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Abstract: Owing to its ability to incorporate Schmid’s law at each integration point, crystal plasticity
has proven a powerful tool to simulate and predict the slip behavior at the grain level and the
ensuing heterogeneous stress/strain localization and texture evolution at the macroscopic level.
Unfortunately, notwithstanding substantial efforts during the last three decades, this remarkable
capability has not been replicated for materials where twinning becomes a noticeable deformation
mechanism, namely in the case of low-stacking fault energy cubic, orthorhombic, and hexagonal
close-packed structures. The culprit lies in the widely adopted unphysical pseudo-slip approach
for capturing twin formation. While the slip is diffuse, twinning is a localized event that occurs as
a drastic burst of a confined number of partial twinning dislocations establishing an interface that
pursues growth through a thread of perfect twinning dislocations in the sense of bicrystallography.
Moreover, at earlier stages, twin nucleation may require atomic diffusion (Shuffling) and faceting,
generally demanding higher stress levels not necessarily on the twin shear plane, while triaxiality at
adequate sites might be needed or preferred such as lower grain boundary misorientations or other
twin boundaries. Identifying a mathematical framework in the constitutive equations for capturing
these twin formation sensitivities has been a daunting challenge for crystal plasticity modelers, which
has stalled ameliorating the design of key hexagonal materials for futuristic climate change-related
industries. This paper reviews existing approaches to incorporating twinning in crystal plasticity
models, discusses their capabilities, addresses their limitations, and suggests prospective views to fill
gaps. The incorporation of a new physics-based twin nucleation criterion in crystal plasticity models
holds groundbreaking potential for substantial progress in the field of computational material science.

Keywords: HCP; crystal plasticity; twinning

1. Introduction

Twinning plays a prominent role in the plastic deformation and recrystallization of
low symmetry crystals such as those showing hexagonal close-packed (hcp), orthorhom-
bic, body-centered cubic and even face-centered cubic crystal structures holding a very
low stacking fault energy, e.g., twinning induced plasticity steels. In hcp metals such as
magnesium (Mg), twinning can be profuse depending on the alloy chemical composition,
texture, strain rate, and temperature, while concomitant slip leads to complex interactions
with existing twins in the deforming lattice, thereby exacerbating hardening and ultimately
damage. Mitigating these interactions in materials design paradigms to ameliorate their
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properties for many futuristic applications has been a daunting challenge. For instance,
wrought Mg alloys have not yet penetrated the automotive market to replace their alu-
minum and steel counterparts, notwithstanding intense research studies. This incites the
need to develop a rigorous understanding of all the factors surrounding the origin of
twinning, how it thrives in the lattice, and interacts with slip dislocations and other twins
and defects. Crystal plasticity models, whether mean-field or full–field, have proven a good
test for the depth of our understanding of the mechanisms driving plastic deformation
in polycrystals [1–14]. A comparison of crystal plasticity predictions of the macroscopic
and microscopic (case of full–field) behaviors under various conditions of external loading
against experimental results, whether testing or digital image correlations, proved to be
very helpful in identifying gaps in our understanding and calling for more small–scale
modeling and characterization to reveal the associated missing mechanisms. Over the last
decades, molecular dynamic (MD) simulations played a crucial role in identifying these
mechanisms, which should be captured up in the crystal plasticity models [15–22]. This
paper provides a review and a futuristic view of various scholastic works made to enhance
crystal plasticity models in their prediction of the mechanical behavior of materials with
twins. We emphasize efforts to incorporate twin nucleation in these models, which remains
the most challenging event in this entire endeavor.

1.1. Twinning Mechanisms

Twinning in hcp metals is primarily due to the inability of the material to provide
“easy” 〈c〉–axis slip deformation with both a low temperature and high strain rate. For in-
stance, in hcp metals, the critical resolved shear stress of glissile pyramidal 〈c + a〉 slip
mode is so high at room temperature that it exceeds that of {1 0 1 2} twinning, which
then readily triggers when the external load requires tension/extension or compres-
sion/contraction of the 〈c〉–axis for c/a ratio less or larger than

√
3, respectively.

A crystallographic description of twinning was originally given by Christian and
Mahajan [23]. A twin is formed mainly by four symmetry operations:

1. reflection in K1;
2. rotation of 180◦ about η1; and
3. reflection in the plane normal to η1; and
4. rotation of 180◦ about the direction normal to K1.

Twinning, or more precisely compound twinning, in general, is the re-orientation
of a fraction of the original lattice to the mirror image position due to a simple shear of
the lattice. The plane about which this mirroring occurs is the K1 plane. Figure 1 depicts
the four crystallographic twinning elements. K1 and η1 are the invariant twin plane and
the shear direction, respectively. K2 is the conjugate twin plane, while P is the plane
of shear. The intersection of K2 and P results in the conjugate direction η2. The shear
plane P contains η1, η2, and the normals to K1 and K2. Based on these crystallographic
elements, hcp twins can be classified as Type I (K1 and η1 are rational) or Type II (K2 and
η2 are rational) even if all are rational sometimes. In hcp metals, a simple shear may not be
enough for generating appropriate twinned crystal structures [23], and hence, an additional
small atomic displacement, called shuffle [24], in a direction different from the lattice shear
may be required. El Kadiri et al. [25] developed the first comprehensive crystallographic
theory that provides with a unique sets of equation for the amount of shear and shuffle
displacement for all compound twins in hcp lattices.
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Figure 1. Twinning and conjugate twinning planes K1 and K2 along with twinning and conjugate twinning direction, η1

and η2 contained in a plane of shear, P, data from [23].

Based on the formation mechanism, twins can also be classified into 3 groups: (i) growth
twins, (ii) transformation twins, and (iii) deformation twins [23]. Growth twins are formed
during nucleation and growth processes, such as crystal growth from the vapor or liquid
phases, and belong to special kinds of grain boundaries (GBs) [23,26]. Transformation
twins are formed during solid state transformation, while deformation twins are formed
due to the application of external stress and/or internal stresses, such as residual stresses.
This paper focuses on the plasticity due to deformation twinning or, as termed by Christian,
glide twinning.

Current twin nucleation models tuned for hcp metals can be divided into homo-
geneous and heterogeneous nucleation models. The homogeneous model relies on the
nucleation of a twin domain through high stress concentration in a pristine parent do-
main [27], whereas the heterogeneous model accounts for the pre-existing twin defects as a
cause for twin nucleation [27–33]. The experiments by Beyerlein et al. [33], Wang et al. [34]
suggest that the latter type of twin nucleation models are superior. This review discusses
both types of nucleation models and their applications.

1.1.1. Homogeneous Twinning

The first homogeneous twin nucleation model was introduced by Orowan [35], where
he derived an expression for the minimum stable size of a twin nucleus in Zn. Price [36]
studied differences between twinning in bulk crystals and in dislocation free whiskers
and platelets and construed that homogeneous twinning requires higher stresses than
heterogeneous twinning. Christian and Mahajan [23] calculated energy for homogeneous
nucleation of twins in Zn and found a value of 75 eV, which was very large. This led to
the conclusion that homogeneous twinning is hardly possible unless there is a very high
stress and very low surface and strain energies. Lebensohn and Tomé [1] also found in
their calculations that very high energies are required for homogeneous twinning. Such
energy can not be provided by thermal fluctuations, thereby eliminating the chance of ho-
mogeneous twin nucleation. Using MD simulations, Barrett et al. [37] showed that {1 0 1 2}
twinning is impossible to nucleate in pure Mg unless a void is introduced to the simulation
box, which lowers the energy barrier for nucleation. In return, in a pristine lattice, {1 1 2 1}
twinning was the only active twin mode, which is obviously not experimentally observed
in Mg. The absence of atomic shuffling in {1 1 2 1} twinning suggests that the energy barrier
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for homogeneous nucleation is exacerbated by atomic shuffling. In fact, since shuffles
correspond to the transport of atoms through diffusion mechanisms, a sufficient level of
the gradient of hydrostatic pressure would be required to form a {1 0 1 2} embryo [38].
A void promotes triaxiality and, as such, the required gradient of hydrostatic pressure.

1.1.2. Heterogeneous Twinning

Bell and Cahn [28] found in their experiments that stresses required for twinning de-
creased as the specimen was slightly bent or contained an existing twin lamella. In another
study, Bell and Cahn [39] mentioned that crystals indented under a stress twin immediately.
Price [36] conducted experiments on Zn whiskers and platelets and found that in large
crystals, twins are initiated in bursts and grow at fluctuating stresses and high speeds,
while in nearly perfect crystals, they grow at almost constant stress and a controllable
rate. Lebensohn and Tomé [1] stated that any microstructural feature acting as a stress
concentrator or having an associated extra energy improves the chances of inducing twin
nucleation. Experiments performed by Lay and Nouet [40] showed that for small twins,
few defects are contained in the interfaces, and for large twins, many dislocations are
generally found in the twin walls.

