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Abstract: High-efficiency and high-quality welding has always been the focus of welding research.
This article proposes a novel double-pulse, triple-wire MIG welding process for the welding of
6082-T6 aluminum alloy. The process characteristics of welding arc and droplet transfer were studied,
and the performances of weld formation, morphology, hardness, and tensile strength were tested
for the 1 Hz, 3 Hz, and 5 Hz double-pulse welding and normal-pulse welding. It was found that
in the welding process, the pulsed arc steadily alternated among three welding wires without arc
interruption, and the arc length changed periodically with the double-pulse frequency. The droplets
transferred with a stable one-pulse-one-drop mode. Besides, a proper double-pulse frequency, e.g.,
3 Hz in this case, was conducive to forming good welds with regular fish-scale patterns and no pores.
The tensile strength of the joint could reach 64% of the base material’s tensile strength, and its fracture
belonged to plastic fracture, which occurred in the HAZ. This new welding method will have great
potential in aluminum alloy welding.

Keywords: double-pulse welding; triple-wire welding; 6082 aluminum alloy; welding arc; droplet
transfer; joint performance

1. Introduction

Due to its characteristics of low density, high specific strength, good corrosion re-
sistance, electrical conductivity, thermal conductivity, and good mechanical properties
at low temperatures, aluminum alloy has been widely used in aerospace, automotive,
electrical, chemical, transportation, and other industries [1,2]. The 6082 aluminum alloy,
which belongs to the Al-Mg-Si series, is the main structural material used in high-speed
railway [3,4].

Welding is an important method for joining aluminum alloys. However, because
aluminum alloys have too high thermal conductivity, too large linear expansion coefficients,
and an oxide film on the surface, they are hard to weld. Welding defects, such as incomplete
fusion, slag inclusion, crack, and porosity, easily appear [5].

In recent years, great progress has been made in the research of aluminum alloy weld-
ing. The main welding methods are as follows: friction stir welding (FSW) [6–8], pulsed
metal inert gas (MIG) welding [9], plasma arc welding [10], electron beam welding [11],
laser welding [4,12], and laser-arc hybrid welding [13]. Compared with the other welding
methods, pulse MIG welding has the advantages of low cost and high efficiency, and
therefore it is widely favored in production. Based on pulse MIG welding, double-pulse
MIG welding has been developed by adding low-frequency modulation pulses [14]. The
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welding pool is affected by periodic stirring, which facilitates the escape of gas from the
molten pool, thereby reducing the porosity of the weld [15]. Besides, a beautiful fish-scale
weld can be easily obtained [16].

Improving the welding efficiency is also the focus of research. Multi-wire welding is
an effective way to improve welding efficiency, because it can effectively increase heat input
and the amount of wire filling [17–21]. For examples, Ruan et al. [22] proposed double-wire
MIG welding and used it to weld a high-speed train car body structure (6082-T6 aluminum
alloy) with the advantages of fast welding speed, high efficiency, beautiful weld formation,
and small spatter. Recently, Wu et al. [23] proposed double-wire pulsed MIG welding by
adding a median waveform. The AA6061 base metal was welded, and the influence of the
median current on droplet transfer was investigated.

To achieve high-efficiency welding, we developed a novel triple-wire pulse MIG
welding process, where three welding wires were arranged in a torch and powered by three
pulsed power sources (see Section 2.2). The steels, such as Q235 [24] and Q960 [25], were
successfully welded with high efficiency and quality, and the problem of arc interference
was solved by alternating current pulses among the three welding wires [26].

In this study, we extend the triple-wire pulse welding process to the welding of
aluminum alloy. Besides, we introduce the double-pulse characteristic to the welding
process by adding low-frequency modulated pulses in order to improve weld quality. The
double-pulse, triple-wire welding is expected to have the advantages of double-pulse
welding and multi-wire welding. The 6082-T6 plates were successfully welded by this
method, and its process characteristics and joint performances were emphatically studied.

This paper is organized as follows. In Section 2, the double-pulse, triple-wire GMAW
process is introduced. In Section 3, the process characteristics of welding arc and droplet
transfer and the joint performances in terms of weld formation, morphology, hardness,
and tensile strength are presented and analyzed for the welding process with different
double-pulse frequencies. Finally, we summarize this paper in Section 4.

2. Materials and Methods
2.1. Experimental Material

The 6082-T6 aluminum alloy plates (Zhongwang Aluminium Co., Ltd., Liaoning,
China) with dimensions of 200 mm × 100 mm × 8 mm (length × width × thickness)
were used as base material. The ER5356 aluminum wire (Tianjin Golden Bridge Welding
Materials International Trading Co., Ltd., Tianjin, China) with a diameter of 1.2 mm was
used as filler material. Their chemical compositions are shown in Table 1. The mechanical
properties of 6082-T6 aluminum alloy are given in Table 2. Since aluminum alloy is easy to
be oxidized, the workpiece needed to be polished before welding. After that, we wiped it
with alcohol and immediately performed welding.

