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Abstract: Recently, shipyards have been booming in the product carrier (PC) market of the global
shipbuilding industry. Due to the rising market conditions, orders for large container vessels and
PCs are also steadily increasing. According to the industry, freight rates for LR tankers (70K) and
MR tankers (50K) in the shipbuilding industry have rose to the highest level during the previous
year. In order to secure the competitiveness of PCs, various core items are required, and Korean
shipbuilders have been leading the market for a long time based on their knowledge of the design
and production of low-fuel ships. In recent years, there have been frequent cases of coating cracks in
the cargo hold after sea trial. All relevant rules presented by the classification so far are structural
design, safety evaluation, and inspection standards, and coating cracks are considered a problem
for coating makers. In other words, they must establish a standard coating measure agreed upon
by all parties (owner, shipbuilder, and coating maker); therefore, solutions have been proposed by
each shipping company. In this study, the causes of coating cracks occurring in the cargo hold of PCs
during tank tests in sea trials were analyzed and measures to prevent them were studied. The main
point of this study is assumed that coating crack are caused by mechanical load induced by structural
behavior, and the numerical analysis methodology is newly introduced. Based on the results of the
numerical analysis, it was confirmed that there is a high probability of coating cracks in the critical
area where high stress occurs in the cargo hold. Therefore, the results obtained in this study will be
useful to prevent coating cracks in future PC designs.

Keywords: PC (product carrier); coating crack; corrosion; tank test; hold; sea trial

1. Introduction

Vessel orders stagnated due to a decrease in global cargo volume influenced by COVID-
19 pandemic. However, domestic exports of ships also reached USD 23 billion, representing
an increase of 16% compared to previous year (USD 19.7 billion), the highest performance
in four years since 2017. The vessels receiving the most orders were LNG carriers and
LNG-fueled container ships for environmental reasons. Furthermore, the number of vessel
orders is continuously increasing due to the effect of increasing freight rates for product
carriers. Due to the characteristics of product carriers transporting various liquid cargoes,
contamination by impurities in cargo holds is strictly limited and managed. This is also
why special coating specifications are applied to cargo holds, unlike typical tankers. The
competitiveness of Japan and China in the global product carrier market lies in the design
of lightweight structures and their application in eco-friendly, fuel-efficient hulls.

Recently, there has been an increase in the number of cases of coating cracks in cargo
holds during tank tests in sea trials. When a coating crack occurs in the cargo hold, rust
flows down, eventually contaminating the cargo. Therefore, ship owner are motivated
to determine the root cause of this problem, as such contamination is a major source of
dispute between owners and shipyard.
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In this study, with the aim of determining the root cause of coating cracks, numerical
cargo hold analysis was performed on critical areas generating large strains in tank tests
using detailed FE modeling [1–3]. We calculated structural stresses according to loading
conditions at various locations, including the cargo holds of product carriers. In general,
the strain capacity of the coating is very low compared to that of the steel structure, and
the main cause of coating cracking is stress of the structural framework. Therefore, finding
and understanding the location where high stress occurs in the hull structure is the most
important issue.