1.2. Twin Nucleation

Based on the experiments that showed nucleation of twin is easier with pre-existing
defects in Zn crystals, Bell and Cahn [28] hypothesized that there are three stages in
twinning: creation, spreading, and thickening of twins and these processes require stresses
in decreasing order. Bilby and Entwisle [41] examined the stress fields around two types
of inhomogeneities arising during plastic deformation (bounded slip bands and kink
bands) and their influence on the formation of mechanical twins. The presence of plastic
deformation is required for twin formation. Orowan et al. [35] derived a formula for the
minimum stable size of a twin nucleus in zinc crystal by considering energies of dislocation
loops and work effected by the applied stress. Bell and Cahn [39] proposed an argument
that a twin nucleus must be created as a whole by a locally homogeneous shear of the lattice
and not by progressive motion of dislocations. Chyung and Wei [42] studied the effects
of stress concentrations on twin nucleation in Zn bicrystals and concluded that strongly
locked dislocations, such as the leading dislocation of a pile-up against a barrier, may
become a potential twin nucleus. A twin embryo can grow to a stable sized twin nucleus
when sufficient stress is applied to it. Figure 2a shows the ∼30 nm thick {1 0 1 2} twin
nucleus as observed in Mg AZ31 alloy using transmission electron microscope (TEM) [43].
The new twin nucleus has a lenticular shape with pointed twin tips that can be further
observed in the high–resolution TEM images in Figure 2b,e. Efforts were made by Meyers
et al. [44] and Fischer et al. [45–48] to quantify twin morphologies and twin stresses
using thermodynamics and other energy-based approaches so that this information can be
bridged to higher scale crystal plasticity models.

Hooshmand et al. [49] studied the interactions between 〈a〉, 〈c〉, and 〈c + a〉 dis-
locations with {1 0 1 1} and {1 0 1 3} twin boundaries in Ti using MD simulations and
found that these interactions are twin growth mechanisms. They also found that {1 0 1 2}
twin embryo could nucleate from {1 0 1 3} twin boundaries. Wang et al. [50] studied the
nucleation of twins in hcp structures via MD simulations and identified twin nucleation
through a mechanism they termed “pure shuffle” and growth via a glide-shuffle mecha-
nism. Ghazisaeidi and Curtin [51] studied {1 0 1 2} twin nucleation in Mg using atomistic
simulations and inferred that dislocation–assisted mechanisms for twinning in Mg are
feasible, apart from twin nucleation at grain boundaries. Wang et al. [34] used atomistic
simulations to study twin nucleation in Mg and found that twins are most likely to nucleate
at grain boundaries—preferably more at low misorientation angle GBs than high angle
GBs. Kumar et al. [52] studied {1 0 1 1}, {1 0 1 2}, and {1 0 1 3} coherent twin boundaries
(CTB) and coherent basal prismatic (CBP)/coherent prismatic basal (CPB) boundaries in six
hexagonal metals using the VASP code [53–55]. Several important conclusions were drawn,
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such as the creation of excess volume during twin formation, the solubility of solute atoms
being better at twin boundaries than in the bulk, and the formation energy of {1 0 1 2} CTB
being higher in metals with c/a <

√
8/3 and lower in metals with c/a >

√
8/3 than the for-

mation energies of {1 0 1 1} and {1 0 1 3} CTBs. Another conclusion was that {1 0 1 2} CTB
has higher energy than the CBP/CPB boundary for all metals. Wang et al. [17] conducted
DFT calculations in Mg to study [1 0 1 1]{1 0 1 2} twin nucleation in hcp metals. A {1 0 1 2}
twin in an hcp lattice was found to have a minimum thickness of 17 crystallographic
{1 0 1 2} planes in their simulation. A two-layer twin is unstable, and the formation energy
of twin boundaries decreases with increasing thickness of {1 0 1 2} twins. In another study,
Wang et al. [18] studied {1 0 1 2} twinning mechanisms in hcp crystals using topological
analysis and atomistic simulations. Normal and zonal twinning mechanisms were studied
using DFT and empirical potentials for {1 0 1 2} twin nucleation. For the normal twinning
mechanism, the stable twin nucleus consists of three twinning dislocations correspond-
ing to a thickness of six {1 0 1 2} planes. For the zonal twinning mechanism, the stable
twin nucleus consists of n (n is determined from DFT calculations) twinning dislocations
corresponding to (2n + 1) crystallographic {1 0 1 2} planes. Xu et al. [56] performed MD
simulations of Mg to study twin nucleation and twin growth and argued that {1 1 2 1}–type
twinning is the most preferential mode as their growth is led by the pure shear process. It
was observed that increasing the stress can lead to secondary {1 1 2 2} twinning, which mi-
grates by pyramidal slip. All of these mechanisms and properties associated with twinning
demonstrate the complexity of understanding and predicting the mechanical behavior of
materials implicating twinning.

(b) (c)

(d) (e)

(a)

Figure 2. Microstructural features of the twin nucleus arrowed in (a) transmission electron microscopy images showing
(b) area 1; (c) area 2; (d) area 3; and (e) area 4. The {1 0 1 2} coherent twin boundaries and BP/PB boundaries are colored in
red and yellow, respectively. Reproduced from [43], with permission from Elsevier 2017.

1.3. Twin Propagation

The formation and propagation of twins are greatly affected by the grain size and
the texture in a polycrystalline material [57–62]. Antonopoulos et al. [63] conducted TEM
observations in Zn specimens to observe the deformation twin modes. It was observed that
dislocations with a weaker contrast are visible only along a segment of a twin boundary
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and responsible for twin growth. The effect of secondary twinning on twin growth was
studied by Barnett et al. [64] using EBSD analysis on an Mg AZ31 alloy, who found no
evidence supporting an effect. Out of the four {1 0 1 1}–{1 0 1 2} double twinning variants,
the one with the misorientation relation of 37.5 degrees 〈1 2 1 0〉 was found to display high
rate of lateral growth, and it is due to the tendency of this twinning variant to minimize
the compatibility strain.

Beyerlein and Tomé [10] mentioned that twinning dislocations of the predominant
twin system (PTS) are responsible for twin growth as they are often the most active twin
dislocations. On the other hand, slip dislocations provide resistance to twin growth and
eventually suppress it. Capolungo and Beyerlein [27] developed a 3D model of twinning
in hcp materials. The chances of twinning dislocations breaking away and contributing
to the formation of twins or twin growth are higher if twins are at a larger equilibrium
distance from the reaction center. In other words, a twin can grow by the coalescence of
twin nuclei or by the expansion of twin fault loops, or it can also grow by the creation of
twinning dislocation dipoles. Capolungo et al. [65] investigated the interactions between
slip dislocations and {1 0 1 2} and {1 1 2 2} twins. It was observed that a slip dislocation
interacting with a {1 0 1 2} twin boundary helps twin growth if it dissociates into glissile
twin dislocations. Twin nucleation and growth can also occur by dislocation pile-ups. TEM
observations performed by Wang and Agnew [66] show interactions between dislocation
and {1 0 1 2} twin. The interfacial interactions with an abundant amount of transmuted
dislocations along the twin boundary, as shown in Figure 3, results in twin advancement
and rapid hardening. Figure 2e shows various features, such as dislocation pileups at
twin boundary, transmuted dislocations, and stacking faults observed in Figure 3b–d,
respectively. Capolungo et al. [65] also performed experiments in strongly textured pure Zr
samples under different loading conditions of temperature and compression. A conclusion
was made that pre-existing {1 0 1 2} twin boundaries and prismatic dislocations do not have
a significant effect on {1 0 1 2} twin growth, but these twin boundaries and dislocations can
hinder the propagation of {1 1 2 2} twins. Meanwhile, using the climbing image nudged
elastic band method, Tang et al. [67] showed the diffusive nature of the extension twin
boundary and its athermal characteristics above critical stress. The faceted boundary plays
a significant role in twin embryo nucleation and twin boundary mobility [16]. The twin
may grow on boundaries other than the twin plane boundary and overcome obstacles
or lower interface energy by means of faceting. Transmission electron microscope (TEM)
experiments performed by Zhang et al. [43], as shown in Figure 2, show the microstructural
features of a new twin nucleus with four representative areas shown by red boxes and
the high–resolution TEM images in Figure 2b–e, respectively. The image in Figure 2d
confirms the {1 0 1 2} twin orientation relationship with the matrix. The lenticular-shaped
twin has a twin boundary that consists of straight terraces and step-like structures from
CPB/CBP boundaries.

Upon the application of stress, the atoms move in an organized way to create de-
fects such as dislocations, disclination dipoles, twinning, faceting, etc. At the continuum
scale, these defects make it complex to formulate models that can capture or extrapolate
those small–scale phenomena. Twinning mechanisms, such as nucleation, propagation,
and growth, play a significant role in determining the final microstructure of the material.
Site-specific embryonic twin nucleation in a homogeneous stress state is not yet deter-
ministic, although Barnett et al. [60], Paudel et al. [68], Siska et al. [69] have done some
work to estimate the nucleation of the next twin based on the stress state of the first one.
Giri et al. [70,71] tried to predict twin formation susceptibility based on energy criteria
using the nudged elastic band (NEB) method. A discrete dislocation-based modeling of
a twin is performed by Lloyd [72] to study the stress state of a twin and predict the twin
transfer at grain boundaries. The continuum-based crystal plasticity method does not
directly comprehend the discrete information obtained from MD, and hence, it is necessary
to bridge these two scales for an appropriate flow of information to better understand the
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material behavior. The next section discusses the CP methods and the evolution of CP
models to incorporate the above-mentioned features of twinning in CP models.

