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Abstract: The aim of this paper is to determine the optimal input parameters for the process in order
to ensure the maximum formable wall angle is obtained in a conical frustum with a varying wall angle
fabricated using Single Point Incremental Forming (SPIF). The test material was 0.8-mm-thick Ti-6Al-
4V titanium alloy sheets, and the test used a tungsten carbide tool with a rounded tip with a radius
of 4 mm. Complete workpieces were heated using hot oil with a temperature of about 200 ◦C, and in
addition, the high rotation speed of the forming tool generated an amount of friction heat. The input
parameters were tool rotational speed, feed rate, step size, and tool rotation direction. Various oil
pressures were used to improve both the accuracy of the components formed and the friction heating
process. On the basis of calculations performed by means of the response surface methodology,
split-plot I-optimal design responses were obtained by means of polynomial regression models.
Models were fitted using REstricted Maximum Likelihood (REML), and p-values are derived using
the Kenward–Roger approximation. Observation of the fracture surface of Ti-6Al-4V drawpieces
showed that the destruction is as a result of ductile fracture mode. Tool rotational speed and step size
are the most significant factors that affect the axial force, followed by feed rate. It was also found that
step size is the most significant factor that affects the in-plane SPIF force.

Keywords: feed rate; incremental sheet forming; SPIF; single point incremental forming; tool rota-
tional speed

1. Introduction

Single-point incremental forming (SPIF), proposed by Iseki [1], is a flexible method
of sheet metal forming that does not require the use of dies adapted to the shape of the
product. The SPIF method and its variation, two-point incremental forming (TPIF), can
be used to produce products with complex shapes, both convex and concave, using shank
tools with rounded tips. These tools move along the programmed trajectory, gradually
sinking into the formed sheet [2,3]. A milling machine or a numerically controlled lathe
with at least three controlled axes is required to operate the SPIF process. Incremental
sheet forming (ISF) methods that use a robotic arm to drive the working spindle have also
been developed.

Due to the point character of the contact of the tool with the deformed sheet, the
processing speed in this method is lower than in conventional sheet metal forming (SMF)
methods that require the production of a die and punch [4]. However, die-less ISF is
more effective when machining prototype parts, small-series components, and highly
customised parts such as medical implants. Due to the local nature of plastic deformation,
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the deformation achievable in SPIF is greater than with conventional SMF. Comparison
of the conventional SMF process intended to form a pyramid-shaped part with SPIF can
be found in a paper by Petek et al. [5]. Over the years, many varieties of SPIF have been
proposed for forming hard-to-deform alloys in cold forming conditions such as warming
sheet material using hot air blowers [6] or using a furnace [7], electrically assisted ISF [8,9],
laser-assisted ISF [10,11], and friction-assisted ISF [12].

During the forming process, due to the elastic–plastic deformation conditions, the
forming process is prone to instability and the part is subject to springback [13,14] and
pillow effect [15–17]. After forming, skirt springback occurs due to the elastic recovery of
the sheet. Elimination of shape errors is achieved by optimisation of the tool trajectory in
order to compensate for the elastic recovery of the sheet material. There are many studies
designed to increase the accuracy of ISF carried out in cold and hot forming conditions.
The process conditions of SPIF depend on many parameters that can interactively affect
the surface finish, shape and dimensional accuracy of the drawpieces, wall thickness and
the possibility of producing large sheet deformations. These parameters include: tool
rotational speed, tool diameter, feed rate, step depth and lubrication conditions. Numer-
ous investigations designed to optimise forming conditions using Analysis of Variance
(ANOVA), Taguchi design of experiment, regression analysis, Non-dominated Sorting
Genetic Algorithm (NSGA) and Response Surface Methodology (RSM) can be found in the
literature. Honarpisheh et al. [18] studied the interaction and main effect of the process
parameters viz. rotational speed, tool diameter, step down, on the wall and fracture depth
in SPIF of 1050 aluminium alloy sheets using the ANOVA method and a multi-response
optimisation. Kurra et al. [19] investigated SPIF of extra deep drawing steel sheets using the
Box–Behnken design. They evaluated the effect of process parameters on surface roughness
and manufacturing time using ANOVA, NSGA and RSM approaches. Szpunar et al. [20]
developed the mathematical relations between feed rate, pitch, spindle speed and surface
roughness on the inner surfaces of Grade 2 titanium drawpieces defined using the RSM
and Central Composite Design (CCD). It was found that step size directly affects the sur-
face roughness on the inner surface of the component. Truncated cone specimens formed
with high values of tool rotational speed showed poor surface qualities. Vahdani et al. [9]
employed Design of Experiment (DoE) and ANOVA to study the formability of Ti-6Al-4V
titanium alloy sheet. The results showed that SPIF of the study material can be improved
by electric hot incremental sheet forming. The electric current and the lubricant type have
a significant effect on the maximum achievable forming depth. Najm and Paniti [21] used
artificial neural networks to explore and estimate the relative importance of SPIF parame-
ters during forming of AlMn1Mg1 aluminium alloy sheets. One of the key findings is that
tool characteristics (surface roughness, tool tip shape and tool material) play an essential
role in the accuracy of the final component. Maji and Kumar [22] developed RSM and an
Adaptive Neuro-Fuzzy Inference System (ANFIS) with a non-dominated sorting genetic
algorithm to predict the outcome of SPIF components. They found that surface roughness
(Ra) was most significantly affected by step height. Moreover, the formable wall angle
and deformed sheet thickness were mostly affected by feed rate. Grün et al. [12] applied
one-factor-at-a-time (OFAT) and DoE methods to investigate the strength of the correlations
between the kinematics of the tool and the formability of the Ti6Al4V sheets in friction stir
ISF. Tool rotation speed was found to be the dominant friction stir SPIF parameter. Step
depth and feed rate had a minor impact.

