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Abstract: We investigated the effect of solution temperature (Tsol. = 440–530 ◦C) on the mechanical
properties of the Al–3.4Cu–0.34Mg–0.3Mn–0.17Ag alloy, finding that the investigated Al alloy showed
the highest mechanical strength of σUTS = ~329 MPa at a Tsol. value of 470 ◦C. The microstructural
investigation demonstrates that the mechanical properties for different Tsol. values stem from grain
growth, precipitation hardening, and the formation of large particles at the grain boundaries. On the
basis of Tsol. = 470 ◦C, the effect of each microstructural evolution is significantly different on the
mechanical properties. In this study, the relationships between the microstructural evolution and the
mechanical properties were investigated with respect to different values of Tsol.

Keywords: aluminum alloy; mechanical properties; microstructural evolution; solutionization

1. Introduction

High-strength Al–Cu (5.0 wt.% < Cu < 7.0 wt.%)–Mg–Ag-based alloys have been
widely used owing to their excellent mechanical strength with the advantage of mass
production [1–5]. To obtain high mechanical properties, Al–Cu–Mg alloys require post-
treatment processes, such as a heat treatment and plastic working. Al 2xxx alloys are, in
general, employed via several steps, including (1) casting, (2) homogenization, (3) hot-
rolling, (4) a solution treatment, (5) cold-rolling, and (6) artificial aging [5–8]. The conditions
of each step are also optimized based on the compositions of the Al alloys.

Among several post-treatment processes, the solution treatment and artificial aging are
of considerable importance to strengthen Al–Cu–Mg alloys by the formation of precipitates
in the Al matrix [8–12]. The solution treatment process serves to induce the state of
supersaturated solid solution (SSSS), which re-dissolves second phases into the matrix.
Hence, the solution treatment temperature is determined based on minor elements added
to Al. In Al–Cu–Mg-based alloys, the major second phases formed by minor elements
are known to be intermetallic compounds of Al2Cu and Al–Cu–Mn–Fe [13–17]. From
the conventional binary phase diagram of Al–Cu, the melting temperature of the Al–Cu
(5.0 wt.% < Cu < 7.0 wt.%) binary phase is approximately 550 ◦C. Most high-strength Al–
Cu–Mg-based alloys are thus solution-treated at ~530 ◦C [2,3,7,10,18], while the maximum
solubility of Cu to Al is only 5.57 wt.% Cu. Therefore, the solution treatment temperature
is not high enough to re-dissolve the Cu minor elements into the Al matrix if the Cu
content is higher than 5.57 wt.%. An insufficient solution temperature induces the residual
second phase particles in the grain boundaries of Al, leading to the insufficient formation of
precipitates in the Al matrix during the artificial aging process. Additionally, large particles
remain in the grain boundaries due to the insufficient solution treatment temperature. It is
well known that large particles in grain boundaries act as crack initiation sites, resulting in
an increase in the brittleness [6,19,20].
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On the other hand, the conventional solution treatment temperature of Al 2xxx alloys
with 5.0 wt.% < Cu < 7.0 wt.% is high enough to induce the grain growth of Al grains. As
shown in Figure 1, in the Al 2139 (Al-5.0Cu-0.50Mg) alloy, the grain growth is observed
after a solution treatment at 530 ◦C. The mechanical strength is inversely proportional
to the grain size. The grain growth of the Al matrix, therefore, should be suppressed to
achieve the maximum mechanical strength.
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Figure 1. Microstructural investigations of each process of the Al–5.0Cu–0.50Mg–0.3Mn–0.17Ag
commercial alloy: (a) as-cast, (b) homogenized, (c) hot-rolled, and (d) solutionized. This alloy is
homogenized at 530 ◦C for 24 h, solution treated at 530 ◦C for 3 h, and aged at 160 ◦C for 24 h with
the rolling processes.

