technology
owing to its improved material efficiency and elimination of cutting tools, molds, dies,
and cutting fluids than conventional machining processes [3]. However, these benefits
come with speculation about the electrical energy consumption of the AM processes. The
AM processes are intrinsically energy-intensive because their electrical energy intensity is
1–2 orders of magnitude higher than conventional machining processes [4]. The increasing
electrical energy use due to the rapidly growing application of AM technology has exerted
large economic and environmental pressures on manufacturing enterprises and society.
Therefore, reducing AM processes’ energy consumption is necessary to save costs and
become more environmentally friendly.

As the first step for energy reduction, much research has been conducted on the
energy consumption modeling of AM processes, such as selective laser sintering (SLS) [5],
binder jetting (BJ) [6], and stereo lithography appearance (SLA) processes [7]. Based on the
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developed models, the energy consumption of the AM process was reduced by optimizing
process parameters [8], part orientation [9], and product design-relevant features [10].
Optimizing energy consumption only makes sense if the product quality requirement
is satisfied. Fortunately, ensuring product quality while reducing energy consumption
is possible [11]. Examples are the minimization of energy consumption considering the
geometric accuracy for the fused filament fabrication (FFF) process [8] and the optimization
of energy consumption and surface quality for selective laser sintering (SLS) [12] and SLA
processes [7]. However, studies on multi-objective optimization of energy consumption
and tensile strength remain scant [13–15].

As a burgeoning AM technology, the selective laser melting (SLM) process is increas-
ingly being used by industries to produce lightweight and complex structured parts. The
tensile strength of a SLMed part has utmost importance because withstanding tensile
loads without failure is essential [16]. Many parts are assembled in products that work
in harsh environments for aerospace and military applications. High tensile strength is
required for the parts to withstand various loads, such as inertia loads, self-weight loads,
wind loads, as well as snow and ice loads. Therefore, maximizing the tensile strength
of a SLMed part is essential. As the demand for SLMed parts increases, the energy con-
sumption of the SLM process increases substantially. However, few studies are currently
optimizing the SLM process to reduce process energy consumption and increase part tensile
strength simultaneously.

Some studies have been conducted to model the tensile strength of AM parts. These
tensile strength models focus on the fused deposition modeling (FDM) and SLA methods,
including the metamodel for partially filled FFF fabricated parts [17], the mathematical
model for the SLA fabricated part [18], and the theoretical model for the FDM part [19],
among others [20–22]. To optimize tensile strength, many studies have focused on the
FDM process [23]. These studies include identifying the optimized process parameters
that lead to the maximal tensile strength [24], deposition orientation optimization [25],
and establishing a differential evolution that optimizes the model to achieve good tensile
strength [26], to name a few [27,28]. For other AM processes, optimizing processing
parameters to maximize the tensile strength for microwave sintering of Ti6Al4V [29] and
selective electron beam melting (SEBM) of stainless steel 316L parts were investigated [30].
However, the modeling and optimization of the tensile strength of SLM processed parts are
still lacking.

Although some research has been conducted on optimizing either processing energy
consumption or part tensile strength for AM processes as a hot spot of the current studies,
a lack of combined optimization for AM persists, especially for SLM. A pioneer work on
this topic was conducted to minimize total sintering energy, form errors, and maximize
part strength for metal powder-based additive manufacturing processes [31].

The energy consumption of the auxiliary system, such as the heating and cooling
system, which accounts for an essential part of total energy consumption, is considered
in some energy model studies. However, these studies still have some shortcomings. The
prediction and optimization model of fabrication process energy consumption and SLM
manufactured parts tensile strength should be studied further to improve the accuracy
and effectiveness. We develop a theoretical model of energy consumption and model the
tensile strength based on response surface methodology (RSM). Then, we optimized the
two objectives using NSGA II and provided the constraints based on single track and single
layer quality requirements.

There are some relative SLM studies. The tensile strength prediction model has been
established by gradient descent with momentum (GDM) backpropagation [32]. The tensile
strength and energy consumption prediction models of the SLM 316L steel part were built
together by the ensemble of metamodels (EM) method [33]. Some studies also calculated the
energy consumption of the SLM process with an approximate equation [34,35]. Compared
to these studies, this research has some differences and improvements.
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First, the problem is novel. This paper conducted a detailed study focusing on the
specific problem of optimizing the energy consumption and tensile strength of the fabri-
cated AlSi10Mg. In contrast, other studies focus on surface quality optimization [32] or
316L stainless steel materials instead of AlSi10Mg [33].

Second, the models are novel. The SLM process’s energy consumption is modeled by
combined using theoretical and experimental studies. The single-track width and tensile
strength prediction model were built by the RSM method. Track width increases with
the increase of laser power and the decrease of scan speed. The second-order polynomial
model has a high accuracy for predicting tensile strength.

Third, the determination of the boundaries of the process parameters is novel. Single
track and single layer experiments determine the process parameters’ constraints for
optimization. In contrast, the constraints of the process parameters in other research are
determined based on experience [32,33]. The variations of the actual manufacturing could
lead to the inconsistency between the actual boundaries of process parameters and those
obtained from experience. Therefore, the experimental methods used in this paper could
be better.