There are other reports investigating process parameters directly without using any
statistical procedures. Durante et al. [23] studied the influence of tool rotation in SPIF of
7075-T0 aluminium alloy pyramid frustums in terms of forming forces, surface roughness
and forming temperature. Temperature measurement highlights different heating of the
sheet and in particular a proportional dependence on the speed of rotation because of
the relative motion between the sheet and tool. Hussain et al. [24] studied the effect of
feed rate, tool diameter, pitch, and friction conditions on the formability of a commercially
pure (CP) titanium sheet varying wall angle conical frustum (VWACF). It was found that
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friction at the tool/blank interface does not affect the formability of CP titanium sheet. A
decrease in the feed rate increases the formability. Racz et al. [25] chose the most highly
recommended incremental forming process for Ti-6Al-4V titanium alloy cranioplasty plates
using a decision-making method based upon AHP (analytic hierarchy process). They
concluded that the accuracy of the wall angle was not significantly influenced by the tool
diameter and toolpath strategy. This can be explained by the fact that the low plasticity of
the Ti-6Al-4V titanium alloy does not lead to a significant degree of springback. Mohanraj
and Elangovan [26] investigated the effect of process parameters such as tool rotational
speed, feed rate, step depth and tool diameter on the geometrical accuracy and thinning in
SPIFed Ti-6Al-4V aerospace components both experimentally and using the finite element
method (FEM). Palumbo et al. [27] formed Ti-6Al-4V truncated cones with the aim of
investigating the effect of both the tool diameter/pitch ratio (D/p) and the wall angle on
the formability of the material. An analysis of shape errors, and thinning measurements
highlighted the fact that the parameter D/p plays a key role in SPIF. Naranjo et al. [28] con-
ducted a numerical campaign to study the formability of Ti-6Al-4V VWACF in a warm SPIF
process. The effect of temperature on formability was experimentally evaluated in terms of
the maximum achieved wall angle. Increase in temperature improved formability however
the temperature did not significantly influence the surface finish of drawpieces. The effects
of the forming temperature on material failure and more particularly on geometric accuracy
while forming a Ti-6Al-4V denture prosthesis were investigated by Sbayti et al. [29]. The
numerical models conducted showed that SPIF of a denture base made of the one of the
most frequently used alloys for biomedical applications has the potential for real medical
applications. In another paper, Sbayti et al. [30] numerically investigated the effect of
tool diameter and temperature on the failure and geometric accuracy of the acetabular
component of a hip prosthesis made of Ti-6Al-4V titanium alloy. The emerging trends
and development of SPIF in titanium and its alloys can be found in review papers by
Oleksik et al. [31] and Trzepieciński et al. [32].

In this manuscript, an I-optimal split-plot algorithm was used to build a response
surface design for SPIF of Ti-6Al-4V alloy. Due to the poor room-temperature formability of
a Ti-6Al-4V alpha-beta titanium alloy, deformation under high temperature is needed [29].
The main reason for its poor formability is low ductility at room temperature due to the
hexagonal close-packed (HCP) structure in α-phase. To overcome this limitation, the SPIF
experiments were conducted in warm conditions. Several authors have developed systems
for heating the sheet at the tool contact point by the Joule effect [8,9], friction stir heating [12],
laser-assisted heating [10,11], or by employing heat bands [33]. The non-uniform heating
drawback of these methods and poor efficiency of the heat bands method is overcome in
this paper by using combined oil-based and friction stir rotation-assisted heating of the
workpiece. The input parameters were tool rotational speed, feed rate, step size, and tool
rotation direction. To further improve sheet formability, a variable oil pressure in the die
cavity is considered. The mathematical relations are defined from the response surfaces to
predict both the maximum formable wall angle of the conical frustum with a varying wall
angle and the components of the forming force.

2. Materials and Methods
2.1. Material

Ti-6Al-4V titanium alloy sheet metal 0.8 mm thick was used as the test material. At
room temperature the microstructure of Ti-6Al-4V alloy mainly consists of hexagonal closed
packed (HCP) for the α and body centred cubic (BCC) for the β phases, respectively [34,35].
This two-phase (α-β) Ti-based alloy is the most frequently used Ti-based alloy in a variety
of applications, including blades, discs and rings of turbines and constructional elements of
airplanes. Ti-6Al-4V material is also commonly used as biocompatible implants in medicine
applications. It has high corrosion resistance, good weldability, excellent strength, and low
modulus of elasticity. However, due to its complex microstructure at room temperature,
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this alloy is commonly formed at elevated temperatures. The chemical composition of
Ti-6Al-4V alloy is given in Table 1 according to ISO 5832/3 [36].

Table 1. Chemical composition of Ti-6Al-4V (wt.%).