Given the above considerations, the temperature range of the solution treatment for
Al–Cu–Mg-based (2xxx) alloys is very limited compared to those of other heat-treatable Al
alloys, such as Al–Zn–Mg-based (7xxx) alloys. For example, the maximum solubility of Zn
and Mg with regard to Al is 83.1 wt.% at 381 ◦C and 17.1 wt.% at 450 ◦C, respectively. The
solution temperatures are far too low to induce grain growth during the solution treatment
process, while the solubility can reach the maximum level [21–24]. Thus, 7xxx series Al
alloys provide a wide range of solution temperatures to optimize the mechanical properties.
This then motivates careful study to determine the optimum solution treatment temperature
to achieve the maximum mechanical properties of Al–Cu–Mg-based (2xxx) alloys.

In this study, we demonstrated the effect of the solution treatment temperature on the
microstructures of the Al–Cu–Mg–Mn–Ag alloy resulting in a change of the mechanical
properties. For the alloy design, we fabricated the Al–3.4Cu–0.34Mg–0.3Mn–0.17Ag alloy
in order to investigate the wide temperature range for the solution treatment process. The
maximum solid solution state can be achieved at 470 ◦C, which is far below the melting
temperature of Al. Hence, the fabricated Al alloy samples underwent a solution treatment
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at 440 ◦C, 470 ◦C, 500 ◦C, and 530 ◦C. The solid solution state and its effect on the formation
of precipitates in the Al matrix were mainly investigated at the solution temperatures of
440 ◦C and 470 ◦C. For the other conditions, the effect of the grain growth was considered
because the maximum solid solubility of Cu is above 470 ◦C. Thus, this study provides a
strategy by which to optimize the conditions of the solution treatment in order to develop
a high-strength Al–Cu-Mg-based alloy.

2. Experimental Procedures

By using a gravity casting, the Al–3.4Cu–0.34Mg–0.3Mn–0.17Ag alloy was prepared
with high-purity elements (Al, Cu, Mg, and Ag) and master alloys (Al-15 wt.% Mn and
Al-10 wt.% Ti). All components were melted using an electric resistance furnace at 800 ◦C,
with the temperature held at this point for 30 min. Thermo-mechanical processes were
determined based on the conventional conditions as shown in Figure 2 [6,12,25–27]. The
as-cast samples were homogenized at 530 ◦C for 24 h and cooled in air. The homogenized
samples were then cut into thick plates (120 × 40 × 30 mm) for a rolling process. In the
synthesized Al alloy, the maximum solubility of Cu in the Al matrix was achieved at around
550 ◦C, while the melting temperature was 582 ◦C with 3.375 wt.% Cu. Thus, the plates were
solutionized at 440 ◦C, 470 ◦C, 500 ◦C, and 530 ◦C for 3 h and quenched with water after
the first hot rolling step. The solution temperatures used here are 80%, 85.5%, 90.9%, and
96.3% of the melting temperature of Al. For the different solution treatment temperatures
(Tsol.), hereinafter, the specimens will be referred to correspondingly as sample I, sample II,
sample III, and sample IV. Finally, the solutionized plates were cold-rolled under rolling
reduction of 10% along the rolling direction and artificially aged in a muffle furnace at
160 ◦C for 24 h by a single-step aging treatment.
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Figure 2. Schematic diagram of the applied tempering process.

Tensile tests were then done using ASTM E8 sub-size standard specimens with a
total length, gage length, width, and thickness of 100 mm, 25 mm, 6 mm, and 2.5 mm,
respectively [28]. The tensile properties were then measured more than ten times for
each specimen using a precision universal testing machine (AGX-V, SHIMADZU, Kyoto,
Japan) with a strain rate of 2 mm/min under ambient temperature conditions. The mi-
crostructures of the Al alloys were investigated from the macroscopic scale (few tens µm to
~hundreds µm) to the microscopic scale (few tens µm~nm). For the macroscopic observa-
tions using an optical microscope (OM), the specimens were mechanically mirror-polished
and chemically etched with a proper etchant (95.5% water, 2% HNO3, 1.5% HCl, 1% HF).
Details of the chemical composition and overall phase identification were determined with
a field emission scanning electron microscope (FE-SEM, JSM-7100F, JEOL, Kyoto, Japan)
and by an energy dispersive X-ray microanalysis (EDSX, X-max, Oxford, UK). For the
microscopic structural investigation, the specimens were mechanically polished down
to ~10 µm and Ar-ion milled at an incident angle of 6◦ with an accelerating voltage of
3.0 keV to ensure electron transparency. The ultra-thin specimens were then investigated
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using field-emission transmission electron microscopy (FE-TEM, JEM-ARM200F, JEOL Ltd.,
Tokyo, Japan) at room temperature.