The process–structure–property (PSP) relationships and optimization are potent meth-
ods to optimize the process parameters to enhance the material properties. However, the
PSP relationships are mechanism technologies based on complicated mechanism models
with many unknown parameters. It is difficult to use the PSP relationships. Furthermore,
the PSP relationships sometimes cannot match the real situation and obtain the correct
conclusion. The optimization model in this study based on many experiments could reflect
the real situation. The proposed optimization technique in this study is preferred over the
PSP relationships.

Therefore, this paper presents a detailed methodology to minimize energy consump-
tion and maximize product tensile strength by optimizing process parameters. The
AlSi10Mg aluminum alloy was used in the experiment to improve the applicability of
research conclusions. The input process parameters optimized in this research are laser
power, scan speed, and overlap rate. Meanwhile, the energy consumption for part fabrica-
tion during recoating and laser exposure processes is considered.

The rest of the paper is organized into three sections. Section 2 shows the material
properties, presents the experimental setup and design, and describes the methodology
developed in this paper to minimize energy consumption and maximize the product
tensile strength, including the experimental procedure, theory model, and optimization.
Section 3 presents the general results, identification of constraints, model acquisition, and
discussion of the optimization result. Finally, Section 4 discusses the conclusions and future
research directions.

2. Materials and Methods

The material properties and the process methods are the foundation of SLM production.
The target material is the widely used AlSi10Mg alloy. The methodology proposed to
study the SLM process includes the following parts: the experiment setup, experimental
procedure, theory model and optimization.

2.1. Material and Experimental Setup

Aluminum alloys have been widely used in industrial applications, particularly in
aerospace and automotive industries, due to their excellent mechanical and electrical
properties [36,37]. For the SLM process, AlSi10Mg is the most commonly-used Al alloy due
to its lower coefficient of thermal expansion, which could eliminate the solidification and
liquation cracking of the fabricated parts [38]. Therefore, in this study, we select AlSi10Mg
as the material. A gas-atomized AlSi10Mg powder supplied by SLM Solutions (Lübeck,
Germany) with an average particle diameter of 35 µm was used in this experiment. A
Tescan (Brno, Czech Republic) VEGA 3 LMU Scanning Electron Microscope (SEM) was
used to analyze the particle size of the starting powders, as shown in Figure 1a. The powder
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has near-spherical particles and consists of a large number of small particles. The small
particles may lead to the high energy absorption of the laser beam due to the increased
specific surface area of the material [39]. Table 1 shows the chemical compositions of the
AlSi10Mg alloy. The powder was dried in drying ovens at 373 K before it was used to
fabricate the samples.
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Figure 1. Experimental setup: (a) SEM images of the AlSi10Mg powder shape; (b) Energy data
acquisition equipment; (c) Placement of the energy data acquisition equipment in the SLM machine.

Table 1. Chemical compositions of AlSi10Mg alloy powder (weight percent).

Elements Al Si Mg Fe Cu Mn Zn Ti Ni Pb Sn

wt.% Balance 9.5 0.38 0.18 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Experiments were performed on an SLM 280HL facility by SLM Solutions(Lübeck,
Germany). The machine is equipped with two 400 W fiber lasers made by IPG Photonics
(Oxford, MA, USA) operating with a beam focus diameter of 80 µm. The process chamber
provides a closed environment filled with argon gas. The oxygen level is decreased below
0.1% to prevent the oxidization of the metal powder. The operational temperature of the
substrate was fixed at 423 K to reduce the manufactured parts’ thermal stress due to uneven
temperature distribution.

To measure the energy consumption during the SLM process, self-developed power
data acquisition equipment with three LEM (Meyrin, Switzerland) LV25-P voltage sensors
and three HAS 50-S current sensors were used to capture the energy consumption during
the SLM process. Figure 1b,c graphically present the energy data acquisition equipment.
The power consumption of the auxiliary system is the difference between the energy
consumption of the whole system and the SLM machine. The auxiliary system and the
SLM machine (except the recoater system and laser system) always work together. Thus,
they can be regarded as a basic system. The energy consumption of this basic system
is called the basic power PB. The power consumption of auxiliary systems is contained
in the basic power. Here, the basic power PB refers to the power consumed by these
components, including computer and screen, control unit, light, heater, cooling system, and
gas circulation system. The energy data acquisition equipment measures PB in Figure 1b.

For quality testing of the samples, an optical inverted metallurgical microscope (GX51,
Olympus, Tokyo, Japan) with a built-in front camera port was employed to observe the
surface morphology of the samples of single tracks and single layers at the magnification of
100. The tensile tests were performed on the electromechanical universal testing machine
made by Instron (Norwood, MA, USA).
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2.2. Experimental Procedure
2.2.1. Acquiring the Power Data

An experimental procedure is designed to acquire the power data of the SLM machine.
First, the machine was started up to be in idle mode, and the recoater motor was controlled
to move back and forth. Then, the power demand of the recoater motor was measured.
Second, the machine was commanded to keep operational readiness, and basic power was
measured. Third, laser power consumption was measured with a laser operating with
different output power levels (0–400 W).