Previous relevant studies can be summarized as follows. C.P. Gardiner and R.E. Melch-
ers [4] identified main types of corrosive environments, namely immersion in seawater,
exposure to an enclosed atmosphere, and exposure to porous media in the cargo holds of
bulk carriers. Based on the results of pattern study, it is clear that the parameters relating
to the operation and design of bulk carriers influence the corrosion rate. Therefore, it was
proposed that such parameters represent a good starting point for the development of a
corrosion rate database. Ho Il Lee et al. [5] studied critical issues associated with the heating
coil units of stainless steel and aluminum brass tube materials. Through case studies, the
authors addressed, in detail, the cause of corrosion damage in heating coil units. Tatsuro
Nakai et al. [6] observed pitting corrosion on hold frames in the cargo holds of bulk carriers
that exclusively carry coal and iron. They demonstrated that the shape of the observed
corrosion pits was circular and conical and that the ratio of the diameter to the depth
ranged between 8 to 1 and 10 to 1, in contrast to the trend observed for the bottom shell oil
tankers, for which the ratio ranges between 4 to 1 and 6 to 1. A series of tensile tests was
conducted to investigate the effect of pitting corrosion on tensile strength. The reduction in
tensile strength of the structure resulting from pitting corrosion is larger than that resulting
from uniform thickness loss. Through buckling tests, it was found that buckling strength
under pitting corrosion was lower than under uniform thickness loss of the plate. DNV [7]
developed guidelines focusing on survey, maintenance, and repair procedures for tanker
coatings to determine the level of coating repair required based data collected through ship
inspections. Therefore, these guidelines are minimally relevant to the tank coating corrosion
test investigated in the present study, as the data are obtained at the time of redocking.
However, the data on various types of coating corrosion in tankers are well-organized,
enabling even non-experts to decide whether the coating needs to be repaired. Do Kyun
Kim et al. [8] focused on the historical trend of corrosion addition rules for ship structural
design and investigated their effects on the ultimate strength performance of components
such as hull girders and the stiffened panel of double-hull oil tankers. Five types of corro-
sion addition models were applied to investigate the general trend of corrosion addition.
Based on the survey results, empirical formulae were proposed to determine the ultimate
hull girder strength of double-hull oil tankers according to different corrosion addition
rules. ABS [9] published guidance notes on coating maintenance and restoration of ballast
tanks and cargo oil tanks in order to satisfy IMO-PSPC standards, at a minimum. The
guidelines suggest that in order to maximize service life with reduced lifecycle cost, it is
critical to maintain and repair the coating at an early stage before accelerated corrosion
occurs due to coating deterioration. This guidance also focuses on the maintenance and
repair of the coating from the point of view of classification societies, with no mention of
coating cracks that occur during tank tests.

In this study, the causes of cracks occurring in the cargo hold of PCs during tank tests
sea trials were analyzed, and measures to prevent such cracking were studied. Therefore,
the results obtained in this study will be useful to prevent coating cracks in future PC
designs.

2. Tank Test and Coating Crack Survey
2.1. Tank Test

Vessel sea trials newly built ships are important to ensure the overall safety of the
ship, the crew, and the cargo. Among the tests conducted during sea trials, tank tests are
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performed to confirm the water tightness of tanks, as well as their watertight boundaries
and structural adequacy to ensure of the watertightness of ship subdivisions. The tightness
of all tanks and watertight boundaries of ships during new construction, as well as those
relevant to major conversions or major repairs, must be confirmed by these test procedures
prior to delivery of the ship. Among the tests of the cargo hold, a tank test is performed to
verify the structural adequacy of the tank construction. This test is usually performed as a
hydrostatic test using seawater.

A typical product carrier and zig-zag loading scheme (hatching area) in the cargo hold
during a tank test are shown Figure 1.
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ditions, as shown Figure 2. The tank test is performed by additionally considering zig-zag 
cargo loading and the lateral pressure, as well as the draft. 
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Figure 1. Typical product carrier and zig-zag loading pattern during tank test. (a) Typical product
carrier; (b) zig-zag loading in the cargo hold.

The location of sea trials differs according to shipyard conditions, and the effect of hull
girder bending induced by ship motion should be considered under real-world conditions,
as shown Figure 2. The tank test is performed by additionally considering zig-zag cargo
loading and the lateral pressure, as well as the draft.

Metals 2022, 12, 1688 3 of 15 
 

 

2. Tank Test and Coating Crack Survey 
2.1. Tank Test 

Vessel sea trials newly built ships are important to ensure the overall safety of the 
ship, the crew, and the cargo. Among the tests conducted during sea trials, tank tests are 
performed to confirm the water tightness of tanks, as well as their watertight boundaries 
and structural adequacy to ensure of the watertightness of ship subdivisions. The tight-
ness of all tanks and watertight boundaries of ships during new construction, as well as 
those relevant to major conversions or major repairs, must be confirmed by these test pro-
cedures prior to delivery of the ship. Among the tests of the cargo hold, a tank test is 
performed to verify the structural adequacy of the tank construction. This test is usually 
performed as a hydrostatic test using seawater. 

A typical product carrier and zig-zag loading scheme (hatching area) in the cargo 
hold during a tank test are shown Figure 1. 