Al V Fe O C N H Ti

5.5 3.5 <0.3 <0.2 <0.08 <0.05 <0.0015 remainder

2.2. Experimental Setup

The tests for forming the drawpieces under combined oil-based and friction stir
rotation-assisted heating in warm SPIF were carried out with the use of a die consisting
of a housing and a blankholder ensuring the fixing of the displacement of the workpiece
flange. Structural diagram and view of the experimental setup are shown in Figure 1a,b,
respectively. The sheet metal clamp was secured by means of a set of screws. An electric oil
heater (Tempco Electric Heater Corp., Wood Dale, IL, USA) was placed in the die cavity
and the oil pressure was kept constant during forming by means of a valve. The forming
device was mounted on the bed of a PS95 vertical CNC milling machine (Makino Milling
Machine Co. Ltd., Tokyo, Japan). A workpiece with a diameter (TIMET Titanium Metals
Corp., Toronto, OH, Canada) of 100 mm was used to form conical frustums with varying
wall angles (Figure 2). A tungsten carbide tool (HHT – Hartmetall GmbH & Co. KG,
Dornstadt, Germany) with a rounded tip with a radius of 4 mm was mounted in the face
mill through an ER32 collet chuck (Haimer GmbH, Igenhausen, Germany). A grease-free
dry anti-friction spray of MoS2 (WEICON GmbH & Co. KG, Münster, Germany) was used
in the experiments. This lubricant is pressure and temperature resistant from −185 ◦C to
400 ◦C. Surfaces were cleaned and degreased prior to application.
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The experiments stopped after fracture of the part. Height of drawpieces h was
measured using height gauge. The maximum formable wall angle α was determined based
on the drawpiece height h:

α = arccos
41.2 − h

47.6
(1)

The axial force Fz and the horizontal components of the forming force Fx and Fy were
measured by a high-accuracy piezoelectric dynamometer (Kistler Holding AG, Winterthur,
Switzerland) with a maximum sample rate per channel of 200 kHz. Based on the two hori-
zontal components of the forming force Fx and Fy, the in-plane force Fxy was determined
according to the formula:

Fxy =
√

F2
x + F2

y (2)

The tool indented into the workpiece followed a spiral path. The tool trajectory
(Figure 3) was generated using NX CAM software (version 1938, Siemens Digital Indus-
tries Software, Plano, TX, USA) based on the numerical model of the desired shape of
the drawpiece.
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2.3. Plan of Experiments

Split-plot I-optimal design (Design Expert, version 12, Stat-Ease Inc., Minneapolis, MN,
USA) was used to determine the input parameters of the SPI process in order to maximise
the wall angle and to minimise the in-plane and axial forming force components. Design of
industrial experiments with complete randomisation is limited due to cost constrains. The
split-plot design, which involves a restricted randomisation, often provides a reasonable
alternative [37]. Split-plot designs were originally used in agriculture where plots of land
were subdivided in relatively large portions known as whole plots. Each of the levels
of the whole-plot factors were then randomly assigned to these plots. Whole plots were
further divided into smaller portions known as subplots, to which subplot factors were
applied [37]. In split-plot design, the hard-to-change factors act as whole-plot factors and
easy-to-change factors belong to sub-plots. I-optimal designs are noted for their integrated
variance. In I-optimal design, the computational model adjusts the response surface that
determines the optimal conditions, by minimising the mean differences (variances) of the
predicted numerical data of the independent variables. The model assumes the forecast of
missing combinations of independent variables of the experiment using the actual plan of
the experiment used for optimisation [38].

Initial range of input parameters for split-plot I-optimal design was determined in the
preliminary experimental studies of VWACF forming. A reasonable range of parameters
was determined considering the following problems. A rotational speed of the tool that
was too high caused excessive heating not only of the sheet but also of the tool. Therefore,
excessive build-up was observed in the tool tip surface. The maximum value of the feed rate
(2000 mm/min) was limited by the inertia of the MHWT (machine–holder–workpiece–tool)
system, causing strong vibrations when tool moving along a trajectory with small radius.
In addition, the feed must be considered together with the rotational speed to ensure
proper friction-assisted heating of the sheet metal. The device is structurally adjusted
(sealing, valve type) to work under a maximum oil pressure of 4 bar. Step size greater than
0.5 mm caused premature cracking of the drawpieces due to insufficient local heating of
the material by tool interaction.

The predominant input factors and range of their variation, which have most influence
on the maximum formable wall angle and components of the forming force, were identified
from preliminary experiments. The input parameters were oil pressure p, tool rotational
speed n, feed rate f, step size ap and direction of tool rotation (Table 2). The last parameter
was selected based on the study of Szpunar et al. [20], who found that the direction of tool
rotation in relation to the feed direction (anticlockwise and clockwise—Figure 4) influenced
the possibility of receiving drawpieces without the risk of cracking.
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Table 2. Factors and levels used in the split-plot I-optimal design *.

SPIF Parameter Factor Unit Change Low Level High Level

Oil pressure p a bar hard 1 4
Tool rotational speed n B rpm easy 100 1000

Feed rate f C mm/min easy 500 2000
Step size ap D mm easy 0.1 0.5

Tool rotation direction E - easy − +
* “+”—clockwise direction, “−”—counterclockwise direction.