Table 1. Chemical compositions of the workpiece and wire, data from [27,28].

Aluminum Alloy Mg Si Mn Fe Cu Cr Zn Ti Al

6082-T6 0.83 0.82 0.62 0.24 0.027 0.086 0.024 0.011 Bal.
ER5356 4.5–5.5 0.25 0.05–0.2 0.4 0.1 0.05–0.20 0.01 0.06–0.2 Bal.

Table 2. Mechanical properties of 6082-T6 aluminum alloy, data from [29].

Tensile Strength σb/(MPa) Yield Strength σs/(MPa) Elongation ε/(%)

308–315 262–274 10.6–12.2

2.2. Double-Pulse, Triple-Wire MIG Welding Process

Figure 1 shows the experimental system of the double-pulse, triple-wire MIG welding
process. It was divided into three parts: a welding system, a high-speed camera, and an
electrical signal acquisition device. The welding process was performed on the welding
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system. The process characteristics of welding arc and droplet transfer were studied by the
high-speed camera. The welding current and arc voltage were measured by the electrical
signal acquisition device.
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Figure 1. Schematic diagram of the experimental system.

2.2.1. Welding System and Parameters

As shown in Figure 1, the welding system included three MIG welding machines
(AoTai PulseMIG-500, Aotai Electric Co., Ltd., Jinan, Shandong, China), a homemade
welding torch, and a welding workbench. The welding wires were insulated from each
other and arranged in the welding torch in the form of an equilateral triangle, and they
were powered by three welding machines, respectively. A standard polarity of electrode
positive was used for the MIG welding, i.e., the wires were the anode, and the workpiece
was the cathode. The three welding machines had a communication function, which made
a pulse arc alternately on each welding wire, as shown in Figure 2. In the pulse peak stage,
the arc flashed brightly. In the pulse base stage, the arc was dim. Even due to the bright
background, the arc was almost invisible, but it was not broken at this time.
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Figure 2. Alternating combustion of the pulsed arc among three wires, (a) arrangement position of welding wires,
(b) welding arcs at different pulse moments.

A double-pulse current was used for each wire. To illustrate its characteristics, Figure 3
compares the electrical signals for normal-pulse mode and double-pulse mode. As shown
in Figure 3, the pulse frequency f p is the inverse of the pulse period ∆t. In normal-pulse
mode, the pulse frequency was almost unchanged, while it changed periodically in double-
pulse mode. A double-pulse period can be divided into two stages: strong-pulse group (t1
stage) and weak-pulse group (t2 stage). The double-pulse frequency f d is the inverse of the
double-pulse period (t1 + t2). The pulse frequency in the strong-pulse group was higher
than that in the weak-pulse group, and the pulse peak value and pulse base value in the
strong-pulse group were also slightly higher.
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In this study, triple-wire welding with different double-pulse frequencies was ex-
plored, and it was compared with triple-wire welding in normal-pulse mode. The welding
parameters are shown in Table 3. In the table, the preset voltage and preset current refer to
the values for a single wire. The shielding gas was argon with a purity of 99.99%.
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Table 3. Welding parameters for the normal-pulse and double-pulse, triple-wire MIG processes.

Mode Preset Voltage U
(A)

Preset Current I
(A)

Double-Pulse
Frequency f d

(Hz)

Welding Speed
(mm/s)

Gas Flow
(L/min)

Normal pulse 18 110 - 8 40

Double pulse
18 110 1 8 40
18 110 3 8 40
18 110 5 8 40

2.2.2. High-Speed Camera

A MOTION PRO high-speed camera (DEL Imaging Systems, LLC., Woodsville, FL,
USA) was used to shoot the welding arc and droplet transfer during the surfacing process
of the flat plate. Because the arc is too bright, a 1000 W xenon lamp source (Microenerg
Beijing Technology Co., Ltd., Beijing, China) was used to illuminate the arc to show the
shadow of the droplets. This method is also known as the shadow method [30]. When
shooting, the light source, welding wire, and lens should be kept on the same horizontal
line. The shooting frequency was set to 2000 frames per second, and the shooting time was
set to 3 s.