(a) 

 
(b) 

Figure 1. Typical product carrier and zig-zag loading pattern during tank test. (a) Typical product 
carrier; (b) zig-zag loading in the cargo hold. 

The location of sea trials differs according to shipyard conditions, and the effect of 
hull girder bending induced by ship motion should be considered under real-world con-
ditions, as shown Figure 2. The tank test is performed by additionally considering zig-zag 
cargo loading and the lateral pressure, as well as the draft. 

 
(a) 

Figure 2. Cont.



Metals 2022, 12, 1688 4 of 15Metals 2022, 12, 1688 4 of 15 
 

 

 
(b) 

Figure 2. Typical hull girder loads: (a) hogging mode; (b) sagging mode. 
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added during coating, which may result in a thicker coating than that recommended by 
standard specifications. Basically, the tank test is conducted to evaluate the safety of struc-
tural members and is performed under more conservative conditions than the actual load-
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Structural strength analysis was performed considering tank test conditions as rec-
ommended by HCSR (Harmonized Common Structural Rule) using a global FE model 
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confirm the location of maximum stress caused by the design loadings and allowable 
stress considering the safety factor specified by classification societies using von Mises 

Figure 2. Typical hull girder loads: (a) hogging mode; (b) sagging mode.

2.2. Coating Crack Survey

According to the tank test, coating cracks occurred at various locations in the cargo
hold. The most common locations are listed below, with examples shown in Figure 3.

- Ceiling at the connection between the center bulkhead and the main deck;
- Upper and lower stool and corner brackets; and
- Typical web welding toe.

These are the locations where structural stress is high during tank tests. Although
the maximum stress is low, a coating crack may be generated. In most cases, impurities
are added during coating, which may result in a thicker coating than that recommended
by standard specifications. Basically, the tank test is conducted to evaluate the safety of
structural members and is performed under more conservative conditions than the actual
loading pattern. Therefore, coating cracking easily occurs under tank test conditions.
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Figure 3. Coating crack survey results in the cargo hold: (a) low stool; (b) typical web section deck;
(c) upper stool (bottom); (d) lower stool (bottom).

3. Analysis Method
3.1. Analysis Procedure and Numerical Model

Structural strength analysis was performed considering tank test conditions as rec-
ommended by HCSR (Harmonized Common Structural Rule) using a global FE model
(so-called 1-longi. model), as shown Figure 4a. This analysis procedure was performed to
confirm the location of maximum stress caused by the design loadings and allowable stress
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considering the safety factor specified by classification societies using von Mises stress.
The analysis procedure to check whether the coating is cracked is shown in Figure 4a; the
coating is very thin, and the element is divided into 1.0 mm segments. The FE analysis
involves calculation of nominal stress according to the tank test conditions and converted
into plastic strain using Neuber’s rule. If the plastic strain is larger than the rupture strain of
the coating, then coating cracks are considered to have occurred, as indicated in Figure 4b.
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Figure 4. FE analysis procedure (global strength and coating strain). (a) global strength estimation.
(b) coating strain estimation.

Based on structural analysis results, we selected a location with 70% or more allowable
stress, assuming a primary possibility of coating crack occurrence under loading conditions;
then detailed meshing was performed, as shown Figure 5. The mesh size is very small
(about 1 mm) according to the coating thickness.
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Figure 5. FE analysis modeling (critical area).

3.2. Boundary and Load Conditions

The boundary conditions are illustrated in Figure 6. Simply supported conditions were
implemented at both ends of the FE model in order to simulate the continuous behavior of
the hull structure against wave loads.
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Figure 6. Boundary condition (elevation view).

There are two bending moments with respect to hogging and sagging for tank test
conditions during sea trials based on the trim and stability data. Each moment is applied to
the forward section, as shown Figure 7a,b. The cargo hold pressure and external pressure
implemented during the tank test were also applied in the FE analysis, as shown in
Figure 7c.
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Figure 7. Load condition (plan view): (a) hogging application; (b) sagging application; and (c) inter-
nal/external pressure application.