(𝑎)

(𝑒)

200	nmmatrix

twinTB(𝑑)

(𝑐)(𝑏)

Figure 3. TEM observations showing (a) abundant dislocations inside a twin along twin boundary (TB); (b) train of
dislocations on basal plane potentially piling up across TB at a point shown by red arrow; (c) dislocations inside twin
visible with diffraction vector g = (0 0 0 2); and (d) I1 and I2 stacking faults. (e) shows all the features in a schematic, where
curved lines represents dislocations and dashed lines represent stacking faults reproduced from [66], with permission from
Elsevier 2016.

2. Crystal Plasticity Modeling
2.1. Early Rate-Independent Crystal Plasticity Models

Numerical methods based on crystal plasticity theories have taken a pragmatic approach
to understanding the macroscopic and microscopic behavior of different material systems. The
early crystal plasticity theory can be traced back to Taylor and Elam [73,74] and Taylor [75,76],
where a quantitative description of plastic flow due to crystallographic slip is developed.
From the standpoint of modern continuum mechanics, Mandel [77] and Hill [78] formulated
constitutive equations for elastoplastic behavior in single ductile crystals. These crystal
plasticity theories were extended to finite deformations by Rice [79] and Hill and Rice [80].
Van Houtte [5] performed, for the first time, a rate-independent simulation to predict defor-
mation textures considering the role of mechanical twinning along with crystallographic slips.
All of these models use a rate-independent method for crystal plastic deformation, which has
three main issues [81]:

1. determining the slip systems that are active;
2. determining the increments of shear on the active slip systems; and
3. selecting slip systems required to produce an arbitrary deformation increment, which

is not necessarily unique.

Peirce et al. [82] implemented the first two-dimensional numerical scheme for rate-
independent elastic–plastic single crystals with non-homogenous deformation. This strat-
egy lacked the determination of active slip systems and the amount of slip on these systems,
leading towards the path of rate-dependent schemes.
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2.2. Rate-Dependent Crystal Plasticity Models

Peirce et al. [83] developed a rate–sensitive CP model able to predict unique constitu-
tive responses for arbitrary deformation histories. Asaro and Needleman [84] extended the
rate-dependent crystal plasticity model to predict deformation textures and large-strain
hardening behavior with varying stress–strain histories. For plastic deformation that occurs
by crystallographic slip, a comprehensive constitutive relation was established by Asaro
and Needleman [84] to model the evolution of crystallographic textures and the anisotropic
stress–strain responses. These constitutive models used a semi–implicit time integration
scheme developed by Peirce et al. [82,83]. Kalidindi et al. [85] developed a fully implicit
time-integration procedure that rigorously predicted the stress–strain behavior and the
texture evolution for both homogenous and non-homogenous deformation conditions.

2.3. Incorporation of Twinning

All of these crystal plasticity models are confined to single–phase, high stacking fault
energy (SFE), cubic metals, in which plastic deformation occurs predominantly by slip.
As mentioned in Section 1, for a number of other cubic metals and non-cubic metals,
the deformation is dominated by deformation twinning that changes the stress–strain
response [23,86–88] as well as the texture evolution [89–91]. Van Houtte [5], Chin et al. [92],
and Tomé et al. [6] faced challenges of successfully incorporating deformation twinning
in a crystal plasticity model. The major challenge was the proliferation of orientations
created by the twinned regions, which are different from the untwinned regions of the grain.
For instance, if each grain produces one twin at each time step, it will produce 2n grain
orientations after n time-steps. Van Houtte [5] resolved the problem by tracking the volume
fraction of activated twins for each grain and selecting single orientations at random, where
the probability of a given parent grain and twin variant is scaled by the current volume frac-
tion. At the end of each time step, the number of grains remained the same. Tomé et al. [6]
showed that this scheme has two main disadvantages: (i) the statistical criterion used in
the scheme requires a large number of grain orientations and (ii) the reorientation decision
at every time step does not consider the deformation history. To resolve this problem,
Tomé et al. [6] proposed two different approaches to track the twin orientation at different
time steps. The first approach is “the volume fraction transfer (VFT)” scheme. The VFT
approach specifies a discretized space to represent an orientation space and tracks the
weighted volume to represent the texture of the polycrystal. The volume fraction transfer
between these discrete regions, which is proportional to shear accommodation, determines
the crystal reorientation during deformation. The second approach is the predominant
twin reorientation (PTR) scheme. Like Van Houtte’s scheme for tracking different orienta-
tions, the PTR scheme chooses the crystallographic orientation of either twinned region or
untwinned region. However, the PTR scheme compares the accumulated volume fraction
represented by the twin-reoriented grains with accumulated twinned fraction associated
with the twinning shear as a criterion for making the reorientation choice.

2.4. Kalidindi’s Lagrangian Method of Incorporating Twin

Kalidindi [7] introduced a new constitutive framework incorporating deformation
twinning in a polycrystal plasticity model together with an efficient time-integration
scheme [85]. Unlike approaches by Van Houtte [5] and Tomé et al. [6], the calculation
occurs in the relaxed configuration (see Figure 2) in which the lattice orientation of the
twinned and the untwinned regions are pre-defined based on the initial lattice orientation
of the crystal. This constitutive framework is the most comprehensive and amendable
technique in the crystal plasticity finite element method (CPFEM). Therefore, this technique
is widely used as a framework to construct new CPFEM models.

Staroselsky and Anand [93] proposed constitutive models to compute both texture and
twin volume fraction, where a model based on the total Lagrangian approach to predict twin
volume fraction and texture evolution was advanced by Kalidindi et al. [85], Kalidindi [94].
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Wu et al. [95] presented a Taylor–type crystal plasticity model to predict the evolution
of crystallographic texture and an anisotropic stress-strain curve during large plastic
strains in Titanium. Clausen et al. [96] simulated the Van Houtte [5] scheme with grain
proliferation since the technological advancement allowed to track all grains. In the study,
Clausen et al. [96] maintained the relationship between parent and twin material although
the original, precise twin crystallographic relationship between the two may no longer
be strictly enforced. The stress field in a matrix–twin composite after the formation of
a deformation twin has been analyzed by Knezevic et al. [97] using Kalidindi’s CPFE
framework to study the conditions affecting the mobility of the twin-matrix interface.
Lévesque et al. [9] developed a new framework incorporated with in-house codes by
Inal et al. [98] to simulate large deformation behavior in hcp metals that considered the
crystallographic slip and deformation twinning as principal deformation mechanisms.
In the study, the crystallographic framework considered the dislocations inside the twinned
region, which will be discussed in Section 3. Izadbakhsh et al. [99] proposed a new
crystal plasticity constitutive model that incorporated plastic deformation due to primary
extension twins, primary contraction twins, secondary (double) twins, as well as basal and
non-basal slip system in all parent grain, primary twins, secondary twins, and double twins.

Kalidindi’s CPFE approach [7,85] was used by Abdolvand and Daymond [100] to
investigate the internal strain and texture development based on various assumptions of
twin–parent interactions. Abdolvand and Daymond [101], Abdolvand et al. [102] used
the same model to simulate the effect of grain boundary geometry and texture on twin
inception and propagation, as well as the 3D stress development in parent and twin pairs
in Zircaloy-2. In addition, FEM with polycrystal constitutive description in each integration
point is employed by [103–106] to investigate the deformation behavior of hcp metals.
Wu et al. [12] developed a new twin nucleation, propagation, and growth (TNPG) model
motivated by the studies of [107,108] on deformation mechanisms in amorphous glassy
polymers. Similarly, Cheng and Ghosh [109] developed a physics-based crystal plasticity
FE model of dislocation-mediated heterogeneous deformation and tensile twin nucleation
in single-crystal Mg and the polycrystalline alloy Mg AZ31. They expanded their FE model
with a new propagation approach based on the glide velocity of twin partial dislocation
through shear and shuffling mechanisms [110].

Ardeljan et al. [111–113] used a 3D CPFE framework incorporated with a deformation
twin through a novel approach, where twin lamella is automatically inserted across its
parent grain when the twin volume fraction reaches the threshold value. The propaga-
tion process was implemented by Qiao et al. [114], who used the CPFE framework with
Wu et al. [12]’s TNPG model and Tomé et al. [6]’s PTR scheme. Qiao et al. [114] noticed
that stress relaxation from twin nucleation in the TNPG model played an important role for
twin propagation across a grain boundary. Lévesque et al. [115] extended the framework
developed in [9,98] to consider separate rigid body rotation of the twinned region and
parent matrix. A stress relaxation associated with twin propagation accounted in the TNPG
method was incorporated with the TDT model of Wang et al. [11,116] in a CPFE framework
by Qiao et al. [114]. Figure 4 shows the evolution of the twinned area fraction during fatigue
deformation behavior of a 2% precompressed Mg AZ31 sample observed by Hong et al.
[117]. The microstructural changes during the 5/4 fatigue cycle show that the twinning in
precompressed Mg AZ31 specimen accommodates deformation by the detwinning process.
Reversed loading to compression causes twinning again, making an addition to the preex-
isting twins. The detwinning starts to operate from the first compressive unloading and
runs through the second tensile loading with a final twinned area fraction of 9.7% reduced
from initial 22% at the precompressed condition, as seen in Figure 4.