3. Results and Discussion

Figure 3 shows the tensile properties of Al–3.4Cu–0.34Mg–0.3Mn–0.17Ag for dif-
ferent values of Tsol.. The mechanical properties of sample I were determined to be
σy = 261 ± 4.25 MPa and σUTS = 329 ± 8.17 MPa with an ε (elongation) rate of 13.1
(±0.29)%. As shown in Figure 3, the tensile stress gradually increased as Tsol. increased.
The maximum tensile stress was achieved when Tsol. was 470 ◦C (sample II), while the
elongation was slightly reduced to ~ 12.1 (±0.49)%. The tensile stress was then degraded
when Tsol. exceeded 470 ◦C. The tensile stresses were found to be 279 ± 7.09 MPa (σy)
and 346 ± 9.87 MPa (σUTS) for sample III and ~258 ± 8.94 MPa (σy) and ~326 ± 7.08 MPa
(σUTS) for sample IV. In contrast, the elongation outcomes increased sharply as follows:
15.2 (±0.56)% (sample III)→ 16.7 (±0.68)% (sample IV).
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Figure 3. Tensile properties of the synthesized alloys with respect to the various values of Tsol..

Figure 4 shows typical OM images of samples I–IV observed along the rolling direction
(RD) of the cold-rolled (CR) specimens. In order to observe the change in the grain size,
the OM images were recorded from approximately 30 different regions of each sample and
averaged, as presented in Figure 4e. Figure 4e shows that the average grain sizes gradually
increased by ~98 (±25.7) µm (sample I)→ ~131 (±25.0) µm (sample II)→ ~181 (±34.6) µm
(sample III)→ ~203 (±46.9) µm (sample IV) as Tsol. increased. It can be clearly observed
that the grain size of Al was highly sensitive to Tsol.. In addition, the investigated range
of Tsol. from 440 ◦C to 530 ◦C was sufficient to induce grain growth at the Al matrix of
Al–3.4Cu–0.34Mg–0.3Mn–0.17Ag. In general, the grain size is inversely proportional to the
mechanical strength. As shown in Figure 4, however, the tensile stress of sample II was
enhanced compared to that of sample I, while the average grain size of sample II was much
larger than the grain size of sample I. In contrast, the tensile stresses of sample III and IV
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decreased drastically compared to that of sample II, identical to the variations of the grain
size shown in Figure 4. A discussion of these findings with regard to the microstructural
changes is provided later in the paper.
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Figure 5 shows backscattered electron micrographs (BSE) of the synthesized alloys
recorded along the rolling direction (RD). Two different phases were clearly observed in the
grain boundary regions, as indicated by the arrows I and II in Figure 5. A chemical analysis
then revealed that the corresponding particles, which formed in the grain boundaries, are
the Al–Cu–Mn–Fe (yellow arrow) and Al2Cu (black arrow) phases, which are in general
observed in Al–Cu–Mg–Ag alloys [13–17]. During the solution treatment process, solute
atoms were dissolved into the Al matrix to generate SSSS, which resulted in the formation
of strengthening phases in the Al matrix after the artificial aging process. Macroscopi-
cally, the average particle sizes of Al–Cu–Mn–Fe and Al2Cu simultaneously decreased by
~23.5 ± 6.38 µm (sample I)→ ~18.3 ± 6.64 µm (sample II)→ ~12.36 ± 3.94 µm (sample
III)→ ~6.76 ± 1.18 µm (sample IV) as Tsol. increased. In addition to the decrease in the
particle size, Figure 6 shows the changes of the area fractions of Al–Cu–Mn–Fe and Al2Cu
particles with respect to Tsol.. The average area fractions of Al2Cu particles in each alloy
were determined to be by 1.10, 1.09, 0.89, and 0.49%. Additionally, the area fractions
of Al–Cu–Mn–Fe particles were found to be 3.53, 1.51, 0.52, and 0.25%. Regarding the
solubility of the constituent elements in the Al matrix, Table 1 shows that the major element
of Cu gradually increased as Tsol. increased. On the other hand, the increased level of Cu
elements in the Al matrix facilitated the formation of major hardening precipitates of Al2Cu
after the artificial aging process. The tensile stress of synthesized alloys, however, reached
its maximum at a Tsol. value of 470 ◦C, while the minimum particle size and the maximum
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Cu solubility were both achieved at a Tsol. value of 530 ◦C. Moreover, the mechanical
strength gradually decreased as Tsol. exceeded 470 ◦C, while the elongation increased
drastically. For heat-treatable Al alloys, the formation of hardening phases in the Al matrix
is mostly subject to the mechanical properties. A nanoscopic structure investigation using
TEM was therefore conducted in order to investigate the behavior of the formation of the
hardening phases.
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III, and (d) sample IV. Two coarse phases are pointed with yellow arrow (Al–Cu–Mn–Fe) and red
arrow (Al2Cu).