2.2.2. Producing SLM Samples

The SLM process parameters of laser power, scan speed, and overlap rate were selected
as variables in this research. The layer thickness of 30 µm was fixed. These variables will
be discussed further in the following sections. Single tracks and single layers were first
scanned to determine the constraints of the process parameters for AlSi10Mg. Then, tensile
samples were produced to test the tensile strength of the parts. A full factorial experimental
design was employed.

Single tracks were scanned on 3A21 aluminum substrates by SLM at the laser power
of 300–400 W and a scan speed of 300–1050 mm/s. The parameters were varied every 20 W
and 150 mm/s, with levels of process parameters as shown in Table 2. A total of 36 groups
of experiments were conducted. The length of the scan line was 10 mm for all experiments.
The processing condition for each sample made in a single layer was repeated at least thrice.
The width of a single track was measured thrice, and the average value was used for each
processing condition.

Table 2. Process parameters for the single-track experiments.

Levels 1 2 3 4 5 6

Laser power [W] 300 320 340 360 380 400
Scan speed [mm/s] 300 450 600 750 900 1050

Single layers were processed with four levels of overlap rates (0.20, 0.25, 0.30, and 0.35),
three levels of laser powers (320 W, 360 W, 400 W), and scan speeds (600 mm/s, 750 mm/s,
900 mm/s), as shown in Table 3. The single layer size was designed to be 8 mm × 8 mm,
and the observations of the single layer were repeated thrice for each processing condition.
Figure 2a illustrates the sample of the single layer experiment.
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Metals 2022, 12, 1782 6 of 19

Table 3. Process parameters for the single-layer experiments.

Levels 1 2 3 4

Laser power [W] 320 360 400 -
Scan speed [mm/s] 600 750 900 -

Overlap rate 0.20 0.25 0.30 0.35

Multiple layer samples were fabricated with laser powers (320 W, 360 W, 400 W), scan
speed (600 mm/s, 750 mm/s, 900 mm/s) and overlap rate (0.25, 0.30, 0.35). A checkerboard
linear scanning strategy was chosen during the fabrication of test specimens. The linear
scanning direction rotates at 67◦ for the next processing powder layer [40]. Processing
conditions for the multiple layers were selected because the tracks in the single layer are
well-connected. For each combination of parameters, one cuboid sample with a dimension
of 10 mm × 52 mm × 14.5 mm was produced, as shown in Figure 2b. A total of 27 cuboid
samples were manufactured to make tensile examples. Electrical discharge machining
(EDM) cut the samples from the substrate. Each cuboid bulk part was further cut into three
samples for tensile strength testing, as shown in Figure 3. The width and length of the
narrow sample section were 4 mm and 25 mm. The tensile sample’s thickness and total
length were 2 mm and 50 mm. The tensile standard was designed according to GB/T228.1-
2010. Measurements were conducted thrice for each processing condition, and the average
tensile strength values were reported.

Metals 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 

Table 3. Process parameters for the single-layer experiments. 

Levels 1 2 3 4 

Laser power [W] 320 360 400 - 

Scan speed [mm/s] 600 750 900 - 

Overlap rate 0.20 0.25 0.30 0.35 

Multiple layer samples were fabricated with laser powers (320 W, 360 W, 400 W), 

scan speed (600 mm/s, 750 mm/s, 900 mm/s) and overlap rate (0.25, 0.30, 0.35). A checker-

board linear scanning strategy was chosen during the fabrication of test specimens. The 

linear scanning direction rotates at 67° for the next processing powder layer [40]. Pro-

cessing conditions for the multiple layers were selected because the tracks in the single 

layer are well-connected. For each combination of parameters, one cuboid sample with a 

dimension of 10 mm × 52 mm × 14.5 mm was produced, as shown in Figure 2b. A total of 

27 cuboid samples were manufactured to make tensile examples. Electrical discharge ma-

chining (EDM) cut the samples from the substrate. Each cuboid bulk part was further cut 

into three samples for tensile strength testing, as shown in Figure 3. The width and length 

of the narrow sample section were 4 mm and 25 mm. The tensile sample’s thickness and 

total length were 2 mm and 50 mm. The tensile standard was designed according to 

GB/T228.1-2010. Measurements were conducted thrice for each processing condition, and 

the average tensile strength values were reported. 

 

Figure 3. Sample for tensile strength testing (Unit: mm). 

Finally, the case study has been done. A waveguide part used in the radar industry 

was produced by the SLM method. It is used for transmitting electromagnetic waves 

while it bears wind loads, inertia loads, self-weight loads, as well as snow and ice loads 

due to the harsh working environment of the radar. Therefore, tensile strength, which 

determines the ability of a part to resist plastic deformation, is the essential quality re-

quirement. The waveguide part has a height of about 77.2 mm. 

2.3. Theory Model and Optimization 

2.3.1. Constraints of Process Parameters 

The SLM method is a complex manufacturing technology with many parameters. 

