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Abstract: Four types of slip systems (basal <a>, prismatic <a>, pyramidal <a>, and pyramidal

<a + c>) and two types of twinning (extension twinning {10
–
12} and contraction twinning {10

–
11})

could be identified in magnesium alloys using scanning electron microscopy (SEM) and electron
backscatter diffraction (EBSD). In addition, the Schmid factors (SF) of these slip systems were system-
atically calculated on the basis of the Euler angle which was obtained in EBSD. The identification
of slip systems and calculation of SF can help us to understand the contribution made by each
type of slip in the plastic deformation of the material, which is important for understanding the
deformation mechanism.

Keywords: magnesium alloy; slip system; Schmid factor; Euler angle; twinning

1. Introduction

In magnesium (Mg) alloys, the (0001) basal plane is the most closely packed plane,
which impels the basal <a> slip to be the easiest slip system. The critical resolved shear
stress (CRSS) at room temperature for prismatic <a> slip is an order of magnitude higher
than that for the basal slip [1]. However, the CRSS of prismatic <a> slip decreases signifi-
cantly with the increase in temperature and decrease in grain size [1–4]. The pyramidal <a>
slip evinces four independent slip modes, although the types of strain that can be accom-
modated using it are same as those with prismatic and basal slips combined [5]. According
to a previous article [6], Mg–Li alloys demonstrate high ductility owing to the high activity
of the pyramidal <c + a> slip while accommodating plastic strain. In general, owing to the
large Burgers vector of <c + a> dislocations, the pyramidal <c + a> slip could be a potential
slip system in magnesium alloys. With an increase in deformation temperature or decrease
in grain size, the <c + a> slip system is activated [7]. Moreover, deformation twinning
can also be accomplished under low stress. As reported by Barnett, the CRSS ratio for

basal <a> slip, {10
–
12} extension twinning, prismatic <a> slip, and pyramidal <c + a> slip

is 1:0.7:2:15 [8]. The {10
–
11} contraction twinning and prismatic <a> slip correspond to the

same slip plane, but with different slip directions.
Active slip modes in deformed polycrystals can be identified with transmission elec-

tron microscopy (TEM) using the Burgers vector determination technique, but its use is
restricted by limited scanning area and large analysis time [1,8–11]. Xu et al. [12] iden-
tified active slip modes in Ti alloys through grain orientation mapping using electron
backscatter diffraction (EBSD) and strain mapping using high-resolution digital image cor-
relation (HRDIC). However, HRDIC is not as easy to use as scanning electron microscopy
(SEM). Many studies have identified slip systems in Mg by comparing the slip trace ob-
served in SEM with the possible slip directions calculated using Euler angles obtained
in EBSD [13–18]. The activation of an individual slip system can also be determined by
molecular-scale simulation. Jang et al. [19] investigated the mechanism and criterion for
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activation of non-basal slip using a molecular statics simulation on dislocation behaviors in
multicomponent Mg alloys. Ding et al. [20] also investigated the activation of <c + a> slip
and its role to improve the plasticity of Mg using dispersion-inclusive density functional
theory in combination with molecular dynamics simulations, and they found that <c + a>
dislocations formed more readily on the pyramidal I plane than on the pyramidal II plane
in Mg. However, none of these reports explained the method to calculate possible slip
systems using the Euler angle. This study aims to provide an efficient and accurate method
for identifying slip systems in Mg alloys with hexagonal crystal structures. In addition, the
Schmid factor (SF), used to analyze deformation modes in metals, can also be calculated
simultaneously for each possible slip system.

2. Methodology

The orientation of the grain can be described by Euler angles (ϕ1, Φ, ϕ2) using the
OIM software. Figure 1 shows an example of a crystal with Euler angles (0◦, 0◦, 0◦) and
subsequent rotation to the Euler angles (30◦, 45◦, 20◦). The crystal with (0◦, 0◦, 0◦) was
rotated by 30◦, 45◦, and 20◦ in the counterclockwise direction around the Z-axis, X-axis,
and Z-axis, respectively. The angle between the X- and Y-axes was 120◦, and the Z-axis
was perpendicular to the X- and Y-axes and parallel to the c-axes of the Mg crystal. As the
crystal was rotated, its XYZ coordinate system was rotated simultaneously.
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Figure 1. A crystal with Euler angles (0◦, 0◦, 0◦) rotated to Euler angles (30◦, 45◦, 20◦).