3.3. Plastic Strain Calculation

The plasticity correction factor can be obtained from an actual cyclic stress–strain
curve and Neuber’s rules [7] or nonlinear finite element analysis, as shown Figure 8.
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ke =
σpseudo

σelastic
(1)

where:
σelastic = elastic hotspot stress obtained from linear elastic finite element analysis or a

formula;
σelastic = pseudo-linear elastic hotspot stress = E× εhs.
In order to obtain the plasticity correction factor, a cycle stress–strain curve for materi-

als should be obtained from experimental tests. Because it is difficult to obtain test data, it
can be calculated through Equation (2).

σ2
n × K2

E
=

σ2
hs
E

+ σhs ×
(σhs

K′
)1/n

(2)

where:
K = stress concentration factor;
σhs = actual stress in the hot spot;
εhs = actual strain in the hot spot;
E = Young’s modulus; and
n, K′ = material coefficient

3.4. Principal Stress Calculation

In order to calculate the nominal stress at the critical location using very fine meshing,
an FE model should be developed. In general, structural safety is evaluated through global
strength analysis using the membrane stress and ignoring the bending moment in the
thickness, as shown Figure 9. To calculate the stresses and strains acting on the coating, it
is necessary to confirm the results at the top of the plate, where maximum bending stress
occurs, as shown Figure 9. In this case, the surface stress tends to be higher than membrane
stress due to the addition of a bending moment.
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Figure 9. Definition of coating stresses and strain.

4. Results and Discussion
4.1. Global FE Analysis

The material of the structure was assumed as an isotropic finite element model, and
the MSC Patran/Nastran 2012 analysis code was used. MSC Patran was used for pre/post-
processing work to model the geometry, load, boundary conditions, and input material
properties. MSC Nastran is based on complex and sophisticated numerical analysis meth-
ods and is the most advanced finite element solver. A total of 486,935 elements were used
in the cargo hold model, with 940,045 nodes.

Figure 10 shows the global deformed shape of the middle cargo model under hogging
conditions. The load and boundary conditions are well-described under the pure bending
behavior in the FE model.
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Figure 10. Deformed shape and displacement of three cargo hold models under hogging conditions
(unit: mm).

In order to clarify the coating crack failure, we performed cargo hold analysis using
coarse mesh modeling in order to identify a critical location that exceeds 70% of the
allowable stress, as shown Figure 11.
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Figure 11. Von Mises stress contour of the inner cargo structure under hogging combinations.

In the cargo hold analysis, the stress value was verified in advance of determining
the critical location, as illustrated in Figure 11. In particular, there are various connections
in the corrugated bulkhead, where coating cracks often occur; therefore, the value should
be carefully examined according to the geometric shape, as well as the location. Figure 12
shows a comparison of the stress results according to hull girder loads, namely hogging
and sagging conditions. The maximum stress values are similar, but the stress patterns
differ.
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Figure 12. Detailed stress contour between the center bulkhead with stools and inner structure in the
cargo hold. (a) Hogging combination. (b) Sagging combination.

4.2. Acceptable Criteria

The results were verified against the acceptance criteria for all structural members
within the longitudinal extent of the middle tanks of the FE model, as well as the regions
forward and aft of the middle tanks up to the extent of the transverse bulkhead stringer and
partial girder structure. The maximum permissible stress is based on the CSR (common
structural rule) as defined by the mesh size and element type. The von Mises stress is
calculated according to the membrane direction and shear stress of the element. Global
strength analysis was performed to demonstrate that the permissible von Mises criteria
specified in Table 1.
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Table 1. Maximum permissible stress according to members.

Structural Component Yield Factor

Plate and primary supporting member 1.0→(S + D)
0.8 (S)

Corrugated bulkhead and supporting member 0.9→(S + D)
0.7 (S)

S, static load; D, dynamic load component. A yield factor of 1.0 indicates that the allowable stress is considered
up to the yield strength of the material.

4.3. Detail FE Analysis for Coating Cracking

Stresses at critical locations were calculated through structural strength FE analysis
according to the CSR procedure [9,10]. The calculated principal stress can be recalculated
by based on the plastic strain using Neuber’s equation [7]. Plastic stress can be converted
to principal stress using von Mises stresses at the critical locations where coating cracks are
likely to occur. By analogy to the FE analysis results, 90% of the maximum von Mises stress
was calculated as principal stress under tank test loading conditions and applied to the
calculation of the plastic strain in Equation (2). In order to systematically classify the risk of
the coating cracks according to location, risk was classified into three categories according
to the magnitude of the strain rate, as shown Figure 13.
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Figure 13. Risk categories of coating cracking according to strain rate.