Table 1. Chemical composition (at.%) in the Al matrix of the aged Al–Cu–Mg–Mn–Ag alloys.

Alloys Cu Mg Mn Ag Al

Sample I 2.71(±0.08) 0.33(±0.08) 0.18(±0.01) 0.23(±0.02) Bal.
Sample II 3.32(±0.24) 0.27(±0.09) 0.29(±0.03) 0.09(±0.02) Bal.
Sample III 3.45(±0.05) 0.29(±0.05) 0.35(±0.04) 0.10(±0.01) Bal.
Sample IV 3.60((±0.23) 0.30(±0.08) 0.34(±0.02) 0.06(±0.02) Bal.
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Figure 6. Area fractions of second phases in the synthesized Al alloys.

Figure 7 presents typical TEM micrographs of samples I–IV recorded under medium
magnification with the corresponding spot electron diffraction (ED) patterns. TEM investi-
gations were performed in all cases along the zone axis of {110}Al, which is the optimum
direction at which to investigate the hardening phases of θ’ and Ω. From earlier reports, it
is well known that the θ’ and Ω phase are respectively lied on {002} and {111} [2,7,9,29,30].
Figure 7e shows the number density of precipitates calculated from each specimen. For
sample I, the number density was about 89.49(±27.25)/µm2. This value was similar to that
of sample II (114.25(±44.90)/µm2), though Tsol. increased. The formation of hardening
phases, however, was drastically enhanced in sample II. The calculated number densities of
the precipitates were 173.91(±37.19)/µm2 and 358.43(±63.52)/µm2 for sample III and sam-
ple IV, respectively. The drastic increase in the hardening phases could also be confirmed
in the spot ED patterns. As shown in the inset of Figure 7a,b, samples I and II consisted
of Al Bragg spots for the zone axis of {110}Al without any evidence of hardening phases
in the Al matrix. In contrast, coherently formed hardening phases were well-observed as
streaks along the {110}Al and {002}Al directions in the spot ED patterns of samples III and
IV (Figure 7c,d). On the other hand, the variations in the number densities were nearly
identical to the content of Cu solute elements in the Al matrix, as shown in Figure 7e.
Interestingly, the number density of the hardening phases was highly sensitive to the Cu
solute atoms when Tsol. exceeded 470 ◦C, where 3.4 wt.% Cu was entirely solutionized in
the binary phase diagram of Al–Cu. The amount of Cu solute (at.%), presented in Table 1,
increased by ~125% from sample I to sample II. In contrast, the increment of Cu solute was
only a few percent when the Tsol. was greater than 470 ◦C. This suggests that Tsol. was not
the only consideration to achieve the maximum solubility of major solute elements in order
to facilitate the formation of a hardening phase.
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(e) number density of hardening phases (θ’ and Ω) with respect to Tsol..

