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Abstract: Six conventionally cast chromium-rich titanium-containing alloys based on cobalt and
nickel with various Co/Ni ratios were considered. They were tested in oxidation in air at 1250 ◦C for
70 h in a thermo-balance. The mass gain curves were exploited to specify different types of kinetic
constants as well as several parameters characterizing the oxide spallation occurring during cooling.
The obtained results show that, the higher the Ni content, the slower the mass gain and the better
the quality of the protective external chromia scale. Secondly, no dependence of the oxide spallation
characteristics on the Co content was clearly noted. Globally, the isothermal oxidation behavior
becomes better when Ni is more and more present at the expense of Co. Titanium seems to be playing
a particular role in the process of oxidation. It notably leads to the presence of an external thin TiO2

continuous scale beyond the chromia scale. The thermogravimetry records were numerically treated
to determine the parabolic constant and the chromia volatilization constant. The values of these
constants evidenced a double tendency: chromia growth acceleration and chromia volatilization
slow-down. These trends are to be confirmed and further investigated.

Keywords: cobalt and nickel-based superalloys; titanium; high temperature; isothermal oxidation;
oxide spallation; oxidation products

1. Introduction

Many applications—industrial or transportation engines, for instance—involve, in
service, local temperatures that can reach very high levels. At the same time, the con-
cerned components may be constantly or cyclically subjected to significant constrains,
and materials may suffer severe deformation, cracking and rupture [1–3]. Among the
superalloys usually considered for such applications, there are the nickel-based {gamma
prime}-reinforced single-crystalline superalloys. These ones are still the best performing
metallic materials for service at a temperature around 1000 ◦C under severe stress condi-
tions. However, they cannot be used at 1100 ◦C and even a little above. This is due to the
disappearance of the γ’ precipitates that are at the origin of their superior mechanical resis-
tance [3,4]. Refractory alloys based on metals with high melting points, such as niobium,
molybdenum or tantalum, still need to be improved before industrialization. Furthermore,
their densities will inevitably weigh down the aircrafts or increase the centrifugal stresses
affecting the pieces subjected to high-speed rotation (e.g., turbine blades). (Refractory)
High Entropy Alloys—(RHEA) HEA—are rather novel, and they need also to mature as
do other emerging alloys, such as γ’-strengthened CoAlW alloys. In addition, generally,
ceramics cannot be chosen for mobile pieces because of their lack of ductility and toughness
at all temperatures.

Fortunately, some classical foundry alloys based on cobalt with the presence of nickel
appear as provisional alternative solutions for the needs of metallic alloys able to honorably
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resist the applied mechanical solicitations and the chemical aggressivity of the working
environment. This is due to stable carbides and their high levels of chromium contents [5,6],
respectively. Monocarbides involving high molar mass metals are certainly among the
most interesting carbides in terms of their strengthening effect and morphology stability at
a high temperature. This is notably the case of the tantalum monocarbides (TaC) that have
been exploited in cobalt-based superalloys for a long time (e.g., [7–9]). Hafnium monocar-
bides formed in superalloys based on various elements, including Co, Ni . . . [10–12], are
other examples.

Titanium is also a metal that is able to form MC carbides. A particular interest of
this element is its atomic mass, which is much lower than the tantalum and hafnium ones.
Using it instead of Ta or Hf as an MC-former element should lead to a slight lowering in
the volume mass of the alloys. Script-like-shaped eutectic TiC carbides were successfully
obtained in cobalt-based alloys [13,14]. This morphology was earlier identified to be partic-
ularly favorable to high creep resistance at elevated temperatures in the cases of TaC [9]
and HfC [10,12]. Concerning specifically TiC, one may mention that the polycristalline cast
chromium-rich alloys based on nickel and cobalt and containing TiC carbides were recently
tested by us in creep. This was done at 1200 ◦C during about 100 h using a three-point
flexural bending test machine for a resulting applied constant stress of 7.5 MPa. The rates of
movement of the central point measured during the second stage of creep were comprised
between 1 and 3 µm per hour. These deformation rates are interestingly low for alloys
belonging to this category for such a high-temperature test.