Metals 2022, 12, x FOR PEER REVIEW 7 of 25 
 

 

rotational speed n, feed rate f, step size ap and direction of tool rotation (Table 2). The last 
parameter was selected based on the study of Szpunar et al. [20], who found that the di-
rection of tool rotation in relation to the feed direction (anticlockwise and clock-
wise—Figure 4) influenced the possibility of receiving drawpieces without the risk of 
cracking. 

The split-plot I-optimal design was composed of five levels, and 25 experiments 
(Table 3) were carried out to optimise the input variables. The points of the split-plot 
I-optimal design in the workspace are presented in Figure 5. 

Table 2. Factors and levels used in the split-plot I-optimal design *. 

SPIF Parameter Factor Unit Change Low Level High Level 
Oil pressure p a bar hard 1 4 
Tool rotational 

speed n 
B rpm easy 100 1000 

Feed rate f C mm/min easy 500 2000 
Step size ap D mm easy 0.1 0.5 

Tool rotation  
direction E - easy − + 

* “+”—clockwise direction, “−”—counterclockwise direction. 

 
(a) (b) 

Figure 4. Spindle rotation: (a) anticlockwise; and (b) clockwise. 

Table 3. Plan of experiments for split-plot I-optimal design (“+”—clockwise direction, 
“−“—counterclockwise direction of tool rotation). 

Number of 
Experiment 

Oil Pressure, 
Bar 

Tool Rota-
tional Speed, 

rpm 

Feed Rate, 
mm/min 

Step Size ap, 
mm 

Direction of 
Tool Rotation 

1 2 1000 1475 0.1 − 
2 2 100 2000 0.1 − 
3 2 514 1370 0.31 + 
4 2 1000 500 0.1 + 
5 2 590 1175 0.35 − 
6 2 100 2000 0.5 + 
7 2 100 500 0.5 − 
8 2 122 1108 0.1 + 
9 2 1000 1145 0.33 + 

10 2 559 2000 0.26 − 
11 4 100 2000 0.3 + 
12 4 595 620 0.5 + 
13 4 100 883 0.14 − 
14 4 757 1550 0.1 + 
15 4 1000 2000 0.37 − 

Figure 4. Spindle rotation: (a) anticlockwise; and (b) clockwise.

The split-plot I-optimal design was composed of five levels, and 25 experiments
(Table 3) were carried out to optimise the input variables. The points of the split-plot
I-optimal design in the workspace are presented in Figure 5.

Table 3. Plan of experiments for split-plot I-optimal design (“+”—clockwise direction, “−”—
counterclockwise direction of tool rotation).

Number of
Experiment Oil Pressure, Bar Tool Rotational

Speed, rpm
Feed Rate,
mm/min Step Size ap, mm Direction of Tool

Rotation

1 2 1000 1475 0.1 −
2 2 100 2000 0.1 −
3 2 514 1370 0.31 +
4 2 1000 500 0.1 +
5 2 590 1175 0.35 −
6 2 100 2000 0.5 +
7 2 100 500 0.5 −
8 2 122 1108 0.1 +
9 2 1000 1145 0.33 +

10 2 559 2000 0.26 −
11 4 100 2000 0.3 +
12 4 595 620 0.5 +
13 4 100 883 0.14 −
14 4 757 1550 0.1 +
15 4 1000 2000 0.37 −
16 1 581 538 0.5 +
17 1 550 500 0.1 −
18 1 1000 2000 0.5 −
19 1 100 1423 0.32 −
20 1 762 2000 0.12 +
21 3 1000 2000 0.5 +
22 3 100 500 0.27 +
23 3 680 500 0.2 −
24 3 1000 500 0.5 −
25 3 343 1565 0.5 −
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3. Results and Discussion
3.1. Split-Plot I-Optimal Design with RSM

Analysis of variance was used to determine the relationships between the input
variables and the specific output variable: maximum formable wall angle, in-plane forming
force Fxy and axial forming force Fz (Figure 6). Analysis of variance explains the probability
with which the selected factors may be the cause of differences between the observed
group means. The aim of the statistical analysis was to determine the significance of the
influence of individual parameters on the selected output variables using Fisher’s test
at a significance level α = 0.05. Based on the statistical tables for F (0.05), an analysis of
the significance of individual variables was performed. On the basis of the calculations
performed by means of the RSM, optimal responses were obtained by means of polynomial
regression models. Models are fitted using REstricted Maximum Likelihood (REML) and
p-values are derived using the Kenward–Roger approximation. Table 4 shows the results of
the experimental tests based on the split-plot I-optimal design.

Metals 2022, 12, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 6. Force components in SPIF. 

Table 4. Results of the SPIF forming. 

Number of 
Experiment 

Maximum  
Formable Wall Angle 

α, ° 

Maximum Axial 
Force 
Fz, N 

Maximum 
in-Plane Force  

Fxy, N 
1 60.9 1536 476 
2 48.2 1621 644 
3 55 2335 849 
4 65.1 1132 148 
5 62.9 2070 856 
6 53.8 2560 874 
7 54.6 2566 966 
8 51.7 1633 411 
9 56.1 1805 752 

10 48.1 2097 669 
11 52.2 2360 757 
12 52.7 2043 794 
13 53.8 1831 641 
14 52.3 1573 580 
15 66 2020 711 
16 42.3 2377 435 
17 44.8 1275 132 
18 45 2289 633 
19 44 2159 572 
20 40.6 1409 147 
21 43.3 2346 501 
22 40.3 2115 308 
23 52 1663 310 
24 65.5 1819 556 
25 45.7 2464 735 

The experiments stopped after fracture of the part. The highest wall angle α = 66° 
was obtained for run no. 15. The drawpiece fracture was observed on the side surface of 
the cone slightly below the drawpiece bottom (Figure 7). The greater the wall angle, the 
greater the tensile stresses in the drawpiece wall in the direction of downward movement 

Figure 6. Force components in SPIF.