Figure 14 shows the stress contour according to the locations determined by tank
test loads. High-stress zones are generated at the joint between the bulkhead and the
stool, the bracket connection end, and at the joint between the upper stool and the deck.
The steel materials used for the cargo hold structures SS400 mild steel and AH32 and
AH36 high-tensile steel. The allowable stress is applied variably (AH32, 489.5 MPa; AH36,
512.2 MPa) because the yield stress of the materials differs, according to the locations where
coating cracking frequently occurs. According to the FE analysis results, plastic strain rates
of coating were calculated for each location and summarized, as indicated Table 2. The
coating strain is 0.3% or less at most locations, and the RISK index is in the low category. In
other words, the RISK of damage to the coating is quite low under structural deformation
conditions. Among the locations, the maximum coating strain of 0.75% occurred in the
connection between the upper stool and the corrugated bulkhead. In the investigated target
product carrier, no coating crack occurred due to structural deformation during the tank
test. In this study, it was assumed that the coating was successfully installed without any
defects.

Table 2. Summary of the coating strain and RISK index according to location.

Structural Component Coating Strain (%) RISK Index

Deck transverse web 0.33 Medium

Lower stool–bracket 0.40 Medium

Longi. bottom shell 0.11 Low

Trans. corrugated BHD 0.10 Low

Upper stool–bracket 0.41 Medium

Upper stool bottom 0.75 Medium

Ceiling–upper stool top 0.34 Medium
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Figure 14. Maximum von Mises stress results with varying critical locations using a very fine meshing
model: (a) lower stool–corrugated bulkhead connection; (b) center bulkhead–bracket connection;
(c) upper stool–bracket connection; (d) upper stool–main deck connection.
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4.4. Alternatives for Anti-Coating Crack

During the commissioning process of the product carrier, a tank test is conducted
to verify the safety of the structural members. In general, seawater is injected into the
tank to the PORT (port side), the STBD (starboard side) is emptied, and the same pattern
is maintained in the ballast tanks. These conditions represent a severe combination that
is unlikely to occur under actual operating conditions of the vessel. Therefore, tank test
procedure is adjusted to simulate the actual operating conditions and divided into a loading
pattern. In addition, the difference of cargo density should be considered in the tank test
process. In order to reduce the probability of coating cracking, the shape of the bracket
is changed to a position of maximum stress from toe to center so hotspot stress can be
dramatically reduced by increasing the weld toe, as indicated in Figure 15.
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The principal stress result is shown Figure 16a,b according to change in the bracket
design. In case of a change in the shape at the weld toe, the stress at the center of the
bracket increases by about 6%, whereas stress at the weld toe decreases by approximately
50%. Because the critical location where cracks occur in the coating is the end of the weld
toe, modification of the shape is an effective method to reduce coating cracking.

An additional method of smooth grinding is applied on the welding toe, where high
stress is concentrated because cracks occur more easily where the coating is thicker due to
the characteristics of coating failure.
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Figure 16. Principal stress result following a change in bracket design. (a) Maximum principal stress
of the initial bracket model. (b) Maximum principal stress of the modified bracket model.

5. Conclusions and Future Works

In the present work, we investigated cases of coating cracks that occurred after tank
tests under sea trial conditions. In order to clarify the mechanism of coating failure,
numerical analysis was performed to verify the structural safety of coating failure under
a combination of static and dynamic loads. Based on the obtained results, the following
conclusions can be drawn.

(1). The coating strain must be applied with a very small mesh size; the first step should
be calculation of the principal stress, which should then be converted into plastic
strain at the critical locations;

(2). The governing load of coating cracking is caused by structural deformation, and
cracks can be prevented when this phenomenon is accurately determined; and

(3). When the bracket shape is changed, the probability of coating cracking can be reduced;
grinding of the weld bead is also helpful to prevent coating cracking.

In future, a database of coating cracks should be built using survey data from various
ships in order to train an algorithm that predicts the crack location through a deep learning
technique according to load and time.
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