Unfortunately, titanium is also a metal that is very easy to oxidize, as well as prompt
to form nitrides. When Ti is present in alloys with content able to lead to TiC carbides
in quantity high enough to strengthen them against creep, titanium may influence the
global oxidation behavior of the alloys at a high temperature. A first study was recently
undertaken concerning oxidation at 1200 ◦C for 170 h in laboratory air for a series of
chromium-rich alloys based on nickel and cobalt and containing titanium and carbon in
equal molar contents [15]. This showed that, despite what was possible to fear with the
presence of titanium, the resistance of the alloys was globally good, even for a high level
of the test temperature. Chromia was the main oxide present as a continuous external
oxide scale. It was also observed that titanium formed oxides internally but also externally.
Indeed, besides some dispersed small oxides involving Ti appearing in the subsurface, an
outer continuous thin scale of TiO2 formed beyond the thick chromia scale.

The topic of the present work is to complete the knowledge regarding the oxidation
behavior at an elevated temperature for the same basis of alloys. This was done by rising
the test temperature to a temperature 50 ◦C higher (thus, now close to the start of melting
of several of these alloys) and by using thermogravimetry. The objectives are several.
First: are these alloys still resistant against oxidation at 1250 ◦C? and what are their mass
gain kinetics? Does catastrophic oxidation occur for some of the alloys? What are the
kinetics of mass loss by chromia volatilization (and, as a corollary: if TiO2 is present again
with the same distribution as at 1200 ◦C, is there really an effect of this outer scale on the
volatilization of chromia?)? To answer these questions, new samples of alloys, similar
to the ones of the series previously studied at 1200 ◦C, were prepared and tested in a
thermo-balance at 1250 ◦C.

2. Materials and Methods
2.1. Chemical Compositions of the Studied Alloys, Elaboration and As-Cast Characteristics

The six alloys considered in this work having the same chemical compositions as the
ones previously studied at 1200 ◦C were elaborated. They are based either on nickel alone,
on cobalt alone or on a mix of both elements. Concerning the other elements, they have the
following common characteristics:

- 25 wt.% Cr for promoting a chromia-forming behavior, and thus an oxidation resis-
tance high enough
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- 0.4 wt.% C to allow obtaining carbides in a quantity high enough for an efficient
mechanical strengthening, but not continuous for preserving good levels of toughness
and ductility

- 1.6 wt.% Ti for obtaining a molar fraction in Ti equal to the one in C.

All alloys were obtained by melting pure elements (Alfa Aesar, Haverhill, MS, USA,
purity >99.9%) under 300 mbars of pure Argon in a medium frequency induction furnace
(CELES, Lautenbach, France). The values of the main operating parameters were: input
voltage increased up to 5 kV, frequency of about 100 kHz, 5 min of stage in liquid state
before cooling). Compact ingots weighing 40 g were obtained. Each ingot was cut in several
parts using a Buehler metallographic saw.

A part of each ingot was embedded in resin, ground and polished to obtain metal-
lographic samples with a mirror-like surface. The microstructures were observed with a
Scanning Electron Microscope JEOL JSM 6010LA (JEOL, Tokyo, Japan) in the Back Scat-
tered Electrons mode (BSE, Mumbai, India) for an acceleration voltage equal to 20 kV. The
chemical compositions were controlled using the Energy Dispersion Spectrometer attached
to the SEM.

2.2. Oxidation Tests and Kinetic Exploitation of the Mass Variation Records

For each alloy, a 3 × 10 × 10 mm3 parallelepiped with ground faces, and smoothed
edges and corners, was prepared by cutting followed by surface preparation using 1200-grit
SiC papers. This parallelepiped was hanged in the hot zone of the resistive furnace
of a TGA92 thermobalance (SETARAM, Lyon, France). It was subjected to heating at
+20 ◦C min−1, followed by a 70 h isothermal stage at 1250 ◦C and to a cooling at−5 ◦C min−1.
During the whole thermal cycle, the sample was present in a continuous flow (1.5 L h−1) of
dry synthetic air (80% N2-20% O2).