Considering too many parameters enlarges the numerical model and workload and easily 

loses focus of the study. Therefore, the optimization study should consider only the main 

SLM parameters. 

In SLM, laser power, scanning speed, hatch spacing, and layer thickness are the typ-

ical process parameters adjusted to optimize the process [41]. The layer thickness was 

chosen to balance achieving acceptable resolution and allowing for good powder flowa-

bility [42]. It was a sensitive parameter generally obtained by experience. Therefore, the 

layer thickness of 30 μm was fixed according to the machine manufacturer’s recommen-

dations. During the SLM process, the metal powders come a part by the diffusion of the 

adjacent lines’ overlap. The overlap rate is the foundation parameter, especially for the 

strength of the SLMed part. Therefore, it is necessary to determine the overlap rate at the 

first step of the SLM process. Furthermore, the overlap rate is closely related to surface 

roughness, porosity, and mechanical properties. Generally, a higher overlap rate results 

Figure 3. Sample for tensile strength testing (Unit: mm).

Finally, the case study has been done. A waveguide part used in the radar industry
was produced by the SLM method. It is used for transmitting electromagnetic waves while
it bears wind loads, inertia loads, self-weight loads, as well as snow and ice loads due to
the harsh working environment of the radar. Therefore, tensile strength, which determines
the ability of a part to resist plastic deformation, is the essential quality requirement. The
waveguide part has a height of about 77.2 mm.

2.3. Theory Model and Optimization
2.3.1. Constraints of Process Parameters

The SLM method is a complex manufacturing technology with many parameters.
Considering too many parameters enlarges the numerical model and workload and easily
loses focus of the study. Therefore, the optimization study should consider only the main
SLM parameters.

In SLM, laser power, scanning speed, hatch spacing, and layer thickness are the typical
process parameters adjusted to optimize the process [41]. The layer thickness was chosen to
balance achieving acceptable resolution and allowing for good powder flowability [42]. It
was a sensitive parameter generally obtained by experience. Therefore, the layer thickness
of 30 µm was fixed according to the machine manufacturer’s recommendations. During the
SLM process, the metal powders come a part by the diffusion of the adjacent lines’ overlap.
The overlap rate is the foundation parameter, especially for the strength of the SLMed
part. Therefore, it is necessary to determine the overlap rate at the first step of the SLM
process. Furthermore, the overlap rate is closely related to surface roughness, porosity, and
mechanical properties. Generally, a higher overlap rate results in better surface roughness,
lower porosity, and better mechanical properties. This study calculated hatch spacing based
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on measured single track width values and the overlap rate. So, we can adjust the overlap
rate by adjusting the hatch distance in the SLM system. Therefore, the process parameters
of laser power, scan speed, and overlap rate were selected as variables. Furthermore, the
research focused on the constant wave laser (a continuous wave laser). The laser frequency
and pulse energy were not considered, because they are only conducted in the case of
pulsed laser [43].

Many types of metallic components, including ferrous, nickel, titanium, and lightweight
alloys, could be produced using SLM technology. The process parameters vary considerably
due to the different properties of metal powders [44]. Quality requirements, such as the
continuous single track, must be met for a component fabricated using SLM technology.
Consequently, the upper and lower limits of the process parameters can be determined
through the morphology observation of the samples manufactured by the SLM process.
First, the samples with a single track are produced and observed to identify the proper
laser powers and scanning speeds which are used to fabricate continuous and consistent
single tracks. Second, the samples with a single layer are manufactured and observed to
determine the suitable overlap rate to make a sound interconnection of neighboring tracks.
Then, the constraints of the process parameters can be expressed as follows:

PL0 min ≤ PL0 ≤ PL0 max
vmin ≤ v ≤ vmax
omin ≤ o ≤ omax

, (1)

where PL0 is laser power (W), v is scanning speed (mm/s), and o is the overlap rate. The
subscripts min and max refer to the lower and upper limits of the corresponding process
parameters. This study considers the layer thickness a constant value (30 µm).

2.3.2. Modelling of Energy Consumption

The SLM process for part fabrication includes three steps: recoating, laser exposure,
and lowering the build platform. First, the recoater deposits an even metal powder coating
on the substrate where the part is produced. Second, the laser beam selectively scans the
powder and melts the material tracing the layer geometry. Third, the build platform is
lowered by the prespecified layer thickness as a final step. These three steps are repeated
until the last layer is scanned. The energy spent to lower the platform can be ignored
because the distance to move and the associated time is very short. Accordingly, the
energy consumption E during the part fabrication process includes two parts, which are
expressed as

E = ER + EL, (2)

where ER and EL are the energy consumed by the SLM machine during recoating and laser
exposure processes, respectively. The recoating energy consumption ER can be expressed
as the product of recoating power consumption and recoating time.