Several researchers Proust et al. [118], Knezevic et al. [119] have used the composite
grain (CG) approach to determine the deformation twin in their crystal plasticity models.
All these CPFE models for crystal plasticity of twinning are based on the framework
developed by Kalidindi (1998), where twinning is considered as a pseudo-slip mechanism.
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Figure 4. Twinned area fraction during a fatigue cycle of a precompressed Mg AZ31 sample data from [117] representing
plastic deformation accommodated by twinning and detwinning mechanisms.

2.5. Fast–Fourier Transfer (CPFFT) Based Method

Finite element methods (FEM) possess limitations related to meshing (requiring fine
meshes) and difficulties related to a large number of degrees of freedom, limiting the com-
plexity and size of the microstructures that can be investigated. Similarly, the prediction
of intracrystalline states using homogenization techniques requires n–site self–consistent
approaches [120,121] instead of classical one-site formulation [122,123] in which ideal
crystals are considered to deform embedded in a homogeneous medium with average
properties [3]. These limitations of both the small–scale FEM and n-site self–consistent
models can be overcome with a novel approach. As an alternative to the CPFE approach,
a full–field approach using the crystal plasticity fast-Fourier transform (CPFFT) method
was developed by Lebensohn [3], Lebensohn et al. [124], Prakash et al. [125] motivated by
the work of Moulinec and Suquet [126], Michel et al. [127] on composite materials. Initially,
a self–consistent elasto-viscoplastic model was developed by Hutchinson [128], Moli-
nari et al. [129] and evolved to account for large anisotropic viscoplastic deformation by
Lebensohn and Tomé [130], Lebensohn et al. [131]. Based on the FFT algorithm, Moulinec
and Suquet [126,132] developed an iterative method to compute the effective properties
and local response of elastic and elastoplastic composites. This method works with better
numerical performance than CPFE for periodic heterogeneous microstructures to provide
an exact solution of the governing equations. However, the convergence of this method
is limited to few initial iterations for low rate sensitivity and strongly anisotropic materi-
als [133]. This limitation was overcome by an application of an augmented Lagrangian
method [127] on the FFT formulation for isotropic composites with a high contrast of
properties. Since the CPFFT method is limited to periodic boundary conditions, CPFE
models are suitable for more complex boundary conditions.

In 2008, Lebensohn et al. [124] used visco-plastic fast Fourier transform (VPFFT) to
model the subgrain texture evolution in polycrystalline copper. Stress gradients and ori-
entation gradients were captured using VPFFT, showing stress localizations near grain
boundaries [134]. Extensions of the viscoplastic self–consistent (VPSC) model have been
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proposed by Proust et al. [4] and Knezevic et al. [119]. Lebensohn and Needleman [135]
implemented a non-local polycrystal plasticity theory using FFT on three-dimensional
FCC polycrystals to analyze the mechanical response of polycrystalline aggregates ac-
counting for size dependency that arose from plastic strain gradient. In recent years,
Barnett et al. [60], Siska et al. [69], and Paudel et al. [68] showed that the stress relaxation
due to twin formation is significant during modeling of twin formation and growth in a
crystal plasticity model. The effects of different microstructural aspects such as misori-
entation, low angle boundaries, autocatalysis, and twin aspect ratios during the growth
and propagation of deformation twins are studied by Kumar et al. [69,136–140] using the
crystal plasticity fast Fourier transform (CPFFT) method.

2.6. Coupled Crystal Plasticity and Phase-Field Model (CP-PFM)

In recent years, crystal plasticity models have been coupled with phase-field (PF)
methods to study the twinning mechanisms [141–145], where twinning is modeled as a
phase transformation, and plastic deformation is computed using crystal plasticity meth-
ods. Phase-field models, first started by Khachaturian [146], have been successful to predict
austenite-martensite transformation in steels [147] and tetragonal–monoclinic transforma-
tion in zirconia [148]. In hcp Mg, Pi et al. [149] used the phase-field model to study the
tensile twins using twin interfacial energy as a driving force. Later, the coupled CP-PF
models are successfully used to study deformation behavior associated with slip induced
plasticity, and twinning and detwinning [141], twin nucleation and thickening [142,143],
twin morphologies [144], and twin interactions with other slip systems, twins, and grain
boundaries [142,145].

All of these models have evolved with time to incorporate various deformation
mechanisms observed at mesoscale and microscale levels. The main challenge for recent
material scientists is to model physics-based twin nucleation criteria to incorporate into
CPFEM or CPFFT models. In the following sections, different CP approaches as well as the
current techniques developed to incorporate twins in these CP models are discussed.

3. Crystal Plasticity Finite Element Method (CPFEM)

The mathematical formulation for the crystal plasticity finite element method is based
on the theory of continuum mechanics and the decomposition property of a deformation
gradient. In this section, crystal plasticity formulation by Lévesque et al. [115] is summa-
rized that uses an updated Lagrangian approach to incorporate the twinning mechanism.
Throughout the formulation, bold letters and symbols are used for tensors and vectors
unless defined otherwise in the text. Similarly, () · () represents dot product, and ()⊗ ()
represents tensor product.

3.1. Total Deformation

The deformation gradient, F, can be decomposed into the elastic and the plastic part
(see Figure 5).

F = F∗ · FP, (1)

where F* is the elastic deformation. Rigid body rotation and crystallographic slip and
twinning are included in FP. The velocity gradient can be written as:

L = Ḟ · F−1 = L∗ + LP (2)

where L∗ = Ḟ∗ · F∗−1, LP = F∗(ḞP · FP−1
)F∗−1. The velocity gradient has the symmetric

stretching part, D, and asymmetric part spin tensor, Ω, which can be decomposed into
elastic and plastic parts.

L = D + Ω, D = D∗ + DP, and Ω = Ω∗ + ΩP (3)
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where D∗ and Ω∗ are elastic strain rate and rigid lattice rotation rate, respectively, and DP

and ΩP are plastic strain rate and plastic spin rate, respectively. A constitutive equation
by Lévesque et al. [9], which is based on Asaro and Needleman [84] and Kalidindi [7],
is presented in this subsection. The plastic strain rate and plastic spin for the crystal are
written as

DP =

(
1−

NT

∑
β=1

fβ

)[
NS

∑
α=1

Pαγ̇α +
NT

∑
β=1

Pβ ḟβγtw

]
+

NT

∑
β=1

[
fβ

NS

∑
α=1

Ptwβ
α γ̇

twβ
α

]
(4)

and

ΩP =

(
1−

NT

∑
β=1

fβ

)[
NS

∑
α=1

Wαγ̇α +
NT

∑
β=1

Wβ ḟβγtw

]
+

NT

∑
β=1

[
fβ

NS

∑
α=1

Wtwβ
α γ̇

twβ
α

]
(5)

where Pα and Wα are symmetric and skew-symmetric tensors for each slip systems α, γ̇α is
the shear rate on the slip system α, fβ is the volume fraction of the grains that have been
twinned to the system β, γtw is the amount of shear associated with twinning, and ḟβ is
the rate of twinning of the system . The parameters associated with the twinned region
of the twin system β are indicated by superscript twβ. NT and NS represent the number
of slip systems and twinning systems, respectively. Pα and Wα for each slip system α can
be obtained using the lattice vectors sα and mα stretched and rotated to s∗α = F∗sα and
m∗α = mαF∗−1:

Pα =
1
2
[s∗α ⊗m∗α + m∗α ⊗ s∗α] (6)

Wα =
1
2
[s∗α ⊗m∗α −m∗α ⊗ s∗α] (7)

Initial,	stress-free	
configuration

Intermediate,	relaxed	
configuration

Current,	loaded	
configuration

𝐹 = 𝐹∗ ⋅ 𝐹: 𝐹∗

𝐹:

Figure 5. A schematic of the decomposition of the deformation gradient with the twinned region
included in the plastic term, data from [7].
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3.2. Crystallographic Slip and Twinning

Power law equations are used to describe the slip rate (γ̇α) and the rate of twinning
( ḟα) as follows:

γ̇α = γ̇◦ sign(τα)

∣∣∣∣ τα

gα

∣∣∣∣ 1
m

(8)

ḟα =
ḟ◦

γtw sign(τα)

∣∣∣∣ τα

gα

∣∣∣∣ 1
m

(9)

where γ̇◦ and ḟ◦ are the reference shear rate of the slip system, γtw is a twinning shear, m is
a rate sensitivity parameter, τα is the resolved shear stress on the slip system α, and gα is
the hardness of the slip system, whose rate is defined by hardening law:

ġα = ∑
β

hαβ

∣∣γ̇β

∣∣ (10)

where hαβ is the hardening modulus. This modulus has the form

hαβ =
NS

∑
α=1

qαβhβ (11)

where hβ is a hardening rate of the slip system, and hαβ is the latent hardening matrix.
The hardening rate for the slip and the twinning systems is represented by a power-law
equation as follows:

hα = h◦

[
h◦γα

ταn
+ 1
]n−1

+ h1 (12)

where h◦ is the initial hardness of the slip systems, γα is the sum of the accumulated slip
all time, and n is the hardening exponent.