The isothermal mass gain curves were plotted versus time to consider their shapes first.
In the case of obvious parabolic kinetic suggesting that oxidation may follow Wagner’s
law, a specific numerical treatment was applied to specify the parabolic and chromia
volatilization constants. The used procedure was described in an earlier work [16]. A first
determination was classically done based on Equation (1) by plotting mass gain versus the
square root of time. The slope of the corresponding regression straight line was measured,
and the value of the parabolic constant Kp (noted Kpa with “a” for “apparent”) was
deduced. The second determination, based on Equation (2), was done by plotting the mass
gain multiplied by its time-derived value versus the opposite value of mass gain. The
equation of the obtained regression straight line allowed determining the real parabolic
constant Kpr (“real” because the absence of minimization due to the chromia mass loss)
and the chromia volatilization constant Kv. These two equations are:

m =
√

2×Kpa ×
√

t (1)

m× dm
dt

= Kpr − Kv ×m (2)

where m, the mass gain per surface unit area, is function of time, t is time, Kpa is the
apparent parabolic constant, Kpr is the real parabolic constant and Kv is the chromia
volatilization constant.

2.3. Post Mortem Part of the Oxidation Characterization

The oxidized alloys were subjected to X-ray diffraction (Bruker D8 Advance diffrac-
tometer) to help for the identification of the oxides formed externally or internally (close to
the surface). Thereafter, a gold layer was deposited—using a JEOL cathodic pulverizator—
for giving electrical conductivity to the oxidized surfaces. These ones were observed with
the SEM in Secondary Electrons mode (SE) and characterized by Energy Dispersion Spec-
trometry (EDS) X-mapping. Finally, the oxidized samples were covered all around with a
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metallic shell formed by electrolytic deposition of nickel in a Watt’s bath heated at 50 ◦C
(1.6 A/dm2 for 2 h).

Protected by this nickel shell, the oxidized samples were sectioned using the Buehler
metallographic saw. The two parts were embedded in a cold resin mixture (ESCIL, Chassieu,
France, resin and hardener). The resulting metallographic samples were ground and
polished until obtaining cross-sectional mirror-like samples. These ones were observed
in the Back Scattered Electrons mode (BSE) under 20 kV): external oxides, internal oxides,
subsurface affected by oxidation, deep part of the alloy (not affected by oxidation). EDS
spot analyses were performed under 20 kV to identify the natures of the oxides and
their chemical compositions, as well as the changes in chemical composition of the alloy
in extreme surface and in subsurface. Notably, EDS elemental concentration profiles
were acquired from the extremal alloy surface toward the bulk, over about 400 µm with
13 successive spot analyses (distance between two successive points: 35 µm).

3. Results
3.1. The Obtained Alloys

The SEM observations, in BSE mode, of the metallographically prepared samples
showed that the microstructures of the alloys are similar to the ones of the samples previ-
ously studied in oxidation at 1200 ◦C [15]: all the initial microstructures are dendritically
structured and contain more or less dark particles present in the interdendritic zones
(Figure 1). EDS spot analyses were carried out with thin electrons beam (spot size rated to
50 according to the notation of the SEM manufacturer) on the coarsest carbides found in the
metallographic samples. The obtained results demonstrated that three types of carbides are
present: TiC in all the alloys but especially in the cobalt-richest ones (black script-shaped or
black compact particles), Cr23C6 in the Ni-containing Co-based alloys (pale grey compact
particles) and Cr7C3 in the Ni-richest alloys (acicular dark grey particles). The EDS full
frame analyses carried out for the ×250 magnification demonstrated that the targeted
chemical compositions were successfully obtained in the cases of the elements with high
molar mass (Tables 1 and 2). They also corresponded well to the chemical compositions
of the samples previously tested at 1200 ◦C. The carbon content can be considered as
being well-respected as well taking into account the surface (or volume) fractions of the
obtained population of carbides. Indeed, these fractions are typical of the ones of many
0.4 wt.%C-containing alloys of a similar type studied earlier (the carbon contents of which
were verified by spark spectrometry).

