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Abstract: Joining of pure copper C1100 and aluminum alloy A6061-T6 plates of 5 mm thickness was
investigated. The method was developed by one of the authors, in which the newly created surfaces
of a pair of plates obtained by high-speed shear were immediately in contact with a sliding motion
with a small overlap length. The total processing time was just about a few milliseconds. To create the
new surface, high-speed shaving was also tested. The joining was not possible for the full thickness
of the plates. A sharp notch was observed at the joint boundary due to a large shear droop in the
copper. Shaving decreased the shear droop, and the joint length through the plate thickness became
longer. The joining performance was evaluated by a uniaxial tensile test. The joint efficiency reached
100% using the specimen cut out from the really joined boundary. The affected zone of joining was
confirmed by the hardness distribution near the boundary. It was about 30% of the thickness of the
plate, which was much smaller than that in welding by heat, and no softened zone was found in
both materials.

Keywords: dissimilar joining; impact process; aluminum alloy; copper; joint efficiency

1. Introduction

The joining of dissimilar metals has been investigated to create a new function in
parts, etc. Various metal combinations were tested in welding, bonding and mechanical
joining methods. Cold joining methods of the metals by severe plastic deformation have
been developed over several decades. Dissimilar metals are usually joined by friction stir
welding (FSW) or a laser welding technique.

A wider range of material combinations are provided by FSW, in which the plates are
stacked or butted, and the dedicated rotation tool is controlled to move along the path. The
evolution of the intermetallic components and the microstructure were investigated in the
FSW technique, which has a strong effect on the strength of the joint boundary of dissimilar
titanium alloys and that of dissimilar aluminum materials [1,2]. The joining of aluminum
to copper has been attractive in electric or battery parts, and it has been investigated [3–5].
Further, the addition of Ni at the interface and the coating of the titanium layer on the
copper side increased the strength [6,7]. Friction stir “spot” welding technique is also
applied to the joining of aluminum, copper and other metals, where the rotating tool
stays [8,9]. A simple technique using drilling tool was found to join stainless steel and
aluminum [10].

It is well known that time and temperature play important roles in solid-state joining
by atomic diffusion at elevated temperatures. On the other hand, under cold conditions,
if the surface expansion is relatively large, two metal parts can join at the newly created
surface, in which the brittle oxidized surface layer fractures. Cold diffusion bonding is
often achieved by very high compressive stress with large plastic deformation. The surface
exposure and the pressure affect the welding strength [11]. Diffusion bonding was also
tested at high temperatures [12–14]. Severe plastic deformation breaks the thin brittle oxide
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surface layer to press the newly created surface under high pressure. Roll bonding was
also tested in addition to press bonding [15]. Hot isotropic pressing (HIP) is also effective
for the joining of the different metals [16].

Copper and aluminum were also joined by using a large plastic strain under cold
conditions. High compressive deformation, equal channel angular pressing and forging
with backward extrusion were investigated [17–20]. However, the joint efficiency was not
100% even for the small specimen cut off from the welded portion. The wider joined area
can be obtained by explosive welding of copper and aluminum plates [21] and combinations
of other different metals [22,23]. The use of lasers for the combinations of aluminum and
other metals was reviewed [24]. A laser welding technique was investigated for joining
copper and aluminum plates. They were stacked, and the laser beam was directed to the
copper or aluminum [25–29]. The plates exhibited significant deformation during laser
welding, and the change in thickness was large, showing a wavy surface. The method
predicting the joint strength was proposed [30]. However, laser welding has the problem of
unavoidable changes in the mechanical properties.

Ultrasonic welding with resistance heating achieved the joining of copper and alu-
minum materials [31]. The materials do not join over the entire contact area. Further,
joining the edges cannot be achieved by this method. Mechanical joining is also widely
used. Clinching was tested for the stacked copper and aluminum sheets. The addition
of adhesive was effective in the process [32]. Joining using a self-piercing rivet is also the
preferred option for joining aluminum parts and others, e.g., copper and steel parts. A
hybrid joining technique using adhesive was investigated [33].