γα =
∫ t

0
|γ̇α|dt (13)

Hardness caused by the formation of twin boundaries is incorporated into the formu-
lation with the parameter h1. The hardening parameter h1 depends on the density of the
twin boundaries within a grain.

h1 =


hTB

(
1−

∣∣∣ ζ−∑β fβ

ζ

∣∣∣)e
, if ∑β fβ <= ζ

hTB

(
1−

∣∣∣ ζ−∑β fβ

1−ζ

∣∣∣)e
if ∑β fβ > ζ

(14)

where ζ represents the volume fraction of twins with maximum twin boundary density,
and hTB is a coefficient accounting for the effect of twin boundaries on the hardening of
slip systems. The model accounts for softening from lattice reorientations of twins by
computing the resolved shear stress (RSS) on slip planes inside the twins using a new
orientation. The reorientation of the twinned region is reflected on the elastic modulus
using the transformation law:

Etwβ
ijkl = QimQjnEmt

mnopQokQpl (15)

where Q is transformation matrix and is defined in the work of Van Houte [5] as follows:

Qij = 2mimj − δij (16)

where m is the twin plane normal.
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Finally, the Cauchy stress, σ, over a grain is obtained by averaging the Cauchy stresses
in the twinned region (σmt) and un-twinned regions (σtwβ) of the grain:

σ =

(
1−

NT

∑
β=1

fβ

)
σmt +

NT

∑
β=1

fβσtwβ (17)

The Cauchy stresses, σmt and σtwβ, are computed using the elastic constitutive equa-
tion specified by

∆
σ = LD− σ̇0 − σ tr D, (18)

where
∆
σ is the Jaumann rate of Cauchy stress, L is the elastic modulus, and σ̇0 is a

visco-plastic type stress rate [150].

4. Fast Fourier Transform Method

In this section, we present the fast Fourier transform based elasto-viscoplastic for-
mulation (EVPFFT) developed by Lebensohn et al. [151]. Based on the crystal plasticity
approximation by Asaro and Needleman [84], the elastic strains are comparatively negligi-
ble to the plastic strains and the constitutive relation between the viscoplastic strain rate
ε̇P(x) and stress σ(x) at a single-crystal material point is given by:

ε̇P(x) =
NS

∑
s=1

ms(x)γ̇s(x)

= γ̇◦
NS

∑
s=1

ms(x)
(
|ms(x) : σ(x)|

τs◦(x)

)n
sgn(ms(x) : σ(x))

(19)

where γ̇s(x), τs
◦(x), and ms(x) are, respectively, the shear rate, the critical resolved shear

stress (CRSS), and the Schmid tensor, associated with slip system (s) at point x and n is the
stress exponent (inverse of the rate-sensitivity exponent). τs

◦(x, εp(σ(x))) is a function of
the accumulated plastic strain of a crystal, which, in turn, is a function of the stress due to
the strain-hardening in slip systems. To solve the EVP problem for small strain conditions,
an Euler implicit time discretization scheme is used along with Hooke’s law in order to
obtain the stress σ(x) at time (t + ∆t):

σt+∆t(x) = C(x) : εe,t+∆t(x) = C(x) :
(

εt+∆t(x)− εp,t(x)− ε̇p,t+∆t(x, σt+∆t)∆t
)

(20)

where σ(x) is the Caucy stress tensor, C(x) is the elastic stiffness tensor, ε(x), εe(x),
and εp(x) are the total, elastic, and plastic strain tensors, and ε̇p is the plastic strain-rate
tensor. They are related as follows:

σ(x) = C(x) :
(
ε(x)− εp,t(x)− ε̇p(x, σ)∆t

)
ε(x) = C−1(x) : σ(x) + εp,t(x)− ε̇p(x, σ)∆t

(21)

where the supra-indices t + ∆t are omitted, and only fields corresponding to the previous
time step (t) are explicitly indicated. [1,3,124–126,131,135,138,152–156] have evolved this
method to simulate various deformation behavior in hcp metals.

4.1. Green’s Function Method

A stress–strain relation can be expressed in terms of linear reference medium with
stiffness C0

ijkl as:

σij(x) = σij(x) + C0
ijkluk,l(x)−C0

ijkluk,l(x) (22)
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where uk,l(x) is the displacement-gradient tensor with εkl =
1
2 (uk,l(x) + ul,k(x)). The terms

from the above equation can be regrouped to form a polarization field such that:

ϕij(x) = σij(x)−C0
ijkluk,l(x) = σij(x)−C0

ijklεi,l(x)

σij(x) = C0
ijkluk,l(x) +ϕij(x)

(23)

Implementing the equilibrium condition σij,j(x) = 0,

C0
ijkluk,l j(x) +ϕij,j(x) = 0 (24)

The auxiliary problem solving the differential Equation (23) for a periodic unit cell
under an applied strain E =< ε(x) > using Green’s function method is given by replacing
the polarization term by a unitary body force acting at a given point and along a given
direction. Thus, we obtain:

C0
ijklGkm,l j(x− x′) + δim(x− x′) = 0 (25)

where Gkm(x) is the Green’s function associated with the displacement field uk(x). Assum-
ing that the Green’s function is known, the displacement and displacement gradient fields
can be written as a convolution integral:

uk(x) =
∫

R3
Gki,j(x− x′)ϕij(x′)dx′

uk,l(x) =
∫

R3
Gki,jl(x− x′)ϕij(x′)dx′

(26)

The convolution becomes simply a multiplication in Fourier space; thus, the strain
field can be calculated in Fourier space and then transformed back to real space as follows:

εij(x) = Eij + FT−1{sym
(

Γ̂
0
ijkl(k)

)
ϕ̂kl(k)}(x) (27)

where the hat symbol represents the Fourier transform (FT), k is a frequency in Fourier
space, and Eij is the strain prescribed on the unit cell. The Green’s operator in Fourier space,
which is only a function of the reference stiffness tensor and the frequency, is given by

Γ̂
0
ijkl(k) = −k jklĜik(k)

Ĝij(k) =
[
C0

ijklklkj

]−1 (28)

The grid size kd in the Fourier space is same as the grid size (N1 × N2 × N3) in
Cartesian space. The above equations will directly give the displacement and strain fields
if the polarization field ϕij(x) is known. The model guesses the initial polarization field
ϕij(x) to calculate the strain field εij(x). Using the strain field, the stress fields, and the slip
rate fields are updated to re-evaluate the polarization field, and the process is repeated
until the polarization field is converged within the given tolerance value.

4.2. Algorithm

Lebensohn et al. [151] used a robust and faster convergence technique called the
augmented Lagrangian scheme adapted from [127,154] along with the Newton–Raphson
method to solve nonlinear equations. The iterative procedure used by Lebensohn et al. [151]
is shown below:

1. Assume that λ
(i)
ij and e(i)ij are auxiliary guess stress and strain fields at iteration (i).

2. Compute the polarization field at iteration (i):

φ
(i)
ij (x) = λ

(i)
ij (x)−C0

ijkle
(i)
kl (x) (29)
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3. A new guess for strain field at iteration (i+1) is then given by:

e(i+1)
ij (x) = Eij + FT−1

(
sym

(
Γ̂

0
ijkl(k)

)
φ̂
(i)
kl (k)

)
(30)

The above equations can be combined to avoid the calculation of the polarization
field, as given by Michel et al. [154].

e(i+1)
ij (x) = Eij + FT−1

(
ˆ̃e(i)ij + sym

(
Γ̂

0
ijkl(k)

)
λ̂
(i)
kl (k)

)
(31)

4. The strain field e(i+1)
ij in above equation is used to calculate the stress σ

(i+1)
ij using

augmented Lagrangian scheme. At every material point x, a residual R, which is a
function of σ(i+1), is defined by:

Rij(σ
(i+1)) = σ

(i+1)
ij + C0

ijklε
(i+1)
kl (σ(i+1))− λ

(i)
ij −C0

ijkle
(i+1)
kl = 0 (32)

Here, ε(i+1) is a function of σ(i+1) as they are related by constitutive relations.
5. The Newton–Raphson (NR) method is implemented to solve the nonlinear Equation (32),

where (j + 1)th guess for stress field σ
(i+1)
ij is calculated using:

σ
(i+1,j+1)
ij = σ

(i+1,j)
ij −

(
∂Rij

∂σkl

∣∣∣∣
σ(i+1,j)

)−1

Rkl(σ
(i+1,j)) (33)

The derivative in Equation (33) can be obtained using the expression:

∂Rij

∂σkl

∣∣∣∣
σ(i+1,j)

u δikδjl + C0
ijpqC−1

pqkl + (∆tnγ̇0)C0
ijpq

N

∑
s=1

ms
pqms

kl

τs
0(σ

(i+1,j))

 ms
kl : σkl

τs
0(σ

(i+1,j)
kl )

n−1

(34)

The convergence on σ(i+1) (and thus on ε(i+1)) is achieved with a provided tolerance.
6. The new guess for the auxiliary stress field λ(i+1) is obtained by

λ(i+1)(x) = λ(i)(x) + C0 :
(

e(i+1)(x)− ε(i+1)(x)
)

(35)

The iteration continues until the normalized average differences between the stress
fields, σ(x) and λ(x), and the strain fields, ε(x) and e(x), are below the provided tolerance.