3.2. Mass Gain during Isothermal Oxidation

The mass gains during the isothermal stage at 1250 ◦C for 70 h are plotted together
versus time in Figure 2. All the curves present a general shape that evocates a parabolic
kinetic, except the one corresponding to the Co-richest alloy (5Co0NiTi). For the later alloy,
the mass gain kinetic became linear about 20 h after the beginning of the isothermal stage.
If one excludes the 5Co0NiTi curve, all the other curves are regularly ordered, from the
upper ones to the lower ones, when more and more nickel is present (and less and less
cobalt is present). The same observation can be done for all six curves by considering the
final mass gains after 70 h of isothermal oxidation.

Different characteristics concerning the isothermal kinetic were noted on the two
types of curves. The analysis of the isothermal part of the mass gain files was carried out
according to a procedure presented elsewhere [16]. This led to the values of the different
kinetic constants displayed in Table 3.

A linear constant Kl was specified at the beginning of the isothermal stage by de-
termining the slope of the straight line tangential to the {mass gain versus time}-curves
plotted in Figure 2). When more and more nickel is present at the expense of cobalt—at
least from 4Co1NiTi to 0Co5NiTi—one can see that this linear constant Kl decreases from
about 120 to 30 × 10−8 g cm−2 s−1. At the same time, the value of the apparent parabolic
constant classically determined, Kpa, also decreases, from about 370 × 10−12 g2 cm−4 s−1
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(5Co0NiTi) to 200 × 10−12 g2 cm−4 s−1 (10−12 g2 cm−4 s−1 (0Co5NiTi). The real parabolic
constant, Kpr, also decreases from the 5Co0NiTi alloy to the 0Co5NiTi one: from about
730 × 10−12 g2 cm−4 s−1 to 290× 10−12 g2 cm−4 s−1. To finish, from 5Co0NiTi to 0Co5NiTi
again, the volatilization constant, which represents the mass loss due to the volatilization of
chromia (Cr2O3) re-oxidized to form a volatile oxide (CrO3), also decreases. However, this
decrease is less regular than observed for the parabolic constant of the two types, apparent
or real.
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Figure 1. The as-cast microstructures of the six alloys: 5Co0NiTi (a), 4Co1NiTi (b), 3Co2NiTi (c),
2Co3NiTi (d), 1Co4NiTi (e) and 0Co5NiTi (f); SEM/BSE micrographs.

Table 1. Chemical compositions of the three Co-richest alloys (confirmed by EDS full frame analysis; wt.%).

Co-Based Alloys Co (Bal.) Ni Cr Ti C

5Co0NiTi (73) 0 25 1.6 0.4 *
4Co1NiTi (58) 15 25 1.6 0.4 *
3Co2NiTi (44) 29 25 1.6 0.4 *

* Carbon cannot be analyzed in full frame EDS; content supposed well-respected considering the obtained carbides
surface fractions.
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Table 2. Chemical compositions of the three Ni-richest alloys (confirmed by EDS full frame analysis; wt.%).

Ni-Based Alloys Ni (Bal.) Co Cr Ti C

2Co3NiTi (44) 29 25 1.6 0.4 *
1Co4NiTi (58) 15 25 1.6 0.4 *
0Co5NiTi (73) 0 25 1.6 0.4 *

* Carbon cannot be analyzed in full frame EDS; content supposed well-respected considering the obtained carbides
surface fractions.
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Figure 2. The mass variation curves plotted versus time to observe the mass gain evolution for all the
six alloys during the isothermal stage.

Table 3. Values of the kinetic constants determined for the isothermal oxidation using the classical
method (5Co0NiTi) or the complete method taking chromia volatilization into account (the five
other alloys).