Joint efficiency was evaluated for the welded interface. However, fracture usually
occurs at the interface with the exception of the laser and explosive welding. In diffusion
bonding under cold condition, the shape drastically changes from the initial one, and
the joining strength depends on the initial surface treatment for the removal of the dirty
surface layer. The material softening as a thermal effect arises at the joint boundary in laser
welding. The clinching cannot join the plates at their edges. To achieve joining at the edges
of the plates, one of the authors devised a novel impact joining method for sheet metal [34],
which involved that a pair of sheared surfaces obtained by high-speed shear rub against
each other with compressing force under cold conditions. The edge of the sheet is joined
to another edge, where the sheet thickness is unchanged. The joining of pure titanium
and mild steel plates was thus attained. The base metal of the mild steel fractured in the
tensile test [35].

In the present study, the combination of the materials was a pure copper C1100 and
an aluminum alloy A6061-T6 plates. To generate a newly created surface for joining them,
shearing or shaving was applied. The smaller shear droop was expected in the latter process
to increase the flat area in the newly created surface. The main objective is to investigate
the effect of the generation method on the joining behavior. Joint efficiency was evaluated,
and the joint boundary was also inspected with the energy dispersive X-ray spectrometry.
The hardness distribution was measured to check the affected zone of the joining process.

2. Impact Joining Method

An illustration of the impact joining process is shown in Figure 1. The left half is the
movable side, which moves downward at a high-speed. On the other hand, the right one is
the stationary side. A pair of metallic plates to be joined are simultaneously sheared under
high-speed conditions. The material temperature is expected to elevate remarkably, and
the material softens in the adiabatic shear-band. The sheared upper plate (Plate 1, left half)
continues moving downward, and the sheared surface immediately contacts to the lower
sheared surface with a slight overlap length, which is controlled by the dimensions of the
tools. The joining process is completed when the sheared upper plate (Plate 1) reaches the
prescribed position. The method is a unique joining method that does not require heating.
The joining mechanism is diffusion bonding of the newly created surface.
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force. 

  

Figure 1. Impact joining method using sheared surface.

3. Joining Device and Experimental Conditions

The two joining methods were examined, one of which uses the sheared surface.
Figure 2 shows the schematic and the photograph of the joining device. It is composed
of the rectangular parts, because the structural simplicity is necessary to avoid excessive
impulsive stress on the parts, which may cause a catastrophic damage during impact. The
joining device is driven by the kinetic energy of the drop weight. The impact velocity was
10 m/s, and the mass was 22 kg. The top edge of Punch 1 is impacted by the drop weight,
then the simultaneous shearing of Plates 1 and 2 begins. The illustration of Figure 2a
represents the initial state. The left half side, which is the movable side, is supported by
a backup plate, under which a circular pipe (A6061, 12 mm outer diameter and 1 mm-
thick wall) is placed. The pipe is compressed and exhibits buckling lobes, generating a
backup force.
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Figure 3 shows the illustration of the working tools and the plates. The shearing or
shaving tools were made with SKD11 tool steel (60 HRC). Die 1 and Punch 2 have a land
length of 2 mm. Pre-hardened steel (40 HRC) was chosen for the material of the other parts.
The width of the Plate is 50 mm, which corresponds to the length of the joint boundary. In
the shear process shown in the Figure 3a, no clearance was set between the shearing tools.
To keep the prescribed overlap length, two small rubber spacers were inserted between
Punch 2 and Die 1 only at both ends. Hence, the joining was not completed near both edges
of the joint boundary.
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Further, the joining test of dissimilar materials was examined for the shaved surfaces.
In the shaving of the plates, the right side of Plate 1 and the left side of Plate 2 in Figure 3a
are replaced by the spacers with the same thickness. The width of the plate was 31 or
30.5 mm. The shaving allowance of the upper plate was 1.0 or 0.5 mm, and that of the lower
plate was reduced by the overlap length. The mechanical properties of the test material are
listed in Table 1. The materials were a pure copper C1100-1/4H and an aluminum alloy
A6061-T6. The thickness of the plates was 5.0 mm. In the joining test using the sheared
surface, the similar metal and the dissimilar ones were combined. The dissimilar metals
were combined in the joining test using the shaved surface.

Table 1. Mechanical properties of test materials (Thickness 5 mm).

Material Ultimate Tensile Strength (MPa) C (MPa) n—Value

C1100-1/4H 243 443 0.249

A6061-T6 322 431 0.084
Plastic property: σ = Cεn.