5. Twinning Criterion in CP Models

In this section, we will discuss the schemes found in the literature to incorporate de-
formation twinning into CP models. Most of the crystal plasticity models treat deformation
twinning as a pseudo-slip deformation mechanism, which defines the volume fraction
of the twin, f , as the ratio of accumulated shear γacc to the characteristic shear of the
respective twinning γtw mode, as shown in equation below [99]:

f =
γacc

γtw (36)

Figure 6 shows the chronological order in which different twinning criteria have been
developed in recent years and the twinning behaviors these criteria intend to implement in
the crystal plasticity models.Early models, such as PTR and VFT schemes, tend to predict
the texture evolution associated with twinning and recent models incorporate various
mechanisms of twinning such as detwinning, twin propagation, and twin nucleation. Here,
we will discuss each of these models in brief.
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Twinning	
Properties

Twinning	
Criterions

1978 Van	Houtte’s SchemeTexture	evolution	with	twin	reorientations	(1st
to	include	twin)

1991
PTR	Scheme	(Modified	Houtte’s
Scheme)
VFT	Scheme

More	accurate	predictions	of	texture	evolution

1998 Kalidindi’s Lagrangian	methodKeeps	track	of	all	twinning	variants	w/	
calculations	based	on	relaxed	config.

2007 Composite	Grain	
Lamellar	twin	incorporated	with	slip	and	twin	
resistances		functions	of	their	directionality	

2008 Dislocation	densityHardening	behaviors	determined	by	dislocation	
densities

2010 Updated	Lagrangian	methodIncorporates	secondary	twins	as	well	as	
secondary	(and	tertiary)	slips	

2010 Probabilistic	twin	nucleationUses	stochastic	data	to	determine	onset	of	
twinning	and	variant	selection

2012 Twinning	De-twinning		Detwinning	under	unloading	of	twin	is	
implemented	(important	for	fatigue)

2015 Twin	nucleation,	propagation	&	
growthStress	relaxation	due	to	twin	propagation	

2015 Energy	based	twinning	Twin	nucleation	criterion	as	a	dislocation	
assisted	mechanism	

2017 Energy	based	twin	evolution	model
Twin	propagation	assisted	by	atoms	shearing	
on	twin	planes	and	shuffling	to	reduce	thermal	
activation	energy	barrier.	

2018 Phase-field	twinning	modelTwinning	modeled	with	evolution	described	by	
energy	of	discrete	twin	interface

Figure 6. Timeline showing the incorporation of different twinning mechanisms through twinning criteria in crystal
plasticity (CP) models.

5.1. Predominant Twin Reorientation (PTR) Method

The PTR method, proposed by Tomé et al. [6] using Van Houtte [5]’s scheme, is one
of the most widely used twinning criterion in CP models. This method tracks the twin
volume fraction in each grain, determines the twin system with dominant twin volume
fraction using statistical criterion (based on the volume fraction of twinned regions in the
grain and entire polycrystal aggregate), and reorients the entire grain into a dominant
twin. Shear strain ∆γn,ti contributions by each twinning system ti in the grain n are used
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to compute the volume fraction of the grain ∆gn,ti using Equation (36). f n represents the
weighted volume fraction of the grain in a polycrystal. Thus, the overall twin volume
fraction in each grain is calculated by:

∆ f n,t1 = f n ∆γn,ti

γtw = f n∆gn,ti (37)

After each deformation step, the twin volume fraction in each grain accumulates as:

gn,ti = ∑
steps

∆gn,ti (38)

The total twinned volume fraction in a polycrystal is a weighted aggregate of the twin
volume fraction in each grain, gn,ti .

FR = ∑
n

f n ∑
ti

gn,ti (39)

After reorientation of grain into a twinned region, the effective polycrystal twinned
fraction is calculated by taking the sum of the grain volume fraction of reoriented grains.

FE = ∑
n

f n (40)

The criterion for the reorientation of a grain is measured by the twin fraction accumu-
lated in each twinning system for each grain at every incremental step, gn,ti , compared to
the “threshold" fraction FT defined as:

FT = 0.25 + 0.25
FE
FR

(41)

The main disadvantage of the PTR scheme is that it only accounts for the most active
twinning system in each grain. However, in the case of deformation by twinning, more
than one twinning system can be active inside the grains. This problem can be mitigated
by using a volume fraction transfer scheme, which considers all reorientation from all twin
systems [6].

5.2. Volume Fraction Transfer (VFT) Method

This method, proposed by Tomé et al. [6], discretizes the Euler space (space containing
all Euler angles representing grain orientations) into identical equiaxed cells of volume
(∆φ1 × ∆Φ × ∆φ2). Each of these cells represents an orientation defined by its center:
φn

1 , Φn, φn
2 (the Bunge convention) and contains the initial volume fraction f n. After each

deformation step, a reorientation of (δφ1, δΦ, δφ2) is experienced by each grain. Assuming
the discrete cells are small, the cell shifts by the reorientation vector, as shown in Figure 7a,
and overlaps with the neighboring cells. The volume fraction, f nm, associated with the
overlapped region is transferred from the cell m to the neighboring cell n.

The volume fraction of twinning active within the grain is obtained from Equation (36).
As a result, the orientation of the twinned region, which is different from the parent grain,
is implemented by transferring a finite and non-incremental displacement into the Euler
space. As shown in Figure 7b, the fraction ∆ f n,t1 is transferred from the cell m to a
non-contiguous cell n in the Euler space.
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𝚽𝒏
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Figure 7. A schematic representing volume fraction transfer scheme from cell n: (a) to neighboring cells due to reorientation
by slip and (b) to neighboring cells due to reorientation by twinning.

5.3. Total Lagrangian Approach

The major drawbacks of the PTR and VFT schemes are that the twinned regions are
treated as new grains, which can further deform by slip and twinning, just like untwinned
regions. However, Asgari et al. [88] showed that twinned regions are harder than the
parent matrix. These drawbacks were addressed by Kalidindi et al. [85], where he considers
primary and secondary slip systems in addition to primary twin systems in their crystal
plasticity models. Kalidindi et al. [85] used the decomposition of the total deformation [157]
and incorporated deformation twinning into the plastic deformation with an assumption
of the same deformation gradient in the twinned and the untwinned regions, as seen in
Figure 5. The incorporation of twinning in the evolution of plastic deformation was done
using the constitutive equations shown below:

Ḟp
= Lp · Fp (42)

with

Lp =

(
1−

NT

∑
β

fβ

)
NS

∑
α

γ̇αSo−sl
α +

NT

∑
α

ḟαγtwSo−tw
α +

NT

∑
β

fβ

(
NS−T

∑
α

γ̇αStw-S
α

)
(43)

The three terms in the right hand side of Equation (42) represents the velocity gradient
due to slip in the untwinned region, twins in the untwinned region, and slip in the twinned
region, respectively. The evolution of twinning, determined by twin volume fraction, was
assumed to depend on the resolved shear stress and a twin system resistance.

ḟα = ḟα(τα, stw
α , ...), fα ≥ 0,

NT

∑
α

fα ≤ 1, ḟα ≥ 0 (44)

where stw
α is associated with the resistance of the twin system. The same approach was

exploited by Salem et al. [8] with different resistance evolution for primary slip and twins.
The evolution of slip resistance was described by:

ṡslip
α = hs

(
1 + C ∑

β

fβ

)(
1− sα

ss
α

)a Ns

∑
k

γ̇k (45)
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ss
α = ss

0 + spr

(
∑
β

fβ

)0.5

(46)

ṡβ = htw

(
∑
m

f m

)b

∑
k

γtw ḟk + htw-sl

(
∑
α

γα

)d

∑
k

γ̇k (47)

The above equations for slip and twin resistances consider some of the important
behaviors seen due to deformation twinning, such as hardening of all slip systems, the
Hall–Petch mechanism (controlled by the parameter spr), the Basinski–hardening mech-
anism (controlled by the parameter C), and the saturation of twin volume fraction [8].
Wu et al. [95] further improved this model by incorporating secondary slip and introduc-
ing a grain fragmentation technique for accurate simulation of α-Titanium. In this model,
the criterion for the grain fraction was determined by comparing the twin volume fraction
in a grain

(
∑β fβ

)
with a predetermined saturation value ( fsat).

5.4. Updated Lagrangian Approach

Lévesque et al. [9,115], Izadbakhsh et al. [158], Izadbakhsh et al. [99] used rate-dependent
CP models that incorporated primary slip and twins, secondary slip and twins, as well as
tertiary slip for plastic deformation of hcp metals. A detailed discussion on the incorporation
of twinning in Lévesque et al. [9] is presented in Section 3.