2.2.3. Electrical Signal Acquisition Device

The electrical signal acquisition device was composed of three CHV-25P Hall voltage
sensors (Beijing SENSOR Electronics Co., Ltd., Beijing, China), three CHB-1000S Hall
current sensors (Beijing SENSOR Electronics Co., Ltd., Beijing, China), a NI6251 data
acquisition card (National Instrument Corp., Austin, TX, USA), and LabVIEW software
(National Instrument Corp., Austin, TX, USA). The signals of the welding current and
arc voltage collected by the sensors were transmitted to the acquisition card through a
cable. The sampling error did not exceed 5%. The maximum sampling rate of a single
channel was 1.0 mega points/second (MS/s). In this experiment, the sampling rate was set
to 0.1 MS/s and the sampling time was set to 3 s. In addition, the data acquisition device
and the high-speed camera were triggered simultaneously with a 5 V high-level signal.

2.3. Testing of Welded Joints

To study weld formation and weld morphology, we performed surface surfacing
on a flat aluminum plate by the triple-wire welding process. The weld formation was
photographed with a Canon EOS 850D camera. The weld morphology was observed with
an OLYPUS SZX12 stereomicroscope (Olympus Corporation, Tokyo, Japan).

To study the joint performances, we designed a joint form with a V-shaped groove
(Figure 4) and performed butt welding. As shown in Figure 4, the groove angle α was 60◦,
the thickness of the plates t was 8 mm, the depth of the root face c was 2 mm, and the root
gap b was 2 mm. Then, the hardness, tensile strength, and fracture morphology of the
welded joints were tested.
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The hardness was measured with a micro-hardness tester (Aoka Industry Technology
Co., Ltd., Suzhou, China) according to the ISO 9015-1:2001 standard (Destructive tests
on welds in metallic materials—Hardness testing—Part 1: Hardness test on arc welded
joints). The test locations, which were located at the middle depth of the plate thickness, are
marked with red dots in Figure 5. Since the hardness distribution of the joint is symmetrical
with the centerline of the weld, the hardness test was carried out with the center of the
weld as the starting point. The interval between two adjacent points was 0.25 mm, the load
was 500 gf, and the loading time was 15 s.
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The tensile strength was measured with a DDL300 electronic universal testing machine
(CIMACH, Changchun, Jilin, China) according to the ISO 4136:2012 standard (Destructive
tests on welds in metallic materials—Transverse tensile test). The tensile specimen size is
given in Figure 6. Then, the microscopic morphology of the fracture was photographed
with a SU1510 scanning electron microscope (Hitachi Co., Ltd., Tokyo, Japan).
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3. Results and Discussion
3.1. Welding Arc and Droplet Transfer

Welding arc and droplet transfer are important welding process characteristics, which
directly determine whether the welding process is good. Through the analysis of high-
speed camera and electrical signals, it was found that regardless of normal-pulse mode
or double-pulse mode, the pulse arc of triple-wire welding can alternate steadily among
three wires. During the welding process, there was no arc interruption, and the droplet
transfer maintained a stable one-pulse-one-drop mode. The welding arc and droplet
transfer during the flat surfacing process were observed. Figure 7 shows the welding arc
and droplet transfer for the double-pulse, triple-wire welding process with a double-pulse
frequency of 3 Hz as an example.
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Figure 7. Welding arc and droplet transfer in the double-pulse, triple-wire welding process (double-
pulse frequency f d = 3 Hz).

The above results are mainly determined by the characteristics of the alternating pulse
of the three-wire welding. The main problem of multi-wire welding is the interference
between arcs. Severe arc interference may cause arc interruption, which in turn affects the
droplet transfer. Our previous study [25] found that when the three arcs are alternately
pulsed, the arc interference is the smallest, while when the two arcs are in the pulse stage
and one arc is in the base stage, the arc interference is the largest. In this study, although a
double-pulse mode was added, it still retained the characteristics of an alternating pulse
for each arc. Therefore, the interference between arcs was small and the welding process
was stable.

Nevertheless, the double-pulse arc still has a feature that is different from an ordinary-
pulse arc, that is, the arc length changes periodically. Figure 8 shows the arc lengths at
the pulse peak moment during a double-pulse stage for the 3 Hz double-pulse frequency.
The arc on wire 1 was paid special attention. When the current pulse changed from the
strong-pulse group to the weak-pulse group (stage A: 0.530–0.681 s), the arc length of wire
1 gradually became longer. When the current pulse changed from the weak-pulse group to
the strong-pulse group (stage B: 0.690–0.824 s), the arc length gradually became shorter.

The reason for the periodic change in the arc length was that the welding wire feeds at a
constant speed but melts at an unequal speed. According to arc–anode heat transfer theory,
the melting rate of the welding wire is proportional to the welding current [31]. From
the weak-pulse group to the strong-pulse group, the average welding current increased
as the pulse frequency increased, which led to an increase in the welding wire melting
rate, but the welding wire feed speed did not change, so its arc length increased. From the
strong-pulse group to the weak-pulse group, the same was true.
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Figure 8. Arc length change during the double-pulse, triple-wire welding process (double-pulse
frequency f d = 3 Hz).

