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Abstract: The friction stir lap welding of AA5083 H111 aluminum alloy and S355J2 grade DH36
structural steel was investigated. A polycrystalline cubic boron nitride with tungsten and rhenium
additives tool was used. According to visual inspection, radiographic examination, and tensile
test, it was observed that the best results were obtained for rotation speeds of about 700–800 rpm,
with a feed speed ranging between 1.3 and 1.9 mm/s. From the fatigue tests, it is possible to state
that there was a preferential propagation of cracks in the part of the aluminum alloy base material.
Furthermore, a different response to fatigue stress for samples extracted from the same weld at
different positions was observed, which introduces an overall variability in weld behavior along the
welding direction. The specimens obtained in the second part of the weld endured a larger number
of cycles before reaching failure, which can be related to progressively varying thermal conditions,
dissipation behavior, and better metal coupling as the tool travels along the welding line.

Keywords: friction stir welding; mechanical properties; dissimilar aluminum-steel lap joints

1. Introduction

In recent years, aluminum has experienced a high demand from industries because of
its outstanding properties, including high resistance-to-weight ratio, ductility, and high
corrosion resistance, which allowed it to be exploited for shipbuilding, automotive ap-
plications, and aeronautics. Because of their high strength and lightweight properties,
magnesium-based aluminum alloys enable the production of highly performing and ex-
tremely durable hulls, decks, and bulkheads. In particular, Aluminum 5083 is known
for exceptional high-resistance performance in harsh environments, including seawater
and industrial-chemical environments. It also retains exceptional strength after welding.
Typical applications are shipbuilding, rail cars, vehicle bodies, tip truck bodies, mine skips,
and cages and pressure vessels.

Despite the mentioned benefits and the large use for different assemblies, fusion weld-
ing of aluminum alloys is challenging since it can lead to metallurgical defects, mechanical
discontinuities, and reductions in mechanical properties. Solid-state welding introduces
the key advantage of avoiding the fusion and limiting thermal effect on material properties,
leading to improved weld quality.

Within naval sector applications, the use of steel is also well recognized because of
several advantages including weight reduction of about 40% compared with a similar
wooden structure, simplicity of structuring, larger load capacity, larger impermeability of
the planking and absence of caulking, higher durability, and ease of repair [1]. For example,
S355J2 grade DH36 structural steel is used in the naval sector as a structural steel for the
hull; it possesses good characteristics of toughness, machinability, and weldability, together
with a good impact resistance (also at sub-zero temperatures).

Joining aluminum to steel enables the ability to design and fabricate components
whose properties are customized to locally varying environmental conditions. However,
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dissimilar joining is highly affected by differences in thermal properties, limited mutual
solubility, and metallurgical compatibility. These challenges have raised the importance of
assessing the use of solid-state approaches, like Friction Stir Welding (FSW) for aluminum-
to steel assemblies.

Friction Stir Welding (FSW) was invented and patented in 1991 [2], and in the early
stages of development companies have implemented the process predominantly in the
fabrication of aluminum components and panels [3].

FSW processes for steels require improvements to tool material technology and process
control. The process economy for steel welding has not been fully established; moreover,
the robustness of the process for shipyard applications requires further consideration.

It is necessary to consider that the selection of the material to be adopted for the
construction of the tool is limited due to the high temperatures reached during the process
(about 1000–1200 ◦C). An essential requirement for successfully carrying out the welding is
that the tool does not suffer degradation actions caused by wear, deformations, microstruc-
tural instability, fracture, or reactivity with the material that constitutes the workpiece.
The tool is considered as the most critical component for performing a highly efficient
defect-free joint [4]. During FSW of Al to steel, Zhou et al. [5] totally plunged the pin into
the Al plate in order to avoid tool wear and this produced a diffusion layer at the inter-
face, rather than an intermetallic layer with enhanced atomic migration. Refractory alloys
based on the tungsten-rhenium system [6] are widely adopted for steel processing; they
consist of a ceramic solution based on polycrystalline cubic boron nitride (PCBN) [7] and
Co-based alloy with the γ/γ’ microstructure strengthened by precipitating intermetallics,
Co3(Al, W), with an Ll2 structure [8–13]. In particular, the wear of PCBN FSW tool was
investigated experimentally and numerically by Almoussavi et al., who determined that
the tool shoulder periphery and probe side bottom are the most vulnerable parts suffering
from wear issues [14]. As confirmed by Soresen et al., PCBN tools provide high quality
finish when used for FSW of both ferrous alloys [15].