Metals 2022, 12, 113 9 of 24

Table 4. Results of the SPIF forming.

Number of
Experiment

Maximum
Formable Wall Angle α, ◦

Maximum Axial Force
Fz, N

Maximum in-Plane Force
Fxy, N

1 60.9 1536 476
2 48.2 1621 644
3 55 2335 849
4 65.1 1132 148
5 62.9 2070 856
6 53.8 2560 874
7 54.6 2566 966
8 51.7 1633 411
9 56.1 1805 752

10 48.1 2097 669
11 52.2 2360 757
12 52.7 2043 794
13 53.8 1831 641
14 52.3 1573 580
15 66 2020 711
16 42.3 2377 435
17 44.8 1275 132
18 45 2289 633
19 44 2159 572
20 40.6 1409 147
21 43.3 2346 501
22 40.3 2115 308
23 52 1663 310
24 65.5 1819 556
25 45.7 2464 735

The experiments stopped after fracture of the part. The highest wall angle α = 66◦ was
obtained for run no. 15. The drawpiece fracture was observed on the side surface of the cone
slightly below the drawpiece bottom (Figure 7). The greater the wall angle, the greater the
tensile stresses in the drawpiece wall in the direction of downward movement of the tool.
Simultaneously with the increase in value of the wall angle, the share of circumferential
stresses acting on the edge of the bottom of the drawpiece decreases. Figures 8 and 9
show SEM micrographs of a fracture surface of Ti-6Al-4V VWACF. Observation of the
fracture surfaces of Ti-6Al-4V drawpieces showed that the destruction is a result of the
ductile fracture mode (Figures 8c and 9b). Ductile cracking occurs by nucleation and void
growth and usually begins with particles of a different phase [39]. During ductile fracture,
the formation and joining of cracks takes place due to the plastic flow of the workpiece
material. An underside view of the fracture surface, related to the inner surface of the
sheet, shows dimples similar to the ones due to ductile fracture under tensile stress [40].
Microcracks in the subsurface layer are observed on the inner surface of the drawpiece
(Figure 8b). Due to the severe impact of the tool tip, the formability of the material in the
subsurface layer in contact with the tool has decreased. As a result of the reduction in
formability, the material in the subsurface layer was susceptible to fracture. The outer part
of the fracture surface (the part in contact with the outer surface of the drawpiece), presents
small, partially formed dimples typical of shear load conditions (Figures 8a and 9d) [40].
This can be explained by various stress states. On the inner side of the part, the tip of the
tool pushes the material downward making tensile stress predominant, while, on the outer
side, the circumferential movement of the bottom tool and the related shear effect generate
shear-type surface fracture [41]. As mentioned, the fracture is first stretched due to the
meridional tensile stresses due to the downward movement of the tool, and then expanded
in the horizontal direction.
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Figure 9. SEM micrographs of the fracture surface of VWACF (maximum formable wall angle
α = 45◦): (a) cross-section of the fractured surface, (b) view of the near-edge inner surface of the
drawpiece, (c,d) magnification of the ductile fracture area.

The total force F and components of the total force Fxy and Fz for the VWACF with the
highest wall angle obtained, α = 66◦, are shown in Figure 10. As can be observed, the values
of the total force components vary cyclically. The initial stages of the forming process show
a very fast increase in the axial force value. At the same time, the in-plane force value was
several times smaller. As the downward movement of the tool increased, the value of the
drawpiece radius decreased and the tool began to affect the inner surface of the drawpiece
with a more and more lateral surface. Meanwhile, at the beginning of the forming process,
the lower surface of the tool tip was the most heavily loaded and caused a rapid increase in
axial force.
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3.2. Maximum Formable Wall Angle

To analyse the effects of the input control factors on the maximum formable wall
angle, a model of the response was developed. The adequacy of the RSM models that were
built was checked through REML and the coefficient of determination R2. REML analysis
is based on an iterative procedure for estimating the effects of constant and variance
components. This procedure begins by defining an initial set of sample parameters, which
then are used to estimate the next set of parameters, to replace the set of initial values. The
procedure is iterative until convergence is achieved. Then the values of the parameters
obtained in the next step differ so little from those obtained in the previous step in such
a way that the amount of this difference does not exceed the value of the convergence
criterion adopted [42]. The effects of tool rotational speed, feed rate, step size, oil pressure
and direction of tool rotation were analysed based on different plots.