Co-Rich Alloys Kl × 10−8 g/cm2/s Kpa × 10−12 g2/cm4/s Kpr × 10−12 g2/cm4/s Kv × 10−10 g/cm2/s

5Co0NiTi 79.1 368 (728) * (914)
4Co1NiTi 122 (272) * 460 188
3Co2NiTi 89.4 (259) * 404 170

Ni-rich alloys

2Co3NiTi 81.8 (222) * 394 209
1Co4NiTi 64.7 (206) * 352 190
0Co5NiTi 30.0 (197) * 292 132

*: between parentheses and written in italics: corresponding indicative values of Kpa, Kpr and Kv obtained by the
other determination method (less representative).

3.3. Characterization of the Oxidized States
3.3.1. Nature and Morphologies of the External Oxides Remaining on Surface

Extracted out of the thermo-balance and from the alumina-gained platinum suspen-
sion, the oxidized samples were first subjected to X-ray diffraction. Two diffractograms are
given as examples in Figure 3 (5Co0NiTi) and Figure 4 (3Co2NiTi) for the Co-richest alloys,
and in Figure 5 (2Co3NiTi) and Figure 6 (0Co5NiTi) for the Ni-richest alloys.
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Chromia (Cr2O3) is present on the surface of all the oxidized samples. However, one
must also notice the presence of the titanium oxide TiO2 for all the alloys. Cobalt oxides
(CoO) and the spinel involving cobalt and chromium (CoCr2O4) are also noticed, but only
for the Co-richest alloys. The Ni-richest alloys, after oxidation, are all free of these oxides
involving cobalt. XRD only detected the Cr2O3 and TiO2 oxides. One must also note that
the diffraction peaks corresponding to the matrixes of the alloys are systematically found
in the diffractograms: they are the contributions of the zones denuded by oxide spallation.

After gold deposition, the oxidized samples, with now good electrical conductivity on
the surface, were studied using the SEM and by X-ray cartography. Two examples given in
Figure 7 for the Co-rich alloys (represented by the 3Co2NiTi alloy) and in Figure 8 for the Ni-
rich (represented by the 2Co3NiTi alloy) allow distinguishing the spinel oxides involving
cobalt, chromia, TiO2 and zones of the alloy’s surface denuded by oxide spallation.
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CoCr2O4 and Cr2O3 zones).

3.3.2. Cross-Sectional Observations and Analyses of the External and Internal Oxides

After cross-sectional preparation, the oxidized samples were examined in the thick-
ness of the external oxides and in the subsurface. Cross-sectional views at two different
magnifications are available for the Co-richest alloys in Figure 9, and in Figure 11 for the
Ni-richest alloys. These micrographs were taken specifically where spallation did not occur
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(maximal and constant thickness observed all around the cross-section). Spot EDS analysis
allowed identifying the external and internal oxides. In all cases, there is a thick chromia
scale covering the alloys continuously. An upper thin layer of CoO (or (Co,Ni)O) covers
the chromia scale for the Co-richest alloys. In the case of the Ni-richest alloys, there are
fragments of an outer TiO2 scale, which isolates chromia from the atmosphere. The irregular
boundary observed between chromia and the subjacent alloy, for the Co-richest alloys,
suggests an inwards oxide growth (mainly anionic). For the Ni-richest alloys, the frontier is
obviously more regular, and it indicates that the oxide growth is outwards (mainly cationic).
Internal oxidation also occurred for all the alloys, with, finally, the presence of small oxides
of different species: Cr2O3, TiCr2O4 and TiO2.
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Figure 11. Cross-sectional observation of the external oxides and the subsurfaces affected by oxidation
(Ni-richest alloys); white dotted arrows: line scans corresponding to the concentration profiles
presented in Figure 10; (a) and (A): 2Co3NiTi, (b) and (B): 1Co4NiTi, (c) and (C): 0Co5NiTi.