ER = (PR + PB)tR, (3)

where PR is the power consumption of recoater motor, PB is the basic power, and tR is
the time consumed during the recoating process. During the fabrication process, many
components of the SLM machine are run to maintain the operational readiness of the
machine. The basic power PB refers to the power consumed by these components. The
recoating time tR can be expressed as

tR = Ntr, (4)

where N is the number of slices of the part to be fabricated, and tr is the time required to
recoat a new powder layer. The energy consumed during the laser exposure process EL is
calculated as

EL = (PL + PB)tL, (5)
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where PL is the power consumption of laser, which can be further estimated as a linear
function of laser output power consumption. tL is the time consumption for laser exposure.

PL = PL1 + PL0/η, (6)

where PL1 is the constant power consumption of the laser, PLo is the output power of the
laser, and η is the energy conversion efficiency of the laser. The time consumption for laser
exposure tL can be calculated as

tL = ∑N
i=1

Si
vD/1000

=
1000 ∑N

i=1 Si∆y
vD∆y

=
1000V
vD∆y

, (7)

where N is the number of the layers for producing the part, i is the i-th layer, V is the
volume of the part to be fabricated (mm3), v is the scanning speed (mm/s), D is the hatch
distance (µm), and ∆y is the layer thickness (mm), and Si. is the area of the i layer (mm2).
The hatch distance D is calculated as

D = W(1 − O), (8)

where W is the width of the single track (µm) and O is the overlap rate. Usually, the
supporting structures and core area of the parts are built with different combinations of
parameters. For instance, high scanning speed and large layer thickness could be used to
build the supporting structure because the supports have no strict limitations concerning
quality. Meanwhile, the core area of the parts could be built with smaller process parameters
to ensure the part’s density and strength. The total energy consumed during the laser
exposure process equals the sum of the energy consumed for fabricating supports and parts.

2.3.3. Modeling of Single Track Width and Tensile Strength

Predicting the fabricated parts’ track width and tensile strength is difficult when using
physical models. To deal with the above problems, RSM, which is widely used in engineer-
ing based on experiments and statistical analysis, is employed. RSM uses experimental
data to explore the relationships between explanatory and response variables [45]. This
method can express the response variables by a second-order polynomial equation, as
shown in Equation (9)

Y = b0 + ∑ bixi + ∑ biix2
i + ∑ bijxixj, (9)

where Y is a response variable, xi represents the explanatory variables, i and j are the i-th
and j-th, b0 is a constant term, bi is a coefficient of the linear variable, bii is a coefficient of
quadratic variable, and bij is a coefficient of interaction variables xi and xj.

In this study, the data of the RSM were collected from whole factorial experiments.
The second-order model is fitted with observed data through regression analysis to obtain
the mathematical expressions of single track width and tensile strength.

2.3.4. Objective Functions and Solving Algorithm of the Optimization Model

The objectives considered are the tensile strength of the manufactured part and the
total energy required for the SLM process. The decision variables are the laser power,
scanning speed, and overlap rate. Thus, the multi-objective optimization problem can be
summarized as follows:

minF(E, T) = [E(PL0, v, o), T(PL0, v, o)],

subject to


PL0 min ≤ PL0 ≤ PL0 max

vmin ≤ v ≤ vmax
omin ≤ o ≤ omax

(10)
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where E(PL0, v, o) and T(PL0, v, o) are functions of energy consumption and tensile strength,
respectively, and minF(E, T) is the vector objective function.

The NSGA-II is selected to solve the multi-objective optimization problems owing
to its wide use in engineering. NSGA-II is an extension version of NSGA [46]. Figure 4
shows the flow chart of NSGA-II. At the beginning of the algorithm, an initial population
P0 of size N is randomly generated. All the individuals of P0 are sorted using the non-
dominant sorting and crowding distance sorting procedures. For each individual, the
non-domination ranks and crowding distance are assessed. An individual X dominates
individual Y if X is not worse than Y in all objectives and strictly better than Y in at least one
objective. The individuals that are not dominated by any other individuals in the objective
space constitute the non-dominated set at the first level (Pareto front with rank 1). The
individuals that are dominated only by individuals with non-domination rank 1 form the
Pareto front 2 and so on [47]. The crowding distance of an individual is the sum of the
distance between the individual and its left and right neighbors for each objective function,
which is calculated as [48]

dIj = ∑M
m=1

f
Im
j+1

m − f
Im
j−1

m

f max
m − f min

m
, (11)

where dIj is the crowding distance of j-th individual, Ij is the current population, M is the
number of objectives, fm is the m-th objective function, j − 1 and j + 1 are the left and right
neighbors of the j-th individual, and max and min are the maximum and minimum values
of the objective function of the current population. The crowding distances of extreme
solutions are assigned to infinity [49]. The individual with the lower rank is selected from
two individuals with differing non-domination ranks. If the two individuals belong to the
same rank, the one with a larger value in the crowding distance is selected [46].
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Crossover is used to generate offspring from parents. Simulated binary crossover is
used, and the arithmetic crossover function is given as

O1 = 0.5(1 + γ)P1 + 0.5(1 − γ)P2, (12)
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O2 = 0.5(1 − γ)P1 + 0.5(1 + γ)P2, (13)

where P1 is parent 1, P2 is parent 2, O1 is offspring 1, O2 is offspring 2, and γ is a crossover
coefficient and calculated as

γ =

(2u)
1

ηc+1 , i f u ≤ 0.5(
1

2−2u

) 1
ηc+1 , else

, (14)

where u is a random number between 0 and 1, ηc is the distribution index for crossover
and suggested to be 20 [46].