Table 5 shows the results of REML analysis for maximum formable wall angle. In
REML, whole plots are further divided into smaller portions known as subplots, to which
subplot factors were applied [37]. The subplot F-value of 35.53 implied the model is
significant. Statistically insignificant factors that affect the process were above the p-value
of 0.1. A p-value of 0.05–0.1 indicates marginally significant factors, and a p-value below
0.05 indicates that the factor is significant in the process. Feed rate and tool rotational
speed are key parameters that affect the maximum formable wall angle. This is in line
with the research findings by Durante et al. [43]. A faster tool rotational speed improves
the sheet formability [44]. As Kumar et al. [44] concluded, the formability increase is due
to both a positive reduction of the friction effects at the tool sheet interface and localised
heating of the sheet material. Although oil pressure is a statistically insignificant factor in
the whole model according to the variance components that were estimated using REML
the interaction between oil pressure and both tool rotational speed and direction of tool
rotation in the subplot is significant. Therefore, to maintain hierarchy, oil pressure was
added in the final model.
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Table 5. REML analysis of the maximum formable wall angle.

Source Term df Error df F-Value p-Value Significance

Whole plot 1 2.99 0.4910 0.5341 not significant
a—oil pressure 1 2.99 0.4910 0.5341 –

Subplot 13 7.00 35.53 <0.0001 significant
B—tool rotational

speed 1 7.01 126.43 <0.0001 –

C—feed rate 1 7.00 83.76 <0.0001 –
D—step size 1 7.02 20.44 0.0027 –

E—direction of
rotation 1 7.00 58.36 0.0001 –

aB 1 7.00 21.41 0.0024 –
aE 1 7.00 26.87 0.0013 –
BC 1 7.01 37.26 0.0005 –
BE 1 7.00 28.87 0.0010 –
CD 1 7.00 5.95 0.0448 –
CE 1 7.01 28.12 0.0011 –
DE 1 7.00 29.31 0.0010 –
B2 1 7.00 25.72 0.0014 -
D2 1 7.00 5.49 0.0516 -

Table 6 presents the restricted maximum likelihood analysis results of the maximum
formable wall angle at a confidence interval of 95%. The capability of the REML model is
higher than 0.98 indicating that this model fits well with the experimental data. Moreover,
the adjusted R2 value of 0.9957 was in reasonable agreement with the R2 value of 0.9852.
The final equation in terms of coded factors is as follows:

αmax = 51.27 + 3.37a + 4.1B − 3.14C + 1.67D + 2.06E + 2.46aB + 2.04aE − 2.64BC
+ 1.83BE + 1.02CD − 1.83CE + 1.83DE + 3.14B2 − 1.44D2 (3)

Table 6. Fit statistics for REML analysis of the maximum formable wall angle.

Standard
Deviation Mean Coefficient of

Determination R2

Adjusted
Coefficient of

Determination R2

Coefficient of
Variance, %

7.40 51.88 0.9852 0.9957 14.27

The function that describes maximum formable wall angle (αmax) is given in Equations (4)
and (5) in terms of actual factors:

- clockwise direction of tool rotation:

αmax = 44.95474 − 0.675055a − 0.008857B + 0.005483C + 26.08930D
+ 0.003382aB − 0.000013BC − 0.002245CD + 0.000021B2 − 54.62115D2 (4)

- counterclockwise direction of tool rotation:

αmax = 36.14228 + 1.74114a − 0.002936B + 0.005024C + 38.08526D +
0.003382aB − 0.000013BC − 0.002245CD + 0.000021B2 − 54.62115D2 (5)

A comparison of the experimental values of the maximum formable wall angle with
the values predicted by the REML model is presented in Figure 11. The strong correlation
between the predicted and actual values is confirmed by a proportional, close distribution
of points along the regression line. The distribution of externally studentized residuals
along the horizontal line (Figure 12a,b) shows that the distribution of residuals in the model
is normal. The normal distribution of the residuals is necessary to verify the significance of
the parameters obtained.
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maximum formable wall angle.

In general, an increase in oil pressure and simultaneously in tool rotational speed
increases the maximum formable wall angle (Figure 13a,b). In the case of the anticlockwise
direction of tool rotation, larger maximum formable wall angles are obtainable (Figure 13b).
This is due to the fact that a higher oil pressure increases the pressure of the sheet against
the tool, thus increasing the actual contact surface. Thus, the increased contact area causes
more intensive heat generation.

Under these conditions, the high rotational speed of the tool is able to heat the material
more and increase its formability. Increasing the tool rotational speed for a given level
of feed rate increases the maximum achievable forming angle (Figure 14a,b). The values
of maximum formable wall angle during SPIF with a counterclockwise direction of tool
rotation (Figure 15b) for the same value of feed rate and step size are greater than during
SPIF with a clockwise direction of tool rotation (Figure 15a). A decrease in feed rate leads
to an increase in maximum formable wall angle.
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3.3. In-Plane Force Fxy

The results of REML analysis for in-plane force Fxy are shown in Table 7. The subplot
F-value of 28.31 implied that the model was significant. Step size is the most significant
factor that affects the in-plane force in SPIF. To complete the part, the tool needs to travel
continuously inside the profile, and this required more pushing of the material during
forming. The reaction of the material will be greater with high step size values, finally
increasing both the in-plane and axial forces [45]. Tool rotational speed and the direction
of tool rotation have a significant effect; however, this is slightly smaller than step size.
Among all the parameters, the analysis shows that feed rate has the least influence on the
in-plane force value. Direction of tool rotation is a statistically insignificant factor in the
whole model according to the variance components that were estimated using REML.

Table 7. REML analysis of the in-plane force.