The formation of external and internal oxides of chromium (mainly chromia) and of
titanium (mainly TiO2) has necessarily impoverished the subsurface in these two elements.
EDS spot analyses were acquired along a straight line perpendicular to the alloy surface to
establish concentration profiles. The ones concerning chromium are presented in Figure 10.

The Cr-depleted depths are of about 200 µm for all the alloys. Differences between
alloys appear when one considers the minimal Cr content measured in the subsurface very
close to the oxidation front: here, for the Co-richest alloys, the local chromium content
has decreased to about 15 wt.%, while this is only 18 to 20 wt.% for the Ni-richest alloys.
Consequently, the average concentration gradient is greater for the Co-richest alloys than
for the Ni-richest alloys.
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4. Discussion

A recent work [15] showed that the resistance against oxidation, in air at 1200 ◦C for
a long time, of a series of alloys analogous to the six studied alloys was correct for such
an elevated temperature, and even good for the majority of them. This study completes
this observation by demonstrating that it is again the case when the temperature is 1250 ◦C.
This was certainly not known in advance considering that the additional 50 ◦C was possibly
able to significantly influence the behavior in a negative way. Indeed, it was possible, and
even probable, that, at 50 ◦C above a temperature already particularly high for such rather
simple alloys, the oxidation would become catastrophic. Thus, the observation that it was
not the case and that the alloys resisted as they resisted at the lower temperature, 1200 ◦C,
is a new and interesting result. Furthermore, the chromium content in the extreme surface
close to the oxidation front is still higher than 15 wt.% Cr—or equal to this value in the
worst cases—as shown by the concentration profiles. Consequently, there is still a potential
of oxidation resistance for durations longer than 70 h, at least for five of the six alloys since
the start of local rapid oxidation was detected for the 5Co0NiTi alloy.

Here, the oxidation test was not done in a furnace but in a thermo-balance, which
allowed specifying the isothermal oxidation kinetic. Almost all the mass gains were globally
parabolic, indicating that a thickening external oxide scale was limiting oxidation more and
more. In addition, these kinetic data allowed seeing that the base element plays a role on
the oxidation rate: the higher the nickel content (at the expense of cobalt), the slower the
mass gain.

During cooling, a rather intensive oxide spallation occurred obviously. Nevertheless,
there are many locations on the surface where the whole scale thickness achieved at the
end of the isothermal scale is preserved. Here, it was possible to characterize the oxidation
products formed externally as well as the ones formed internally. The post mortem charac-
terization of the oxidized samples showed that this oxide scale was principally constituted
of chromia. This showed, in addition, that a continuous outer TiO2 scale was present. This
TiO2 scale was much thinner than the chromia one. It was extended along the outer side of
the chromia scale, and it thus isolated chromia from air. This double-layer constitution of
the external oxide scale was also previously observed after oxidation at 1200 ◦C [15].

The presence of TiO2 in the external scales formed on superalloys oxidized at a high
temperature was earlier noticed in several works, but for oxidation temperatures lower
than 1200 ◦C. In some cases, TiO2 was mixed with Al2O3, Cr2O3 and spinels [17–21],
but not with the shape and locations observed at 1200 ◦C [15] and at 1250 ◦C in the
present work. In other cases, the presence of TiO2 was effectively noticed at the outer
surface of an alumina scale [22,23] or a chromia scale [24] for other oxidized alloys (RHEA,
nickel-based alloys . . . ).

It was earlier reported that the oxide scale grows by the outward diffusion of Cr and
Ti and ingress of O [22,25], and that Ti induces a doping effect that enhances the growth
rate of chromia [20,24]. It was also seen that Ti can diffuse through chromia [26,27]. When
temperatures of oxidation become higher, this favors the location of Ti on the external
side of the external scale at the expense of its presence inside the chromia scale [20,28]. In
the present case, taking into account the elevated temperature of the tests (at least 100 ◦C
higher than all the temperature tests of these previous works), it is not surprising that a
TiO2 outermost scale covered the chromia scales of all six of the studied alloys.