5.5. Composite Grain (CG) Model

The CG model was proposed by Proust et al. [4] to address the limitation of the PTR
scheme in VPSC polycrystal code. The PTR scheme considers either the initial orientation
or the twin reoriented grain, which hardly accounts for the directional barrier effect that
twins have upon the propagation of dislocation [4]. The CG model takes care of parent and
twin reoriented fractions, their interaction, and their evolution with deformation. It adopts
the PTR scheme to define the volume fraction of predominant twin system (PTS), the twin
system with maximum grain volume fraction.

f PTS =
∆γPTS

γtw (48)

Here, PTS is the twin system that forms into a parallel twin lamellae in the grain, as
shown in Figure 8. The CG model introduces two parameters: (i) dc the separation distance
of the center planes and (ii) the maximum volume fraction of twin inside the grain f PTS

max.
The CG model assumes that the twins with thickness of dtw form inside a grain of size dg in
an equally spaced manner. The twins can grow up to a maximum value of dg

max = f PTS
maxdc.

The evolution of twin and parent thickness is determined by the volume fraction.

dtw = f PTSdc

dmat =
(

1− f PTS
)

dc (49)

The volume fraction of each twin system is tracked until it exceeds the threshold value
(typically 5% of grain volume) and defines PTS as the twin system that reach the threshold
value first. Within the CG model, the evolution of slip and twin resistances are determined
by three mechanisms: the evolution of statistical dislocations with strain, the evolution
of geometrically necessary dislocation (GND), and a directional Hall–Petch (HP) effect
associated with twin interfaces.

τα = τSTAT
α + τGND

α + τHP
α (50)



Metals 2021, 11, 1373 21 of 53

𝑑"

Figure 8. A schematic representing the composite grain (CG) model data from [4] and uncoupled twin-matrix domains
with their characteristic lengths. The ellipsoids representing twins and matrix are rotated to orient such that major and
minor axes are aligned with twin plane, η1, and plane normal, nK1 .

The first term in Equation (50) is defined using a classical saturation Voce law for
statistical dislocation as well as a latent hardening effect coupled with shear increments
∆γβ in the system β with the increase in strength in system α:

∆τSTAT
α =

∂τ̂α

∂Γ ∑
β

hαβ∆γβ (51)

where

τ̂α(Γ) = τ0 + τ1

(
1− exp

(
−Γθ0

τ1

))
(52)

Here, Γ is the accumulated shear in the grain. The effect of twin interfaces, which is
central to the CG model, comes from a mean free path for each slip and twin system. The
second term for Equation (49) is defined by Karaman et al. [159] and Kok et al. [160]:

∆τGND
α =

hm
α

dmfp
α (τSTAT

α + τGND
α )

∆γα (53)

dmfp
α represents the mean free path introduced due to specific orientation of twin plane (A)

with respect to the slip and twin planes of the other active systems and it is defined as:

dmfp
α =

{
dtw/ sin (A) in the twin and
dmat/ sin (A) in the matrix

(54)

The Hall–Petch–type mechanism is determined using:

τHP
α =

hHP
α√
dmfp

α

(55)

Here, the twin resistance due to the Hall–Petch effect is τHP
α , the Hall–Petch hardening

parameter is hHP
α , and the mean free path is denoted by dmfp

α .

5.6. Twinning Detwinning (TDT) Model

The twinning criteria discussed above mainly describe the reorientation due to twin-
ning and plastic hardening caused by twinning. The CG model employed the empirical
treatment of twin nucleation and twin propagation. However, none of these models were
able to describe the detwinning process observed by Roberts [161] during a subsequently
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reversed loading. The TDT model proposed by [11,116] addresses the detwinning be-
havior of twinning in the crystal plasticity models. A schematic of the TDT model is
shown in Figure 9. For a pristine grain shown in Figure 9a, a TDT process has mainly
four mechanisms:

(a) the nucleation of a twin (child) grain with mirrored symmetry with the parent grain
(shown in Figure 9b);

(b) propagation of twin into the parent grain (Figure 9c);
(c) propagation of the parent grain into the twin/child grain (Figure 9d); and
(d) activation of twinning dislocation inside twinned region (Figure 9e).

𝜏"#
𝜏"$

𝜏"#

𝜏"$

(a) (b) (c) (d) (e)

Figure 9. A schematic representing Twinning Detwinning (TDT) model within a grain, (a) pristine grain, (b) nucleation
of a twin (child) grain with mirrored symmetry with the parent grain, (c) propagation of twin into the parent grain,
(d) propagation of the parent grain into the twin/child grain, (e) activation of twinning dislocation inside twinned region,
reproduced from [11], with permission from Elsevier 2012

In the TDT model, the resolved shear stress, τα = σ : Pα, is assumed to be the driving
force for both twinning and detwinning. However, the utmost importance should be
given to choosing an appropriate resolved stress. For instance, the twin nucleation process
should be driven by the stress state of the parent grain, as no twin grain has formed
yet. Likewise, detwinning in Figure 9c is driven by the stress state of the twinned region.
However, twinning and detwinning mechanisms in Figure 9c,d are driven by the twin–
parent interface. Constitutive equations addressing the TDT model are presented in the
following paragraphs.

The shear rates during each TDT mechanism are defined separately.

γ̇αA =

{
γ̇0|τα/τα

cr|
1/m τα = ταP > 0

0 τα = ταP ≤ 0
,

γ̇αC =

{
−γ̇0|τα/τα

cr|
1/m τα = ταP < 0

0 τα = ταP ≥ 0

(56)

Operation A and C are twinning and detwinning process and cannot be activated
simultaneously as operation C is only possible when a twin exists. The evolution of the
twin volume fraction for each operation differs as:

ḟ αA =

∣∣γ̇αA
∣∣

γtw , ḟ αC =
−
∣∣γ̇αC

∣∣
γtw (57)
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The shear rates for twinning system α inside a twin are from operations B and D:

γ̇αB =

{
−γ̇0|τα/τα

cr|
1/m τα = ταC < 0

0 τα = ταC ≥ 0
,

γ̇αD =

{
γ̇0|τα/τα

cr|
1/m τα = ταC > 0

0 τα = ταC ≤ 0

(58)

Again, operations B and D represent twinning and detwinning and cannot act si-
multaneously. Their activation is possible only in the presence of the twinned region.
The evolution of the twin volume fraction is given by equations similar to Equation (56).

ḟ αB =

∣∣γ̇αB
∣∣

γtw , ḟ αD =
−
∣∣γ̇αD

∣∣
γtw (59)

The overall evolution of twin volume fraction is determined by the sum of weighted
volume fraction evolution in the parent ( f 0 = 1− f tw) and twins ( f tw = ∑α f α).

ḟ α = f 0( ḟ αA + ḟ αC) + f α( ḟ αB + ḟ αD) (60)

A threshold twin volume fraction for the termination of twinning is determined using
the accumulated twin fraction Vacc and effective twin fraction Veff.

Vth = min

(
1.0, A1 + A2

Veff

Vacc

)
(61)

where A1 and A2 are two materials constants.
Wu et al. [162] have used this twinning criterion technique in order to study rapid

hardening and exhaustion behavior of twinning in Mg alloys.

5.7. Twin Nucleation, Propagation, and Growth (TNPG) Method

Wu et al. [12] proposed a new physics-based constitutive model to describe twin nu-
cleation, propagation, and growth, mainly to overcome the twin propagation mechanisms
missing in the methods mentioned above. A schematic of a twinning process and evolution
of twin resistances are shown in Figure 10a. The TNPG method assumes that the twin
nucleates at a grain boundary under certain conditions and propagates on the twinning
plane along the twin shearing direction, forming a twin band. Figure 10b represents the
evolution of twin resistances τα as a function of twin volume fraction f α.

In the constitutive model for Elastic Viscoplastic Self–Consistent (EVPSC) polycrystal
model by Wang et al. [163], the evolution of the CRSS τα

cr is given by

τα
cr =

dτα

dΓ ∑
β

hαβ
∣∣∣γ̇β
∣∣∣ (62)

where the shear rate due to twinning γ̇β is defined by a piecewise function due to its
polar nature.

γ̇α =

{
γ̇0|τα/τα

cr|
1
m τα > 0

0 τα ≤ 0
(63)

Finally, the threshold stress that characterizes twinning with the incorporation of
stress relaxation associated with twin propagation is defined using the following equation.

τα =

τα
0 −

τα
0−τα

g
f α
g

f α f α ≤ f α
g

τα
g +

(
τα

1 + hα
1Γα
)(

1− exp
(
− hα

0
τα

1
Γα
))

f α > f α
g

(64)
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Here, the accumulated shear of the twinning Γα is calculated after f α > f α
g . Like PTR

and TDT models, a threshold twin volume fraction to terminate twinning is also defined
in the TNPG model based on two statistical variables: the accumulated twin fraction Vacc

and the effective twinned fraction Veff, as shown in Equation (60).

nucleation propagation growth

�̂�#

𝜏$#

𝜏%#

𝑓%# 𝑓#

propagation growth

(a)

(b)

Figure 10. A schematic representing (a) the TNPG (CG) model within a grain and (b) resistances for twin nucleation,
propagation, and growth. Data from [12].