A mutation is used to maintain the diversity of individuals from one generation to the
following [47]. The polynomial mutation is given as

O =

{
O + (2r)

1
ηm+1 − 1, i f r ≤ 0.5

O + 1 − (2 − 2r)
1

ηm+1 , else
, (15)

where O is the offspring, r is a random number between 0 and 1, and ηm is the distribution
index for mutation and is suggested to be 20 [46].

3. Results and Discussion
3.1. General Results

All the process parameters were set as designed. With different SLM process param-
eters of laser power, scan speed, and overlap rate, 36 single layer samples and 27 cuboid
samples (multiple layers) of experiments were conducted, as shown in Figure 5. En-
ergy consumption was also obtained. Then, the surface of the samples was tested by
the microscope.
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Figure 5. Photograph of the samples manufactured by SLM process: (a) Single layer samples;
(b) Cuboid samples (Multiple layers).

The tensile samples were cut from the SLMed cuboid bulk part. Then the samples were
tested to obtain the tensile strength. When laser power, the scan speed, and the overlap
rate are 360 W, 900 mm/s, and 0.35, respectively, the tensile curve of the sample is shown
in Figure 6. The tensile strength of this sample is 446.7 MPa.
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Figure 6. The tensile curve of the sample (laser power of 300 W, scan speed of 900 mm/s and overlap
rate of 0.35).

The waveguide part is fabricated on the SLM 280HL facility (SLM Solutions, Lübeck,
Germany), as shown in Figure 7. The powder layer thickness is 30 µm, and the parts were
cut into 2573 slices. One laser is used to melt the metal powder during the fabrication
process. This research is limited to parameter optimization for manufacturing core parts.
The volume of the support structure was not considered because it is automated generated
by the software and has no relationship with the tensile strength of the part. The support
structure will be removed after the part fabrication has been finished. The process parame-
ters to fabricate supports are taken according to the worker’s experience: laser power of
350 W, scan speed of 1000 mm/s, and hatch distance of 0.18 mm.
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Figure 7. The waveguide part: (a) Three-dimensional models; (b) Finished parts (part volume:
19,954 mm3, support structures volume: 6557 mm3). The values of part volume and support struc-
tures volume were obtained through the three-dimensional models in the CAD software.

3.2. Identification of Constraints

Figure 8 presents the surface morphologies of single tracks. The surface of a single
track is unstable at a scan speed below 600 mm/s or above 900 mm/s. At a low scan speed,
excessive energy is absorbed by the materials due to the long interaction time between the
laser beam and the powder. This scenario could lead to an extremely high temperature
of molten pool and single tracks with an unstable surface [39]. By contrast, at a higher
scan speed (1100 m/s), materials cannot absorb sufficient energy to melt the particles and
initiate a balling effect, leading to unstable and irregular tracks. At a laser power of 300 W,
the tracks exhibit an uneven surface consisting of disconnected balls.
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Figure 8. Optical images of the surface morphologies of the single track samples with laser power
ranging from 300–400 W and scan speed ranging from 300–1050 mm/s.

Within the ranges of laser power between 300 and 400 W and scan speed between 600
and 900 mm/s when good consolidation of single tracks is observed, the widths of stable
single tracks were measured, ranging from 102.9 to 155.2 µm (see Table 4). The track width
increases with the increase of laser power and the decrease of scan speed. With the data of
track widths, hatch distances were calculated using Equation (8).

Table 4. Single track width for different combinations of scanning speed and laser power [µm].

Scan Speed [mm/s]
Laser Power [W]

300.00 320.00 340.00 360.00 380.00 400.00

600.00 134.7 136.5 142.9 148.0 151.0 155.2
750.00 116.2 124.1 126.5 130.6 134.7 139.5
900.00 102.9 109.0 114.3 118.6 122.4 125.4

Figure 9 presents the processing images of single layers fabricated with four levels of
overlap rates (0.20, 0.25, 0.30, and 0.35). The laser power is 320 W, and the scan speed is
750 mm/s. The neighbor tracks fail to achieve a sound interconnection with an overlap
rate of 0.20 because the hatch distance is large. When the overlap rate increases to 0.30 and
0.35, the tracks are regularly and well connected to form the dense and smooth surface of a
single layer. As a result, the overlap rates ranging from 0.25 to 0.35 are selected. From the
above analysis, the constraints are:

subject to


320 ≤ PL0 ≤ 400
600 ≤ v ≤ 900
0.25 ≤ o ≤ 0.35

, (16)

3.3. Model Acquisition

Figure 10 shows the measured basic power and recoater motor power. The power
fluctuates due to the intermittent running of the heater and water-cooling unit. Thus, the
average values of PR = 52.1 W and PB = 1981.7 W represents the recoater motor power and
basic power, respectively. The average values of PR and PB are both arithmetic mean. The
average value of PR is the average power consumption of recoater motor in the time of 11 s
to recoat one layer, as shown in Figure 10a. The average values of PB is the average of the
basic power from 0 s to 6000 s, shown in Figure 10b. The power consumption of a single
laser is measured, and its power model is obtained via regression analysis, as shown in
Figure 11.