The study of weld process parameters, dissimilar to the Al/steel joint, is of great
importance as it determines the heat input [16–19]. Elrefaey et al. [20] welded a plate of
commercially pure aluminum (AA 1100 H24) to a plate of low-carbon steel (SPCC) in lap
joint configuration and found that by increasing the rotation speed and decreasing the
travel speed, grains of both aluminum and steel, in all characteristic areas, were coarsened
and that a slight difference in pin depth (0.1 mm) has a significant effect on the performance
of the lap joints. Kimapong and Watanabe [21] found that when welding A5083 aluminum
alloy and a SS400 mild steel joint, it happens that increasing the tool rotational speed
decreased the shear load of the joint because the higher rotational speed formed a thick
FeAl3 intermetallic compound at the interface between aluminum and steel, and increasing
the traverse speed of the tool increased the shear load of joints. Chen et al. [22] studied
the effects of tool positioning on microstructures formed in the Al-to-steel interface region
and reported that when the pin was close to the bottom steel piece, Al-to-steel reaction
occurred, resulting in intermetallic outbursts formed along the interface, while when the
pin approached the steel, a thin and continued interface intermetallic layer was formed.
Wan et al. [23] enhanced the strength at the interface and eliminated the hook effect by
adopting an enlarged pin head with circumferential notches.

In this paper, Friction Stir Welding between AA5083 H111 aluminum alloy and S355J2
grade DH36 structural steel dissimilar in lap joint configuration, with a polycrystalline
cubic boron nitride with tungsten and rhenium additives tool, was presented. Sheets were
welded under different conditions, FSW tool axial force, rotation speed, and welding speed.
The quality of the FSW joint was evaluated by visual examination, X-ray tests (by ascertain
the presence of macroscopic defects, such as incomplete welding penetration, cracks), and
tensile and fatigue tests.
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2. Materials and Methods
2.1. Materials

The used materials were AA5083 H111 aluminum alloy and S355J2 grade DH36
structural steel. The chemical composition and the mechanical characteristics of both
materials are shown in Tables 1 and 2.

Table 1. Average composition (weight %).

AA 5083 H111

Mg Si Fe Cu Mn Cr Zn
4.0 ÷ 4.9 0.40 0.40 0.10 0.40−1.0 0.05–0.25 0.25

S355J2 grade DH36
C max Si max S max Al Mn Cr max Ni max P max Ti max Cu max Mo max Nb V

0.18 0.50 0.035 0.015 0.9–1.60 0.20 0.40 0.035 0.02 0.35 0.08 0.03 0.08

Table 2. Mechanical property.

5083 H111

Rm (MPa) Rp0.2 (MPa) A (%)
275 125 16

S355J2 grade DH36
Rm (MPa) Re min (MPa) A (%)
490 ÷ 630 350 21

2.2. Methods

500 × 200 × 4 mm3 thick plates were used in lap joint configuration. The steel plate
was 1.5 mm thick while the aluminum plate was 4 mm thick. The aluminum plate was
machined in order to remove a surface skin depth and thus favor the overlap on the steel,
as shown in Figure 1a. The schematic set-up is shown in Figure 1b.
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Figure 1. Schematic setup of the process in cross sectional (a) and axonometry (b) view.

Tests were carried out with a H. Loitz-Robotik (Hamburg, Germany) machine with
a nominal torque of 70 Nm up to 3050 rpm, a tilt angle range of +/−3◦, and a maximum
vertical force of 60 kN (Figure 2). In particular, the present paper focuses on specimens
produced with 1◦ tilt angle.
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Figure 2. H. Loitz-Robotik Machine set up.

The tool (Figure 3), produced by MegaStir (Provo, UR, USA), with the abbreviation
Q70 (70% PCBN, 30% WRe), was made of polycrystalline cubic boron nitride (PCBN) with
tungsten and rhenium additives (WRe), which guarantee high thermal and mechanical
properties to cope with wear problems. In addition, the tool has a micro hardness of
2600–3500 HV and a low coefficient of friction which affects the final roughness of the joint,
improving the appearance [15].

Tool pin length was equal to 4.78 mm and shoulder diameter was equal to 36.8 mm. A
profilometer was used to monitor the tool wear state (Figure 3).
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Figure 3. Megastir Q70 (PCBN/WRe) tool.

Joints were made by using axial force control, where the tool penetration depth
varies to keep the applied tool force constant. In addition, for each weld, a set of process
parameters, which include axial force, rotational speed (ω), and welding speed (v), was
identified (Table 3). For all trials selected, a tool tilt angle of 1◦ was adopted. Since a specific
set of specimens was selected from an original batch of more than thousand trials, the
numbering was kept as the original one and only the specimens assessed in the present
investigation were considered.

To verify the presence of defects in the specimens, X-ray examination was carried out.
Characterization of mechanical properties was carried out by testing lap shear specimens in
the transverse direction, 25 mm width, using a Zwick (Ulm, Germany) Z600 machine with
a 600 kN load cell at 2 mm/min at room temperature. The fatigue tests were performed
on the same specimen geometry used for testing the static properties, with a Zwick (Ulm,
Germany) Vibrophore 250 machine.