4. Experimental Result and Discussions
4.1. Joining Using Sheared Surface

The examples of the joined plates are shown in Figure 4 for similar and dissimilar
combinations of the materials. In these cases, the impact speed of the drop weight was
10 m/s, and the overlap length was 0.3 mm. The rubber spacer, whose color is black, is
seen at the ends of the boundary. It was dragged into the boundary during the joining
process. Figure 5 shows the cross-section of the joint boundary for the cases of Figure 4.
The weld mismatch was caused by the vibration and the dimensional error of the stopper
in the joining device. The device will be improved in future study. Gaps are observed
near the plate surface. They are large in the combination of C1100 and C1100, because the
shear droop of C1100 is larger than that of A6061 due to the fact that the strain hardening
exponent of C1100 is greater than that of A6061.
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In the joining of dissimilar materials, the softened aluminum by the shear deformation
is squeezed out, though the copper is not. A6061 is harder than C1100 at room tempera-
ture. However, it becomes softer than C1100 when the temperature elevates by the large
deformation under impact; hence, the aluminum was squeezed out.

The joint efficiency was defined by the following equation.

Joint efficiency (%) = Fracture strength/Strength of base material × 100 (1)

The tensile test was performed. The width of the specimen was 10 mm. It was
machined out from the central portion, and the force was loaded in the direction vertical to
the joint boundary. The joint efficiency is shown in Figure 6. It was roughly evaluated for
the full thickness (5 mm) and the observed contact lengths of 1.7, 3.3 or 2.5 mm. Even for
the contact length, the joint efficiency is low. This implies that the contact length is not the
actual joined length similar to the ultrasonic welding [31]. The notch effect also weakens
the strength due to the stress concentration at the tip of the gap opening. In addition, the
joining condition is not uniform over the boundary. Increasing the test sample may yield
more accurate results, though the obtained result is reasonable.

With respect to the joining of C1100 and A6061, the joint efficiency calculated with a
contact length of 2.5 mm is about 20%. Therefore, the actual joint length is much shorter
than the contact length. When the notch effect was ignored, the calculated joint length is
only about 0.5 mm.

The tensile test specimen with 4 mm width was machined out from the joined plate.
The tensile speed was as low as 0.1 mm/s to avoid the speed effect on the deformation
behavior, and eight specimens were used for each condition. Figure 7 shows the fracture
strength and joint efficiency of the joining of C1100 and A6061 evaluated for the overlap
lengths of 0.1, 0.3, 0.5 and 0.7 mm. The average fracture strength and the joint efficiency are
also given in the figure. In the case of the 0.1 mm overlap length, the joint efficiency is very
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low or zero. It is about 30% for the case of 0.3 or 0.5 mm. It is almost zero for 0.7 mm. The
suitable overlap length was determined to be 0.3 mm considering the average value of the
joint efficiency.
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An example of fractured boundary is shown in Figure 8, which was separated by
bending. The actually joined zone exhibits the gray surface. The shape of these zones is
mirror symmetrical, as clearly observed in the magnified photograph. The joined part is
a band with of about 1 mm width, which is about 0.7 mm apart from the center of the
thickness. Considering the calculated joint length of 0.5 mm, the small tensile specimen
with 0.5 mm thickness shown in Figure 9 was cut out from the band using a wire discharge
cutting machine (Mitsubishi Electric Ltd., Japan).
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Figure 8. Example of joint boundary separated by bending (upper: C1100, lower: A6061, overlap
length: 0.3 mm): (a) General view; (b) Magnified view.
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Figure 9. Schematic of tensile test specimen joined using sheared surface.

The joint efficiency is shown in Figure 10. The average is as high as about 80%. The
fractured specimens are shown in Figure 11. It should be noted that the No. 3 specimen
fractured at the material of C1100 exhibit a diffuse necking. However, the joint efficiency
is 95%. This is because the ultimate tensile strength of the material was evaluated for the
original thickness of 5 mm, which was 10-times thicker than the thickness of the specimen. It
is well known that the strength depends on the thickness, where it weakens as the thickness
decreases [36]. Further, the surface of the small specimen is rougher than the cold-rolled
original plate, because the specimen was made using a wire discharge cutting machine.