The presence of this outer continuous scale of TiO2, which seemingly isolates chromia
from the air, suggests that a protection effect may be expected, notably concerning the
re-oxidation of chromia into gaseous CrO3. This phenomenon, which becomes possible
as soon as the temperature is higher than 1000 ◦C in air at the atmospheric pressure, is
expected to be intensive for 1200 ◦C and above. Such an effect should be beneficial since
chromia should be preserved from overconsumption, which can be dangerous for the
long-term sustainability of the alloys.

To verify whether chromia was effectively protected from volatilization, one can
consider the obtained values of the volatilization constant (Table 3) and compare them
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to the reference ones. No Kv values were available for Kv in one case [16], a study in
which the dependences on the temperature of real Kp and Kv were investigated for a
model chromia-forming Ni–30Cr alloy. From the Kp and Kv values at 1100 ◦C, 1200 ◦C
or 1300 ◦C and from the corresponding activation energies that were determined in this
work (242 kJ mol−1 for Kp and 104 kJ mol−1 for Kv [16]), one deduced the values of both
constants for 1250 ◦C. For the reference Ni–30Cr alloy, this gave 210 × 10−10 g cm−2 s−1

for Kv, which tends to be higher than the values of Kv obtained in the present work. This
suggests that the presence of TiO2 covering the outer side of the chromia scale effectively
limits its volatilization. Unfortunately, it seems that this point was not really studied before
today, at least to our knowledge.

At the same time, the estimation for 1250 ◦C of the real Kp value of the reference
Ni–30Cr alloy leads to 128 × 10−12 g2 cm−4 s−1, which is significantly lower than the real
Kp values obtained for the alloys of the present study. Two reasons can be considered for
that: the additional mass gain associated with the TiO2 growth (added to the mass gain
due to the chromia growth), and perhaps the acceleration of the Cr diffusion through the
chromia scale due to the doping effect of Ti [20,24].

To summarize, one can say that the good general oxidation resistance of these alloys
earlier observed at 1200 ◦C [15] is still present at 50 ◦C. The presence of Ti, which was
expected as deleterious for the global oxidation behavior, may have a contrasted influence:
it possibly favored the diffusion through the external scale of the ionic species involved
in the oxidation reaction (by a doping effect), while, at the same time, it was able to form
an outer TiO2 continuous scale, possibly protecting the chromia from volatilization. The
first observations of this double effect were carried out here by considering the obtained
values of the parabolic constants and the volatilization constants. These ones tend to
be higher than (and, respectively, lower than) the Kp and Kv constants at 1250 ◦C of a
chromia-forming model alloy.

5. Conclusions and Outlooks

In oxidation at a high temperature, the studied alloys behaved at 1250 ◦C as well as
1200 ◦C. Unlike these prior tests at 1200 ◦C, thermogravimetry was used in the present
investigations. This allowed specifying, for this temperature of 1250 ◦C, the oxidation
constants characterizing separately the mass gain by oxide growth and the mass loss by
re-oxidation in volatile oxide of a part of the formed chromia. Seemingly, the presence
of titanium influences both phenomena: the acceleration of the chromia growth (higher
Kp) and the slow-down of chromia volatilization (lower Kv). If the first effect of titanium
was already known (doping effect of titanium for ion diffusion through chromia), the
second seems to have never been evocated: the protective effect of the outermost TiO2 scale
preserving chromia from volatilization, although such outermost TiO2 layer was earlier
observed for various superalloys or refractory alloys containing titanium. This is the use of
thermogravimetry and a numerical treatment to specify Kp and Kv simultaneously, which
allowed here observing this possible effect. Now, deeper investigations can be envisaged,
first to confirm this suspected effect and second to better know how and how fast this
outermost TiO2 develops; is it growing from the earliest times of oxidation (end of heating,
first time of isothermal stage) or only after a delay? When does it become continuous?
Oxidation tests stopped after different durations may allow answering such questions. In
the case of confirmation, Ti additions to different kinds of superalloys for promoting the
TiO2 formation may be considered for protecting chromia from too-rapid volatilization.
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