Metals 2021, 11, 1474 5 of 13

Table 3. Process parameters.

Samples
(Original Batch) Force (kN) Travel Speed

(mm/s)
Rotational

Speed (rpm)
Weld Length

(mm)

953 20.75 1.3 800 230
954 21.25 1.3 800 230
957 21 1.7 800 230
958 21 1.7 1000 230
959 21 1.7 800 430
987 21 1.2 1000 430
988 21 1.9 900 430
990 21 2.1 700 430
992 21 1.2 900 430
993 24.5 1.2 1000 430
994 28.5 1.5 700 430
998 24.5 1.5 800 160
995 26.3 1.7 700 430
984 21 1.7 800 430
985 21 1.7 800 430
999 21 1.7 800 150
996 30 1.9 700 275
997 26.3 1.9 700 150

1000 27 1.9 800 145

3. Results

Figures 4–6 show the top view of welds 994, 995, and 999, respectively. All welds
presented a regular bead or reduced flash and a slightly rough surface. Despite that the
process parameters adopted were different, a similar quality of beads can be explained con-
sidering that the combinations of parameters selected lay within the weldability window.
Sample 994 was produced with a significantly larger force compared with sample 999, but
the lower rotational speed led to less energy input to foster the plasticization. This is due
to the tool material, since the polycrystalline cubic boron nitride tools produces smooth
surfaces on the weld due to the low coefficient of friction between PCBN and metals [15].
Figure 7 shows a detail of the macro- and micro-section of sample 987.
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Figure 7. Sample 987 macro- and micro-section.

The picture shows the joint metallurgy within the stir zone (SZ), where refined and
equiaxed grains were found because of the dynamic recrystallization linked to plastic
deformation and heat input.

It is possible to observe the interconnection at the interface between Al and steel where
the latter penetrates into the aluminum matrix due to the stirring effect performed by the
pin. At the same time, a thin intermetallic layer at the interface between aluminum and steel
was formed. It is possible to observe the action area of the pin and the characteristic hook
shape generated by the roto-translational movement of the tool. In fact, in the interface
area, the mechanical anchoring that the steel generated in the aluminum plate following
plasticization and dynamic recrystallization is highlighted; the combination of mechanical
anchoring together with diffusive phenomena between aluminum and steel are the two
factors on which the mechanical strength that characterizes the joint directly depends.

Although the chemistry analysis is not in the scope of the present research, results
reported in the literature for similar morphologies revealed the presence of intermetallics
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compounds whose compositions vary in stoichiometry [24]. In fact, the heat input and high
strain rate deformation lead to diffusion-based formation of the FexAly intermetallic layer
and the thickness and morphology of such layer is highly dependent on process parameters
and consequent thermal history. In Figure 7, it can be observed that the intermetallics
appearance is not homogenous along the interface. Since the steel protruded towards the
Al side, the variation in stirring effect and local gradients in the thermal cycles generated
gradients in intermetallics composition, as demonstrated by the different morphology.

Figure 7 also presents some voids at the interface, which can be related to slightly
high process speed. In fact, in this case, the cooling rate was slower and it happens that in
the stir-processed zone after welding, an excessive release of stirred materials to the upper
surface resulted in voids formation.

X-ray tests were performed to check for defects in the joints. In most of the joints, no
defects were identified (Figures 8a and 9).
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Specimens were extracted from the welds for the tensile and fatigue tests. As shown
in Figure 10, the samples were indicated with letters, where A indicates the specimen taken
in the initial part of the joint and consecutive letters indicate progressively closer positions
towards the final part of the bead.

Table 4 shows the results obtained by the shear test. Analyzing the results, it is
observed that as the welding speed varied, the best resistance values were obtained for
reduced rotation speeds, until about of 700–800 rpm.
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Table 4. Shear test results.

N◦ Position Fmax (kN)

954
A 7

B 9

957
A 13

B 15

958
A 12

B 13

959
A 12

B 15

994

A 13

B 10

C 12

D 9

E 7

F 12

G 15

H 4

I 5

J 12

K 11

996
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B 16

998

A 10

B 16

C 15

999

A 5

B 11

C 10
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The highest tensile strength values were obtained for a thickness of 1.5 µm, while a
decreasing trend was found for lower or higher values.