Metals 2022, 12, 1782 13 of 19
Metals 2022, 12, x FOR PEER REVIEW 13 of 19 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 9. Surface morphologies of SLM-processed AlSi10Mg single layers. The process parameters 

are: laser power: 320 W, scan speed: 750 mm/s and overlap rate at: (a) 0.2; (b) 0.25; (c) 0.3; (d) 0.35. 

  
(a) (b) 

Figure 10. The power profile of: (a) Recoater motor; (b) Basic components. 

  
(a) (b) 

Figure 11. Power consumption of a single laser operating at various output power levels: (a) Power 

profile (output laser power: 200 W); (b) Power models. 

Figure 9. Surface morphologies of SLM-processed AlSi10Mg single layers. The process parameters
are: laser power: 320 W, scan speed: 750 mm/s and overlap rate at: (a) 0.2; (b) 0.25; (c) 0.3; (d) 0.35.
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With the time of 11 s to recoat one layer, the recoating time is calculated to be 28,303 s.
According to Equations (7) and (8), the time of laser exposure for manufacturing supports
is 1214 s, and laser exposure time for manufacturing core parts is expressed as:

tL =
19, 954, 000

v∆yW(1 − o)
, (17)

According to Equation (9), the model of track width W is obtained based on the
experimental data in Table 3, as shown in Equation (18).

W = 111.5 + 0.528PL0 − 0.2041v − 0.000471P2
L0 + 0.000065v2+

0.000027PL0v
(

R2 = 0.996
)
,

(18)

By substituting the obtained power and time models into Equations (2)–(5), the total
energy consumption can be expressed as:

E = 57, 554, 151 + (2.52PL0 + 2110.86)
19, 954, 000

v∆yW(1 − o)
, (19)

For the modeling of tensile strength T, 18 sets of experimental data were selected
randomly from the L27 orthogonal array as the input values, as listed in Table 5. The
second-order polynomial model developed by regression analysis is as:

T = 864 − 0.93PL0 − 0.051v − 1401o + 0.00116P2
L0 − 0.000059v2

+654o2 − 0.000487PL0v + 1.02PL0o + 0.943vo
(20)

Table 5. Data for modeling tensile strength of the multiple layer samples.

Test No. Laser
Power [W]

Scan Speed
[mm/s]

Overlap
Rate

Hatch Distance
[µm]

Tensile Strength
[MPa]

1 320 600 0.25 102.4 455.0
2 320 600 0.35 88.7 443.3
3 320 750 0.25 93.1 448.3
4 320 750 0.30 86.9 443.3
5 320 900 0.30 76.3 446.7
6 320 900 0.35 70.9 450.0
7 360 600 0.30 103.6 436.7
8 360 600 0.35 96.2 441.7
9 360 750 0.30 91.4 441.7
10 360 750 0.35 84.9 445.0
11 360 900 0.25 88.9 420.0
12 360 900 0.35 77.1 446.7
13 400 600 0.30 108.6 445.0
14 400 600 0.35 100.9 438.3
15 400 750 0.25 104.7 430.0
16 400 750 0.30 97.7 431.7
17 400 900 0.25 94.1 416.7
18 400 900 0.35 81.5 438.3

Table 6 summarizes variance (ANOVA) results for the tensile strength model. The
R-squared value exceeds 0.92, which indicates that the regression fits the original data
well, and the empirical model can explain more than 92% of the variance of the measured
data. The F-values exceed 10.3, implying a significant correlation between the tensile
strength and the process parameters. The small p-value (only 0.00156) means the obtained
model is statistically significant. Using the obtained model, the tensile strength values were
predicted and compared with the experimental data that have not been used for modeling,
as shown in Table 7 with 9 validation experiments. Overall, the derived model achieves
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over 95.4% accuracy in predicting the tensile strength. Hence, it can be used as an effective
model for predicting tensile strength.

Table 6. Results of ANOVA for the second order polynomial model of tensile strength.

Factors DOF a SS b MS c F-Value F(0.01, 9, 8) p-Value

Regression
model 9 1557.594 173.066 10.354 5.911 0.00156

Residual 8 133.720 16.715 - - -
Total 17 1691.314 - - - -

S d = 4.088 R2 = 0.921 R2 Adjusted = 0.832
a DOF: degrees of freedom; b SS: sum of squares; c MS: mean squares; d S: standard error of the estimate.

Table 7. Predicted and experimental results of tensile strength.