A four-axis coordinate system is typically used to represent the crystal planes and
crystal directions in hexagonal structures, e.g., {hkil}–<uvtw>. To facilitate the following
calculations, a cartesian coordinate system was introduced (as shown in Figure 2). The
rotation axes of the X- and Z-axes are denoted as <010> and <001> in the Cartesian
coordinate system. For any type of slip plane or twinning plane {hkil}, the normal direction
of the slip plane in the Cartesian coordinate system can be expressed as follows:

[h1k1l1] = [

√
3(i− k)

3
,

2h− k− i
3

, l(
a
c
)] (1)

The slip or twinning direction in the cartesian coordinate system is expressed as

[u1v1w1] = [

√
3(t− v)

3
,

2u− v− t
3

, w(
c
a
)] (2)

where a and c are magnesium lattice constants with values of 0.3209 and 0.5211 nm,
respectively (the c/a ratio is 1.624) [21].
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tion, the normal direction of any type of slip or twinning plane in the Cartesian coordinate 
system can be calculated. Furthermore, the direction of the slip trace on the sample surface 
can be estimated using the calculated normal direction of slip or plane. Additionally, the 
SF of any slip system can be calculated from the grain orientation if tensile or compressive 
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Figure 2. Schematic diagram showing the relationship between the crystal with Euler angles (0◦, 0◦,
0◦) and its rotation axis, as well as the cartesian coordinate system. An example of an EBSD inverse
pole figure (IPF) map in the cartesian coordinate system is also shown.

Figure 3 shows the schematic relationship among the basal slip plane, normal direction
of the basal slip plane, projection of the normal direction, and slip trace on the sample
surface. According to the assumption that the dominant slip system is basal slip, the slip
trace on the specimen surface remains constant, regardless of the slip direction within the
slip plane. The projection of the normal direction of the slip plane has a perpendicular
relationship with the slip trace on the sample surface. Therefore, using the grain orientation,
the normal direction of any type of slip or twinning plane in the Cartesian coordinate system
can be calculated. Furthermore, the direction of the slip trace on the sample surface can be
estimated using the calculated normal direction of slip or plane. Additionally, the SF of any
slip system can be calculated from the grain orientation if tensile or compressive stresses
are applied to the sample. Detailed description of the method to calculate all possible slip
traces on the sample surface and the SF of the grain are provided in the next section.
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slip plane, projection of the normal direction, and slip trace on the sample. The projection of normal
direction on the sample surface has a perpendicular relationship with the slip trace.
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3. Calculation of Possible Slip Systems and Schmid Factor
3.1. Calculation of Possible Slip Systems

The normal direction of the four types of slip systems (basal <a>, prismatic <a>,
pyramidal <a>, and pyramidal <c + a>) and two types of twinning (extension twinning

{10
–
12} and contraction twinning {10

–
11}), as well as the slip direction, can be calculated in

the Cartesian coordinate system using Equations (1) and (2). It should be noted that, even

though contraction twinning {10
–
11} and pyramidal <a> have the same slip plane, their

morphologies on the sample surface were observed to be different. Prismatic <a> exhibits

a number of parallel slip traces on the sample surface, while contraction twinning {10
–
11}

exhibits a twin-like appearance.
Firstly, the normal direction of the slip plane or slip direction is rotated by ϕ1◦ around

the z-axis. As mentioned before, with the rotation of the crystal, its XYZ coordinate system
rotates simultaneously. The normal direction of the slip plane or slip direction after rotation
around the Z-axis is calculated as follows:

x′ = x· cos ϕ1 − y· sin ϕ1. (3)

y′ = x· sin ϕ1 + y· cos ϕ1. (4)

z′ = z. (5)

The X-axis <010> and Z-axis <001> coordinate systems after rotation around the <001>
axis (Z-axis) are <− sin ϕ1, cos ϕ1, 0>, and <001>, respectively.

Secondly, the normal direction of the slip plane or slip direction is rotated by Φ◦

around the <− sin ϕ1, cos ϕ1, 0> axis (x-axis).

x′′ = x′·[(− sin ϕ1)2·(1− cos Φ) + cos Φ] + y′· [− sin ϕ1· cos ϕ1·(1− cos Φ)] + z′· (cos ϕ1· sin Φ). (6)

y′′ = x′·[− sin ϕ1· cos ϕ1·(1− cos Φ)]+y′·[( cos ϕ1)2·(1− cos Φ) + cos Φ] + z′· (sin ϕ1· sin Φ). (7)

z′′ = x′·(− cos ϕ1· sin Φ) + y′·(− sin ϕ1· sin Φ) + z′· cos Φ. (8)

The Z-axis coordinate system <001> after rotation around the <− sin ϕ1, cos ϕ1, 0 >
axis (X-axis) is <cos ϕ1· sin Φ, sin ϕ1· sin Φ, cos Φ>.