Scanning electron microscopy (SEM) analyses were conducted on specimens 987, 988,
990, and 992 and a measurement of IMC at its peak thickness was conducted. Measurements
made it possible to identify the intermetallics present, FeAl3 and FeAl6, and to evaluate
their relative thickness. Figure 11 shows the trend of the force as a function of the thickness
of the intermetallic for some of the specimens, in order to show how the increase in IMCS
within the range 1.5 to 2.1 µm thickness resulted in a decrease of shear strength. This aspect
has brought out how much, in addition to brittleness, the structure can be compromised
in terms of maximum resistance as the formation of intermetallic compounds increases,
especially beyond certain threshold values.
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The fatigue test was performed on specimens 957 and 996. Figure 12 shows the
fracture zone for specimen 957. The fatigue test was performed on five samples obtained
from specimen 957 and eleven samples from specimen 996 and the test results are reported
in Tables 5 and 6 and in Figures 13 and 14.
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Figure 12. Fracture zone for welding 957 specimen (a) and welding 3 specimen (b).

Table 5. Fatigue test process parameters and results on sample 3.

Samples σmax
(N)

σmin
(N)

σm
(N)

∆σ/2
(N)

∆σ
(N) R Number of Cycles

at Break Fracture Zone

A 7750 1250 4500 3250 6500 0.16 2,084,900 TMAZ steel
B 8500 500 4500 4000 8000 0.06 49,814 nugget
C 7750 1250 4500 3250 6500 0.16 3,551,460 TMAZ steel
D 8500 500 4500 4000 8000 0.06 395,000 nugget
G 8500 500 4500 4000 8000 0.06 229,670 nugget
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Table 6. Fatigue test process parameters and results on sample 9.

Samples σmax
(N)

σmin
(N)

σm
(N)

∆σ/2
(N)

∆σ
(N) R Number of Cycles

at Break Fracture Zone

C 7750 1250 4500 3250 6500 0.16 339,710 TMAZ aluminum
D 7750 1250 4500 3250 6500 0.16 340,085 TMAZ aluminum
E 7750 1250 4500 3250 6500 0.16 330,360 nugget
F 8250 750 4500 3750 7500 0.09 136,590 nugget
G 7000 2000 4500 2500 5000 0.29 9,770,460 TMAZ aluminum
H 7750 1250 4500 3250 6500 0.16 1,451,030 TMAZ aluminum
I 8000 1000 4500 3500 7000 0.13 842,780 TMAZ aluminum
L 8500 500 4500 4000 8000 0.06 337,525 nugget
M 7500 1500 4500 3000 6000 0.20 1,535,770 TMAZ steel
N 7750 1250 4500 3250 6500 0.16 263,130 nugget
O 8250 750 4500 3750 7500 0.09 531,589 nugget
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Samples that reached the highest fatigue life values reported failure due to a crack
originating in the base material; this indicates a good resistance of the joint.
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According to the analysis carried out on the specimens’ fracture surfaces, there was a
preferential propagation of the beginning of the break in the part of the base material in
aluminum alloy.

This behavior could be linked to the greater stiffness that characterizes steel, which
would “unload” the cyclic stresses of the fatigue test on the more deformable aluminum alloy.

Figure 15 shows a fracture that occurred near the HAZ on the aluminum side.
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Although the fatigue samples were obtained from the same joint, they highlighted a
different response to the fatigue stress; the specimens obtained in the second part of the
weld endured a larger number of cycles before reaching failure.

At the beginning of the welding process, the materials were still cold and the alu-
minum dissipated more heat, leading to more severe thermal cycles and producing more
fragile metal phases. Furthermore, the contact zone between aluminum and steel did not
reach an optimal welding temperature, causing less efficient mixing of the materials.

As the process progressed, the temperature stabilized at the optimal one and the
mixing action between the two metals improved, generating a more performing joint.

The fact that specimens obtained in the second part of the weld endured a larger
number of cycles before reaching failure can also be related to progressively varying thermal
conditions and tightening effect of bonding as the tool travels along the welding line.

4. Conclusions

In the current study, 4 mm-thick plate of AA5083 H111 aluminum alloy and S355J2
grade DH36 structural steel were lap-welded with by friction stir welding under different
axial forces, travel speeds, and rotational speeds. A polycrystalline cubic boron nitride
with tungsten and rhenium additives tool was used.

Combining visual and radiographic examination and tensile tests highlighted that
the best results were obtained for rotation speeds of about 700–800 rpm with feed speeds
between 1.3 and 2.1 mm/s. The weldability window can be circumscribed within the just
mentioned ranges. Sample 996 presented the best results in terms of geometric defective-
ness, shear resistance, and fatigue.
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As concerns fatigue tests, it is possible to state that, according to the analysis carried
out with the scanning electron microscope on the fracture surfaces of the specimens, there
is a preferential propagation of cracks in the aluminum alloy base material.

Furthermore, there was a different response to fatigue stress for samples obtained,
in different positions, from the same weld. The specimens obtained in the second part of
the weld endured a larger number of cycles before reaching failure. This can be related to
variations in heat dissipation behavior and variations in material coupling in the contact
zone. Mitigation actions could include thermal pre-treatment or customized tool paths,
which in both cases would affect and stabilize the thermal history.
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