The joint boundary was analyzed using the scanning electron microscopy (JEOL Ltd.,
Tokyo, Japan) with energy dispersive X-ray analysis (SEM-EDX) as shown in Figure 12.
A thin layer whose contrast differs from those of the copper and aluminum is observed,
and it is clearer in the magnified photograph. The boundary shows an irregular wavy
pattern. The intensity of the aluminum with a blue line and that of the copper with a
green one cross at the boundary. The intermetallic phase was not inspected at present. The
temperature could not be measured, because the processing time is only a few milliseconds.
Heterogeneous mixtures of Al and Cu possibly result in their intermetallic phase found in
the friction stir welding of similar metals [3].
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Figure 10. Fracture strength and joint efficiency evaluated for adhesion part (overlap length: 0.3 mm).
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Figure 11. Fractured tensile test specimen joined using sheared surface: (a) Fracture at base metal of
copper C1100; (b) Fracture at joint boundary.
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4.2. Joining Using Shaved Surface

The joining of C1100 and A6061 was investigated. An example of the joined plates is
shown in Figure 13. The cross-sections are shown in Figure 14 for two different overlap
lengths. Comparing these cross-sectional profiles with those in Figure 5c, the shear droop
is almost prevented. The contact length in the thickness direction of the plate is about
4 mm, which is longer than that in Figure 5c, though the gap opening is observed near both
surfaces. The tensile test specimen shown in Figure 15 was made using a wire discharge
cutting machine. The thickness is 2 mm, which is half of the contact length. This length is
expected to be the actual joining length. This estimation may be reasonable because the
undulation of the boundary is also small in Figure 14 compared with that in Figure 5c.
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Figure 14. Cross-section of joint boundary using shaved surface: (a) Shaving allowance: C1100 1.0 mm,
A6061 0.9 mm, overlap length: 0.1 mm; (b) Shaving allowance: C1100 1.0 mm, A6061 0.7 mm, overlap
length: 0.3 mm.
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Figure 15. Tensile test specimen joined using shaved surface: (a) Schematic; (b) Photograph.

Figure 16 shows the joint efficiency for the three experimental conditions. The shaving
allowance of A6061 is smaller than that of C1100 by the overlap length, as mentioned above.
When the overlap length is 0.1 mm, the number of tests was increased. This is because the
experiment was started in this condition, and the dispersion was also roughly checked.
Examples of the fractured specimen are shown in Figure 17. Diffuse necking often occurs
at the C1100 part, where the joint boundary is not damaged. A joint efficiency of 100% was
achieved for the setting with overlap lengths of 0.1 or 0.3 mm. The possibility of perfect
joining seems higher when the overlap length is set to be 0.3 mm.
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Figure 17. Fractured tensile test specimen joined using shaved surface: (a) Fracture at joint boundary;
(b) Fracture at C1100 part.

It is worthwhile to confirm the affected zone by the joining. Micro Vickers’ hardness
was measured near the joint boundary. Figure 18 shows the distribution of the hardness
for both materials. The hardness clearly increases as the measurement position is closer to
the joint boundary. The affected zone due to the joining process is about 1.5 mm, which is
quite small compared with the thickness of the plate. The increase in hardening is higher in
C1100, because its strain hardening exponent or n-value is larger than that of A6061. The
difference due to experimental condition is not observed. There is no softening region. This
is a significant advantage of this joining method, because the A6061-T6 material does not
weaken near the joint boundary.
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Figure 18. Distribution of Vickers’ hardness HV: (a) C1100; (b) A6061.

The strain distributions along the central line of the tensile specimen are shown
in Figure 19, which were measured at the maximum load point using a digital image
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correlation (DIC) measurement system (GOM correlate V8 SR1, GOM, Germany). The
thickness strain was calculated using the measured longitudinal and transverse strains
by assuming a constant volume. The strain of A6061 is not exactly zero, but near zero,
in both cases. It includes the measurement error to some extent. On the other hand, the
strain of C1100 increases as the measurement point moves away from the boundary. The
error is relatively larger in the thickness strain, because the error in the plane directions is
accumulated. However, the trend is plausible, and the strain change through the boundary
is smooth.
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5. Conclusions

Impact joining at the edges of a pure copper C1100 and an aluminum alloy A6061 plates
was carried out. Two different methods of generating newly created surfaces were exam-
ined. The joining was not performed through the full thickness of the plate, where the
notches were observed at the plate surface. The joining test using the sheared surface
exhibited the 100% joint efficiency, where the 0.5 mm thick tensile specimen machined out
from the 5 mm thick joined plate was used. When the new surface was created by shaving,
the shear droop in C1100 was successfully decreased, by which the contact length at the
boundary was increased. The joint efficiency was 100% for the 2 mm thick specimens. The
measurement of the hardness revealed that the affected zone by the joining process was
quite narrow. It was only about 30% of the thickness of the plate, and no weakened zone
was observed in A6061-T6. This is a significant advantage of this joining method. The
strain distribution was continuous through the joint boundary.
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