3.2. Joint Performances
3.2.1. Weld Formation and Morphology

Figure 9 shows the weld formations of the surfacing process for the three-wire welding
processes with the normal pulse and the double pulses (f d = 1, 3, 5 Hz). It was found
that the weld surface of all the welding processes was bright. Obvious fish-scale patterns
were observed on the weld seams for the double-pulse welding. With the increase in
the double-pulse frequency, the scale pattern gradually became denser. The formation
of fish-scale patterns was related to the periodic impact of droplets on the molten pool.
The droplet transfer frequency was high in the strong-pulse group, while it was low in
the weak-pulse group. Therefore, the impact of droplets was periodic. On the whole, the
fish-scale pattern was the most beautiful for the 3 Hz double-pulse frequency.

Figure 10 compares the weld morphology of the surfacing process for the normal-
pulse welding and the double-pulse welding (f d = 3 Hz). The weld width and weld depth
of the normal-pulse welding were 9.91 mm and 1.69 mm, respectively, while they were
10.55 mm and 2.54 mm, respectively, for the double-pulse welding. The increase in weld
width and depth for the double-pulse welding may come from stronger agitation of the
molten pool, which originated from the periodic impact of droplets. The stirring effect
of the molten pool is also conducive to eliminating pores. As shown in Figure 10, the
pores in the double-pulse weld were significantly less than those in the normal-pulse weld.
Therefore, double-pulse welding has obvious advantages over normal-pulse welding in
eliminating porosity.
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Figure 10. Comparison of weld morphology for (a) normal-pulse welding and (b) double-pulse welding (f d = 3 Hz).

3.2.2. Weld Hardness

Figure 11 shows the weld hardness distribution for the normal-pulse welding and the
double-pulse welding (f d = 1, 3, 5 Hz). Their hardness distribution followed the same law:
there were two troughs, which were in the center of the weld (L ≈ 0 mm) and in the heat
effect zone (L ≈ 15 mm). In other words, the welded joint has two joint-softening zones:
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weld and heat-affected zone (HAZ). This phenomenon was in line with the general law of
the joint softening for the arc welding of age-strengthened aluminum alloy [5]. It was also
found that the lowest hardness value appeared in the weld for the normal-pulse welding
and the 5 Hz double-pulse welding, while it appeared in the HAZ for the 1 Hz and 3 Hz
double-pulse welding.
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3.2.3. Tensile Strength

Figure 12 shows the tensile strength and fracture location of the weld joints for the
normal-pulse welding and the double-pulse welding (f d = 1, 3, 5 Hz). The tensile strengths
of the specimens were 198.57 MPa, 200.92 MPa, and 189.03 MPa for the 1 Hz, 3 Hz, and 5 Hz
double-pulse welding, respectively. These values were higher than the value of 185.12 MPa
for the normal-pulse welding. The samples fractured at the weld for the normal-pulse
welding and the 5 Hz double-pulse welding, while they fractured at the HAZ for the 1 Hz
and 3 Hz double-pulse welding. These fracture characteristics were consistent with the
hardness distribution shown in Figure 11.

For normal-pulse welding, there are many pores in the weld, as shown in Figure 13.
The existence of pores weakens the strength of the weld, causing the sample to break on
the weld instead of the HAZ. For the double-pulse welding, an appropriate double-pulse
frequency of 3 Hz can effectively reduce weld porosity and its fracture is a ductile fracture
that occurs in the HAZ. Its tensile strength (200.92 MPa) can reach 64% of the base material’s
tensile strength (308–315 MPa), which can meet general requirements.
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Figure 13. Fracture microscopic morphology of weld joints for (a) the normal-pulse welding and (b) f d = 1 Hz, (c) f d = 3 Hz,
and (d) f d = 5 Hz double-pulse welding processes.

4. Conclusions

Compared with triple-wire MIG welding with normal-pulse mode, double-pulse,
triple-wire MIG welding with a proper double-pulse frequency (e.g., 3 Hz in this case)
can obtain good process characteristics and joint performances for the welding of 6082-T6
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aluminum alloy. The pulse arc stably alternated among three welding wires without arc
interruption, and the droplets transferred with a stable one-pulse-one-drop mode. The
weld seam was shaped into a beautiful fish-scale pattern, and there were few pores in
the weld. During the stretching process, the fracture occurred in the HAZ, which belongs
to plastic fracture. The tensile strength of the joint can reach 64% of the base material’s
tensile strength. Due to its overall performance, this method will have great potential in the
welding of aluminum alloys. In the future, we plan to gradually use it in actual production.
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