Test No. Laser Power
[W]

Scan Speed
[mm/s] Overlap Rate Hatch Distance

[µm]
Predicted

[MPa]
Measured

[MPa]
Accuracy a

[%]

1 320 600 0.30 95.5 446.1 431.7 96.7
2 320 750 0.35 80.7 448.4 446.7 99.6
3 320 900 0.25 81.8 435.6 420.0 96.3
4 360 600 0.25 111 446.4 445.0 99.7
5 360 750 0.25 98 435.8 416.7 95.4
6 360 900 0.30 83 431.4 443.3 97.3
7 400 600 0.25 116.4 443.0 438.3 98.9
8 400 750 0.35 90.7 440.2 438.3 99.6
9 400 900 0.30 87.8 424.2 430.0 98.6

a Accuracy = 1 − |Predicted value − Measured value|/Measured value × 100%.

3.4. Optimization Result

The optimization model is based on the former model as objective functions. Thus, the
predicted data of the optimization model are effective without requiring additional experi-
mental validation. The multi-objective optimization problem is solved by the NSGA-II algo-
rithm in MATLAB 2016b software (Natick, MA, USA). Referring to similar studies [50,51],
the algorithm is implemented with an initial population size of 100, maximum evolution
generation of 300, crossover rate of 0.8, and mutation rate of 1/n, where n is the number of
decision variables. Figure 12 shows the obtained Pareto fronts by NSGA-II for the parame-
ter optimization problem. The optimization model is a method to find the best parameters.
Thus, it can be validated by comparing the result of SLM based on the optimization and
general parameters. To demonstrate the effectiveness of NSGA-II in solving the problem,
we use four scenarios to conduct comparison studies. Scenario 1 (S1) represents the op-
timal results of the two-objective optimization problem shown above. Single-objective
optimization problems of minimizing energy consumption (Scenario 2 [S2]) or maximizing
tensile strength (Scenario 3 [S3]) are designed. In Scenario 4 (S4), the process parameters are
determined by the experience of the workers, which have not been optimized. In S1 and S2,
the problems are solved by a genetic algorithm in MATLAB software. Table 8 presents the
comparison results.
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Table 8. Comparisons of process parameters and optimized results for different scenarios of the
SLM process.

Scenario

Process Parameters Predicted Results

Laser
Power

[W]

Scan
Speed
[mm/s]

Overlap
Rate

Hatch
Distance

[µm]

Energy
Consumption

[MJ]

Tensile
Strength

[MPa]

S1-No.1 343 900 0.25 86 83.2 427.7
S1-No.2 320 830 0.25 86 84.7 440.8
S1-No.3 320 642 0.25 100 87.7 451.7

S2 400 900 0.25 95 81.9 413.4
S3 320 600 0.25 104 88.7 453.2
S4 350 730 0.31 90 87.7 440.0

According to Table 8, the values of laser power and scan speed obtained in S2 are
highest to minimize energy consumption. Increasing laser power and scan speed could
shorten the laser exposure time, reducing energy consumption. By contrast, the values of
laser power and scan speed obtained in S3 are the lowest to maximize the tensile strength,
which might be due to the relatively large energy input per unit length (laser power divided
by scan speed) caused by the decrease in scan speed. The process parameters obtained
by NSGA-II in S1 achieve a tradeoff of energy consumption and tensile strength, leading
to better tensile strength performance than those in S2 and less energy consumption than
those in S3. The tensile strength of S1-No.2 could be improved by 6.6%, while the energy
consumption only increases by 3.4% more than those of S2. The energy consumption of
S1-No.2 could be saved by 4.5%, while the tensile strength only decreases by 2.7% more
than those of S3. For comparison between S4 and S1, the tensile strength of S1-No.3 could
be improved by 2.6% with the same energy consumption (87.7 MJ). With the same tensile
strength (440.0 MPa), the energy consumption of S1-No.2 can be reduced by 3.4%. The
improvement is insignificant, which could be due to the manufacturer’s carefully designed
parameters. Additionally, the process window has been narrowed in the determination of
constraints. In practice, this method can be used for new types of material in determining
the optimal parameters to improve the quality and sustainability performance of the
SLM process.

4. Conclusions

Part quality and process energy consumption are critical for applying AM technologies
in the industry, and they are both closely related to process parameters. This article
proposes an analysis model of process energy consumption and a statistical model of
part tensile strength. Experiments were conducted to obtain the mathematical model of
both objectives. The multi-objective optimization of process energy consumption and
product tensile strength was solved by NSGA-II. Based on the theoretical and experimental
investigation, some conclusions can be drawn:

1. The constraints of the process parameters of fabricating the parts using the SLM
process are 320 W ≤ laser power ≤ 400 W, 600 mm/s ≤ scan speed ≤ 900 mm/s, and
0.25 ≤ overlap rate ≤ 0.35.

2. Track width increases with the increase of laser power and the decrease of scan speed.
The second-order polynomial model could achieve an accuracy of over 95.4% for
predicting tensile strength.

3. The energy consumption and tensile strength could be simultaneously optimized.
Hence, 2.6% of tensile strength could be improved and 3.4% of energy consumption
could be saved.

The proposed method could minimize the process energy and maximize the part
tensile strength of an AM process by optimizing the process parameters. This method is
beneficial for identifying the process parameters of new material because it can determine
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the constraints of process parameters from a single track and single layer experiments.
Further research will be conducted to extend this work to optimize energy consumption
and other quality performances, such as dimensional accuracy and surface roughness.
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