Source Term df Error df F-Value p-Value Significance

Subplot 5 15.12 28.31 <0.0001 significant
B–tool rotational speed 1 15.12 9.67 0.0071 –

C–feed rate 1 15.08 8.01 0.0126 –
D–step size 1 15.27 105.75 <0.0001 –

E–direction of rotation 1 15.04 9.63 0.0073 –
C2 1 15.13 11.56 0.0039 -

Table 8 presents the statistics of restricted maximum likelihood analysis of the in-plane
force at a confidence interval of 95%. The capability of the REML model is higher than 0.90,
indicating that this model fits well with the experimental data. Moreover, the adjusted R2

value of 0.8614 was in reasonable agreement with the predicted R2 value.

Table 8. Fit statistics of REML analysis of the in-plane force.

Standard
Deviation Mean Coefficient of

Determination R2

Adjusted
Coefficient of

Determination R2

Coefficient of
Variance, %

169.13 578.28 0.9018 0.8614 29.25

The final equation in terms of coded factors is as follows:

Fxy = 655.44 − 62.87B + 54.95C + 217.94D + 48.24E − 128.24C2 (6)

The function that describes the in-plane force (Fxy) is given in Equations (7) and (8) in
terms of actual factors:

- clockwise direction of tool rotation:

Fxy = −208.51375 − 0.178402B + 1.01061C + 935.29813D − 0.000361C2 (7)

- counterclockwise direction of tool rotation:

Fxy = −146.07492 − 0.178402B + 1.01061C + 935.29813D − 0.000361C2 (8)

Figure 16 shows a comparison of the experimental values of the in-plane force with
the values predicted by the REML model. The in-plane force values are evenly distributed
around the diagonal. Similarly, externally studentized residuals are proportionally dis-
tributed throughout the range of predicted values of in-plane force (Figure 17a). A studen-
tized residual is the quotient resulting from the division of a residual by an estimate of
its standard deviation. The normal distribution of the externally studentized residuals is
proved by Figure 17b: the residuals lie close to a straight line.
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Reducing the rotational speed of the tool for both directions of tool rotation analysed
causes an increase in the in-plane force (Figure 18a,b). The highest in-plane force values are
predicted by the REML model in the middle range of feed rate changes and for the lowest
tool rotational speed. This phenomenon is observed for both directions of tool rotation.
However, in the case of the anticlockwise direction (Figure 18b), the predicted in-plane
forces are higher than that for the clockwise direction (Figure 18a).

A very similar trend of the isolines of values of in-plane force is observed after in-
creasing the step size to 0.5 mm (Figure 19a,b). The maximum value of in-plane force is
predicted for a feed rate of around 1400 rpm. This conclusion is in line with the results of
Baharudin et al. [45]. In the case of the anticlockwise direction of tool rotation (Figure 18b),
the area of high in-plane force values extends to the tool rotation range of 100–700 rpm.
This proves the increased resistance to movement of the anticlockwise rotating tool. Under
these conditions, the tool rotates in the opposite direction to the tool feed, intensifying the
frictional interaction of the tool tip with the inner surface of the drawpiece.
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3.4. Axial Force Fz

Table 9 shows the results of the REML analysis for the axial force Fz. The subplot
F-value of 44.58 implied that the model was significant. Tool rotational speed and step
size are key parameters that affect the axial force, followed by feed rate. The results of
the investigations of Baharudin et al. [45] also showed that the rotation spindle speed was
the most dominant parameter affecting the forming forces, followed by feed rate. The
interaction between oil pressure and step size in the subplot is significant. Therefore, to
maintain hierarchy, oil pressure was included in the final REML model. Direction of tool
rotation, as an insignificant parameter, was excluded from the subplot.

Table 10 presents the statistics of REML analysis results of the axial force at a confidence
interval of 95%. The capability of the REML model is higher than 0.94, indicating that
this model fits well with the experimental data. Moreover, the adjusted R2 value of 0.9172
was in reasonable agreement with the R2 value of 0.9483. From the REML results for the
responses, it was inferred that the statistical model developed was adequate. Therefore,
this model can be used to predict axial force in the design space.
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Table 9. REML analysis of the axial force Fz.

Source Term df Error df F-Value p-Value Significance

Whole-plot 1 2.52 0.0327 0.8700 not significant
a-oil pressure 1 2.52 0.0327 0.8700 –

Subplot 6 15.10 44.58 <0.0001 significant
B–tool rotational speed 1 15.56 42.77 <0.0001 –

C–feed rate 1 15.11 13.87 0.0020 –
D–step size 1 16.74 169.63 <0.0001 –

aD 1 14.66 7.77 0.0140 –
BC 1 15.58 4.37 0.0535 –
D2 1 14.17 6.05 0.0273 –

Table 10. Fit statistics of the REML analysis of the axial force.