Considering the above findings, Tsol. affects the mechanical properties of the Al–
Cu–Mg–Ag alloy in terms of three microstructural aspects. First, the tensile stress was
mainly determined by the number density of the hardening precipitates (θ’ and Ω) from
440 ◦C to 470 ◦C. For this Tsol. range, the OM images indicate that the Al grains grew
significantly by ~140% (98 µm→ 131 µm). Nevertheless, the tensile stress was improved
from σUTS = 329 MPa to σUTS = 360 MPa. The binary phase diagram of Al–Cu indicated
that 3.4 wt.% Cu had maximum solubility above a Tsol. value of approximately 470 ◦C as
proven by a chemical analysis (Table 1). In consequence, an increase in the Cu solubility
level in Al (Table 1) facilitated the formation of hardening precipitates (θ’ and Ω) in the Al
matrix, which improved the tensile stress.

Second, the mechanical properties were affected by the grain growth at Tsol. of 470 ◦C.
At the Tsol. value of ~500–530 ◦C, the Cu solute in the Al matrix was mostly saturated. The
number density of the hardening precipitates reached its maximum of 358.43 counts/µm2

at Tsol. of 530 ◦C, while the tensile stresses were gradually reduced to 326 MPa. This
is considered to be a result of the growth of Al grains. The Al grain size increased to
203 µm at 530 ◦C, while the initial Al grain size was 98 µm. That is, the grain size of Al
mainly determined the mechanical properties of the Al–Cu–Mg–Ag alloy once the Cu
solute was maximized.

Finally, the elongation of the investigated alloys was primarily determined by the large
particles that formed at the grain boundaries. As shown in Figure 5, large particles formed
at the grain boundaries of the Al–3.4Cu–0.34Mg–0.3Mn–0.17Ag alloy. The large particles
were then finely distributed as Tsol. increased. The area fractions of the large particles
(Al–Cu–Mn–Fe and Al2Cu) abruptly decreased and reached their minimum value at the
highest Tsol. level of 530 ◦C. In general, large particles are known to act as crack initiation
and development sites [6,20]. Consequently, a decrease in the number of large particles
resulted in an increase in the elongation in the Al–3.4Cu–0.34Mg–0.3Mn–0.17Ag alloy.
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4. Conclusions

We investigated the microstructural evolution of the Al–3.4Cu–0.34Mg–0.3Mn–0.17Ag
alloy with respect to a wide range of Tsol. values. Interestingly, in this study, the mechanical
properties of the Al–Cu–Mg–Ag alloy were determined by several factors according to the
solution temperature (Tsol.). The used Tsol. could then be divided into three ranges based
on the Cu solid solution: (1) an insufficient solution temperature range (Tsol. < 470 ◦C), (2) a
sufficient solution temperature range (Tsol. ≈ 470 ◦C), and (3) a high solution temperature
range (Tsol. > 470 ◦C). For the first temperature range of 440 ◦C < Tsol. < 470 ◦C, the
amount of Cu solute increased in the Al matrix to facilitate the formation of hardened
nanoprecipitates (θ’ and Ω). This then resulted in an improvement of the tensile stress while
grain growth was observed. For the next temperature range of Tsol. > 470 ◦C, the number
density of hardening precipitates was maximized. Nevertheless, the grain growth acted as
a dominant factor to lower the tensile stress of the synthesized alloys, unlike in the first
temperature range of 440 ◦C < Tsol. < 470 ◦C. On the other hand, the decrease of the volume
fraction of the large particles helped to improve the ductility of the synthesized alloys.
Based on the above, therefore, the solution temperatures should be properly controlled
to (1) optimize the microstructural evolutions of the grain growth of Al, to (2) decrease
the number of large particles, which form at the grain boundaries, and to (3) facilitate
the hardening of precipitates of Al2Cu in order to optimize the mechanical properties of
Al–Cu–Mg–Ag alloys.
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