Thirdly, the normal direction of the slip plane or slip direction is rotated by ϕ2◦ around
the <cos ϕ1· sin Φ, sin ϕ1· sin Φ, cos Φ > axis (z-axis).

x′′′ = x′′ ·[( cos ϕ1· sin Φ)2·(1− cos ϕ2) + cos ϕ2]
+y′′ ·[cos ϕ1· sin Φ· sin ϕ1· sin Φ· (1− cos ϕ2)− cos Φ

· sin ϕ2] + z′′
· [cos ϕ1· sin Φ· cos Φ·(1− cos ϕ2) + sin ϕ1· sin Φ· sin ϕ2].

(9)

y′′′ = x′′ ·[cos ϕ1 · sin Φ· sin ϕ1· sin Φ·(1− cos ϕ2) + cos Φ· sin ϕ2] + y′

·[ ( sin ϕ1· sin Φ)2·(1− cos ϕ2) + cos ϕ2]+z′′ ·[ sin ϕ1
· sin Φ· cos Φ·(1− cos ϕ2)− cos ϕ1· sin Φ· sin ϕ2.

(10)

z′′′ = x′′ ·[cos ϕ1 · sin Φ· cos Φ·(1− cos ϕ2)− sin ϕ1· sin Φ· sin ϕ2] + y′′

·[sin ϕ1· sin Φ· cos Φ·(1− cos ϕ2) + cos ϕ1· sin Φ· sin ϕ2]
+z′′ ·[( cos Φ)2·(1− cos ϕ2) + cosϕ2].

(11)

As previously mentioned, the projection of the normal direction of the slip plane on
the sample surface has a perpendicular relationship with the slip trace. Then, the slope of
the slip trace on the sample surface is calculated as follows:

k = −(xn
′′′ ÷ yn

′′′ ), (12)
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where [xn ′′′ , yn ′′′ , zn ′′′ ] is the normal direction of the slip plane after the rotation.

3.2. Calculation of Schmid Factor

The Schmid factor can be calculated using the following equation [22–24]:

m = cos Φ cos λ, (13)

where Φ and λ are the angles between the loading direction and normal direction of
the slip/twinning plane and between the loading direction and slip/twinning direction,
respectively. The loading direction [σ1 σ2 σ3] can be obtained in the case of application of
tensile or compressive stress to the sample. From the previous section, it is clear that the
normal direction of the slip or twinning plane and slip or twinning direction of the grain
can be calculated. The cosine functions cos Φ and cos λ are then calculated as follows:

cos Φ (λ) =
σ1x′′′ + σ2x′′′ + σ3x′′′

[σ12 + σ22 + σ32]1/2·[x′′′ 2 + y′′′ 2 + z′′′ 2]1/2 , (14)

where [x′′′ , y′′′ , z′′′ ] is the normal direction of the slip plane or the slip direction after
rotation. Unlike dislocation slip, twinning allows simple shear in only one direction,
whereas dislocation slip has both forward and backward directions [23,25]. Therefore, the
SF (m) value for the dislocation slip should be absolute. This variant cannot be formed for a
negative value of SF for twinning.

4. Case Analysis

A polished Mg specimen was strained by 2% under tensile stress in the loading
direction [1 0 0], and then analyzed using SEM and EBSD at the same locations. As shown
in Figure 4a, slip traces are clearly visible in one grain. The Euler angles (356.8◦, 135.2◦, and
250.5◦) of this grain could be obtained using EBSD. Figure 4 shows all possible slip systems
that could be calculated using the equations mentioned in the previous section. All slip
trace slopes (k) of the possible slips and corresponding SFs (m) are summarized in Table 1.
By comparison with the slip trace in the SEM, it can be advocated that the activated slip
was a basal slip with an SF value of 0.48.

Table 1. All the possible normal directions of slip planes were calculated using Equation (1). The slip
trace slops (k) and SFs (m) with an orientation (356.8◦, 135.2◦, 250.5◦) were calculated in this study.