Standard
Deviation Mean Coefficient of

Determination R2

Adjusted
Coefficient of

Determination R2

Coefficient of
Variance, %

113.06 1964.72 0.9483 0.9172 5.75

The final equation in terms of coded factors is as follows:

Fz = 2035.37 + 7.28a − 194.57B + 103.26C + 403.61D − 115.13aD + 74.46BC − 122.30D2 (9)

The function that describes axial force (Fz) is given in Equation (10) in terms of actual
factors:

Fz = 1060.64434 + 117.61102a − 0.675077B + 0.027296C + 4827.63140D −
375.50316aD + 0.000199BC − 3146.10137D2 (10)

A comparison of the experimental values of the axial force with the values predicted by
the REML model is presented in Figure 20a. The high correlation between the predicted and
actual values is confirmed by a proportional, close distribution of points along the regression
line. The distribution of externally studentized residuals along the horizontal line (Figure 20b)
shows that the distribution of residuals in the model is normal. The normal distribution of the
residuals is necessary to verify the significance of the parameters obtained.
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The change in oil pressure at a constant step size value did not have a significant
effect on the axial force (Figure 21a,b). However, at the lowest tool rotational speed
analysed of 100 rpm with an increase in step size, the axial force increased at a faster
rate (Figure 21a) than during forming with the highest tool rotational speed analysed of
1000 rpm (Figure 21b). In general, the smallest axial forces resulting from the pressure of
the sheet against the tool occur for the smallest pressure and the smallest step size. The
high concentration of isolines in Figure 22a,b proves the strong influence of tool rotational
speed and feed rate on the axial force. The interactional effects of these two parameters
are inversely proportional. The greatest axial force predicted by the REML model occurs
when forming with the lowest tool rotation speed and at the same time with the highest
feed rate. SPIF with high tool rotational speed and at the same time low feed rate led to a
low axial force.
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3.5. Numerical Optimisation

Desirability-based optimisation of the forming parameters was performed based on the
desirability of multiple responses [20,44]. The optimisation procedure combines individual
desirabilities into a single number and then searches for the greatest overall desirability [20].
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Maximum forming angle is an output response that needs to be maximised, and therefore
the higher the better is selected as an optimisation constraint. Limitations and constraints
for the optimisation of the maximum formable wall angle are shown in Table 11. As an
optimal value, the solution with the highest desirability value is chosen.

Table 11. Limits used and goals for optimisation (“+” – clockwise direction, “−“– counterclockwise
direction of tool rotation).

Constraint Name Goal Lower Limit Upper Limit

a—oil pressure, bar is in range 1 4
B—tool rotational speed, rpm is in range 100 1000

C—feed rate, mm/min maximise 500 2000
D—step size, mm maximise 0.1 0.5

E—direction of tool rotation is in range “−” “+”
Maximum formable wall angle α, ◦ maximise 30 90

Axial force Fz, N minimise 1132 2566
In-plane force Fxy, N minimise 132 966

Optimisation outcomes are shown in Figure 23. The higher up the ramp, the better
the desirability [20]. Considering maximum formable wall angle as output response, the
best optimised value of this parameter is 64.19◦, which can be obtained when formed with
1000 rpm spindle speed, 2000 mm/min feed rate, 0.38 mm step size, 4 bar oil pressure, and
counterclockwise direction of tool rotation.

Figure 23. Ramp plot for optimal responses.

The synergistic effect of high feed rate and tool rotational speed result in the most
intensive friction stir rotation-assisted heating in SPIF. A high value of oil pressure presses
the sheet against the tool tip, and as it is commonly known, greater pressure causes greater
friction force. The temperature in the contact zone is the basic parameter that determines
the possibility of forming α + β Ti-6Al-4V titanium alloy. Moreover, the toolpath climb
strategy, in which the tool and the toolpath move in opposite directions, was seen to provide
higher formability in terms of a maximum forming wall angle. This strategy, similar to
climb milling, provides a more intense friction interaction between the sheet and the tool
than the conventional SPIF strategy.
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4. Conclusions

In this paper, a split-plot I-optimal design was used to determine the input parameters
for the warm SPIF process on Ti-6Al-4V sheets in order to maximise the formable wall angle
and to predict the in-plane and axial forming force components. Models were fitted using
REstricted Maximum Likelihood (REML), and p-values are derived using the Kenward–
Roger approximation. The following main conclusions can be drawn from the research:

• Observation of the fracture surface of Ti-6Al-4V drawpieces showed that the destruc-
tion is the result of a ductile fracture mode. An underside view of the fracture surface,
related to the inner surface of the sheet, shows dimples similar to the ones due to
ductile fracture under tensile stress. The outer part of the fracture surface presents
small, partially formed dimples typical of shear load conditions.

• A simultaneous increase in oil pressure and tool rotational speed increases the maxi-
mum formable wall angle. In the case of the anticlockwise direction of tool rotation,
larger maximum formable wall angles are obtainable.

• Feed rate and tool rotational speed are key parameters that affect the maximum
formable wall angle.

• The high tool rotational speed is able to heat the material more and increase its
formability. Increasing the tool rotational speed for a given level of feed rate increases
the maximum achievable forming angle.

• Step size is the most significant factor that affects the in-plane SPIF force. Tool rota-
tional speed and the direction of tool rotation have a significant effect; however, it is
slightly smaller than step size.

• Tool rotational speed and step size are the most significant factors that affect the axial
force, followed by feed rate.

• The change in oil pressure at a constant step size value did not have a significant effect
on the axial force.

Future research should determine the influence of process parameters, in particular
oil pressure and direction of tool rotation, on the shape and dimensional accuracy of
the drawpieces. In addition, the effect of process parameters on the surface roughness
parameters (Ra and Rz) of the inner and outer surfaces of drawpieces will be examined.
Future studies, including the evaluation of residual stress gradients during both climbing
and conventional SPIF, are therefore necessary to obtain a better understanding of the
processes and behaviours affecting warm forming of Ti-6Al-4V Ti-based alloy sheets.
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