Type Basal <a> Prismatic <a>

Slip plane
Plane normal in

cartesian coordinate
system <x, y, z>

SF
(m)

Slop
(k) Slip plane

Plane normal in
cartesian coordinate

system <x, y, z>

SF
(m)

Slop
(k)

(0001) [2
–
1

–
10] <001> 0.48 17.88 (10

–
10) [

–
12

–
10] <−1/

√
3, 1, 0> 0.13 3.1

(0001) [
–
12

–
10] <001> 0.13 17.88 (1

–
100) [

–
1

–
120] < 1/

√
3, 1, 0> 0.25 −0.69

(0001) [
–
1

–
120] <001> 0.35 17.88 (01

–
10) [2

–
1

–
10] <−1, 0, 0> 0.13 0.19

Type Pyramidal <a> Pyramidal <a + c>

Slip plane
Plane normal in

cartesian coordinate
system <x, y, z>

SF
(m)

Slop
(k) Slip plane

Plane normal in
cartesian coordinate

system <x, y, z>

SF
(m)

Slop
(k)

(10
–
11) [

–
12

–
10] < −1/

√
3, 1, a/c> 0.05 1.56 (11

–
22) [

–
1

–
123] < −

√
3, 1, 2a/c> 0.05 0.11

(1
–
101) [11

–
20] < 1/

√
3,1, a/c> 0.06 −0.17 (1

–
212) [

–
12

–
13] <

√
3, 1, 2a/c> 0.15 0.25

(01
–
11) [

–
2110] < −2/

√
3, 0, a/c> 0.11 −0.20 (

–
12

–
12) [1

–
213] < −

√
3, −1, 2a/c> 0.31 −0.65

(
–
1101) [

–
1

–
120] < −1/

√
3, −1, a/c> 0.39 −1.23 (2

–
1

–
12) [

–
2113] <0, 2, 2a/c> 0.20 −0.79

(
–
1011) [1

–
210] < 1/

√
3, −1, a/c> 0.17 4.39 (

–
2112) [2

–
1

–
13] <0, −2, 2a/c> 0.37 −4.12

(0
–
111) [2

–
1

–
10] < 2/

√
3, 0, a/c> 0.34 0.57 (

–
1

–
122) [11

–
23] <

√
3, −1, 2a/c> 0.37 1.33
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Table 1. Cont.

Type Extension twinning {10
–
12} Contraction twinning {10

–
11}

Slip plane
Plane normal in

cartesian coordinate
system <x, y, z>

SF
(m)

Slop
(k) Slip plane

Plane normal in
cartesian coordinate

system <x, y, z>

SF
(m)

Slop
(k)

(10
–
12) [

–
1011] < −1/

√
3, 1, 2a/c> 0.04 −0.36 (10

–
11) [10

–
12] < −1/

√
3, 1, a/c> 0.25 1.56

(1
–
102) [

–
1101] < 1/

√
3,1, 2a/c> 0.15 0.32 (1

–
101) [1

–
102] < 1/

√
3,1, a/c> 0.09 −0.17

(01
–
12) [0

–
111] < −2/

√
3, 0, 2a/c> 0.26 −0.62 (01

–
11) [01

–
12] < −2/

√
3, 0, a/c> −0.12 −0.20

(
–
1102) [1

–
101] < −1/

√
3, −1, 2a/c> 0.24 −1.81 (

–
1101) [

–
1102] < −1/

√
3, −1, a/c> −0.38 −1.23

(
–
1012) [10

–
11] < 1/

√
3, −1, 2a/c> 0.17 5.47 (

–
1011) [

–
1012] < 1/

√
3, −1, a/c> −0.41 4.39

(0
–
112) [01

–
11] < 2/

√
3, 0, 2a/c> 0.30 0.94 (0

–
111) [0

–
112] < 2/

√
3, 0, a/c> −0.30 0.57
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Figure 4. All the possible slip traces calculated with the Euler angles (356.8◦, 135.2◦, 250.5◦): (a) basal

<a> slip; (b) prismatic <a> slip; (c) pyramidal <a>; (d) pyramidal <a + c>; (e) extension twinning {10
–
12};

(f) contraction twinning {10
–
11}. Note that (a) contains an SEM photomicrograph of basal slip traces.

Figure 5 illustrates an example of this method used to identify extension twinning
in deformed Mg alloys. Figure 5a shows the inverse pole figure (IPF) map of the sample,
and the Euler angles of grain A were obtained (49.5◦, 42.3◦, and 265.3◦). Figure 5b shows
all the possible extension twinning directions. The twinning morphology and possible
extension twinning direction match very well. Therefore, this study provides a convenient
and accurate method for identifying the twinning styles.
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5. Summary

The type of slip system in Mg alloys can be identified using the results of this study. In
addition, the corresponding SFs of each possible slip or twinning system can be calculated
systematically. A convenient and macroscopic method for analyzing the contribution of
individual slip systems during the plastic deformation of magnesium alloys was offered. It
is also notable that the method in this study can also be applied to other hexagonal metals;
only the c/a ratios, such as Cd (1.886), Zn (1.856), Co (1.628), and Ti (1.587), need to be
changed for the calculation.
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