5.8. Dislocation Density Based Model

In this section, we will discuss the constitutive model based on dislocation densities for
slip and twinning by Beyerlein and Tomé [10] in order to address the effect of deformation
histories involving changes in temperature and strain rate. Each slip mode has its own
dislocation evolution law that includes a thermally-activated recovery process that leads to
either annihilation or debris formation. The hardening law for twin propagation accounts
for temperature effects through its interaction with slip dislocations. The dislocation
density-based model uses the CG approach for twin grain formation with the PTS scheme
with dislocation density-based slip and twin resistances.

The slip resistance is defined as a summation of friction stress τα
0 (depends on Peierls

stress and initial dislocation content), a barrier term τα
0,HP (depends on initial grain size),

and forest and debris interaction stresses that evolve with strain τs
for, τα

for, and τα
deb (depends

on a spatially random and ordered distribution of stored dislocations, respectively) [10,164]:

τs = τα
0 + τα

0,HP + τs
for + τα

deb (65)



Metals 2021, 11, 1373 25 of 53

The friction stresses, τα
0 , are the function of temperature and strain rate and defined as:

τα
0 (ε̇, T) = Aα(1 + Bα log(ε̇)) exp

(
− T

Cα

)
(1 + Dα Lognormal(σα, να)) (66)

where Aα, Bα, and Cα are constants and Dα and lognormal terms, σα and να are used to
capture the saturation of the resistances at high temperatures. T and ε̇ are the current
temperature and strain rate, respectively. The barrier term, τα

0,HP, is given by:

τα
0,HP =


µα(T)HPs

√
bα

dg
, without twins

f PTS− f PTS
0

f PTS
max− f PTS

0
µα(T)HPs

√
bα

ds
mfp

, with twins present

(67)

where bg is the magnitude of burgers vector, dg is the initial grain size, µα(T) is the effective
shear modulus (same for all directions), and HPα is the Hall–Petch parameter. f PTS

0 is the
minimum volume fraction identifying the PTS.

The later two terms in Equation (64) evolve with the strain governed by the forest
dislocation density ρs

for(ε̇, T) and debris dislocation density ρdeb(ε̇, T), as shown by:

τs
for(ε̇, T) = bαµα(T)

√
χss′ρs′

for(ε̇, T),

τdeb(ε̇, T) = kdebµα(T)bα
√

ρdeb(ε̇, T)× log

(
1

bα
√

ρdeb(ε̇, T)

) (68)

where χss′ is a dislocation interaction matrix accurately characterized through specialized
experiment and simulation [165]. The evolution of forest density, ρs

for(ε̇, T), is given by the
following relations [10,166,167]:

∂ρs
for

∂γs′ =
∂ρs

gen,for

∂γs′ −
∂ρs

rem,for

∂γs′ = ks
1

√
ρs

for − ks
2(ε̇, T)ρs

for,

ks
1

ks
2
=

1√
(χ−1)

s′s
(

τs
sat

bαµα

)2
, τs

sat =
Dα(bα)3gαµα

Dα(bα)3 − kT ln
(

ε̇
ε̇0

) .

(69)

where ks
1 is the rate-insensitive coefficient that accounts for dislocation storage by statis-

tical trapping of mobile dislocations, and ks
2 is the rate-sensitive coefficient for dynamic

recovery through thermally activated mechanisms, respectively. k, ε̇0, gα, and Dα are the
Boltzmann constant, a reference strain rate, an effective activation enthalpy, and a drag
stress, respectively. The evolution of debris dislocation density is obtained by:

dρdeb = ∑
s

qαbα
∂ρs

rem,for

∂γs′

∣∣∣dγs′
∣∣∣ (70)

where qα defines a fraction of dislocations leading to debris formation and the remaining
fraction that annihilates.

Similarly, resistance for twinning is defined by three different terms: (i) a temperature-
independent friction term τ

β
0 , (ii) a Hall–Petch–like term τtw

0,HP, and (iii) a latent hardening
term coupling slip and twin systems.

τtw
c = τ

β
0 + τtw

0,HP + τ
β
slip (71)
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where tw and β in superscripts refer to the twin variant and twinning mode, respectively.
These terms are defined by:

τ
β
0 = τ

β
prop + (τ

β
crit − τ

β
prop) exp

(
−∑ ρs

for
nαρs

sat

)
τtw

0,HP =
HPβ√

dg

τ
β
slip = µβ(T)∑

s
Cβα(ε̇)bβbαρs

for

(72)

where τ
β
crit and τ

β
prop are the stresses required for nucleation and propagation of twin β,

whose contribution to twin activation is leveraged by the probability term ∑ ρs
for

nαρs
sat

[10]. µβ

and Cαβ are the elastic shear modulus on the system and latent hardening matrix as a
function of strain rate.

This model assumes twin resistance as a shear stress τ resolved in the twin direction
and twin plane. This assumption applies best for the twin propagation and not for nucle-
ation [10]. The CP model for dislocation-driven deformation of hcp metals producing equiv-
alent results from the dislocation density simulation was presented by Messner et al. [168].

5.9. Probabilistic Nucleation Method

Based on the numerical observation from atomistic simulations by Wang et al. [34]
and experimental statistical analyses by Beyerlein et al. [33] and Capolungo et al. [169],
a probabilistic nucleation framework was presented by Beyerlein and Tomé [32] that is
able to predict the dispersion in the onset of twinning and variant selection with respect to
crystallographic orientation. The resolved shear stress (RSS) τ in the direction of twinning
dislocation is an important quantity to describe twin nucleation events. In hcp crystals,
the RSS τα on twin variant α due to average stress in the grain σ

g
ij is given by

τα = Pα
ijσ

g
ij, (73)

where Pα
ij is defined by Equation (6), and the RSS τα for the grain is calculated using

the average properties of the grains. In this nucleation model, the twins are assumed
to nucleate from the grain boundaries. Thus, the inhomogeneities in RSS near the grain
boundaries and/or interior of the grain are defined by ∆τij(x). The RSS at any point inside
the grain, τα(x), can be defined using:

τα(x) = τα ± ∆τα(x) = Pα
ij
(
σij + ∆σij(x)

)
, (74)

The effects of temperature, strain rate, deformation mode, deformation histories,
boundary misorientation, alloying contents, and other sources of heterogeneity are ac-
counted by τα(x).

The next step is defining the grain boundary that is most favorable to nucleate a twin
variant. The selection of a grain boundary is quantified by its areal fraction, a∗, which
is assigned to every grain (see Figure 11a). One of the possible choices for a∗, which is
compatible with mean-field polycrystal approaches, is the area of a spherical cap (acap)
defined by the area of the intersection between a cone and the spherical grain, as shown in
Figure 11b. This area can be computed using the equation

a∗ = acap =
π

2
d2

g(1− cos(θ)), (75)

where θ is the angle of the cone. The value of θ varies between 30 and 80◦ [31,33].
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Figure 11. A schematic of (a) the grain boundary surface on an equiaxed grain: each facet corresponding to a boundary and
(b) partial grain boundary area of a spherical grain, which is assigned the relevant area a∗, data from [32].

A twin nucleation criterion using the probabilistic nucleation method depends on
critical nucleation stresses, Smin and Smax, as defined below:

ntwins =


0, no nucleation τ < Smin + ∆S

3

n∗ twins τ > Smin + ∆S
3

(76)

where ∆S = Smax − Smin. The critical nucleation stresses are related to defect structures
within the grain boundary a∗ and calculated by using equations below:

Smin = τc

(
− ln(1−Y)

n∗

) 1
ϕ

Smax = τc

(
− ln(1−Y

1
n∗ )
) 1

ϕ

(77)

where τc = τ0(
a0
ac
)

1
ϕ , Y is a randomly picked number from uniform distribution U(0, 1),

and τ0 is a characteristic stress (scalar) that corresponds to a grain boundary surface area a0.
ϕ is a material property. Here, the number of twins with characteristic area of ac ≈ 0.5dg is
given by:

n∗ =
a∗

ac
(78)

Once nucleated, the propagation of ntwins twins is proportional to the shear rate γ̇α

and described by the power law:

γ̇α = γ̇0

(
τα

τprop

)n
, (79)

where τprop is a characteristic propagation stress.
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5.10. Explicit Incorporation of Twin

An explicit incorporation of twinning in the CPFE model was formulated by Ardeljan
et al. [111], where a dislocation-based hardening model was used. In order to incorporate a
twin explicitly in a microstructure, a certain procedure was followed that is represented in
Figure 12.

Generate	of	surface	mesh	
for	parent	grain	and	twin	

with	twin	planes	

Finite	element	mesh	of	
each	grain	structure

Assemble	mesh	and	
perform	mesh	repair

Final	microstructure	with	
twin	inside	a	grain

Voxel-based	microstructure	
(with	applied	loading)

(𝑒) (𝑓)

Extraction	of	surface	mesh	
for	grain	(with	new	twin	or	

growing	twin)

Figure 12. A schematic of the explicit incorporation of twinning. Voxel bases microstructure in (a) is meshed for each grain
structure (b,c). (d–f) show final microstructure after explicit twin incorporation inside of the grain.

Based on the distribution of grain size and grain orientations, a voxel-based mi-
crostructure and surface meshes for each individual grain is generated using DREAM.3D
software. A voxel density/resolution in the model is defined to achieve the desired number
of surface finite elements. Starting from the surface mesh, which is the bridge between
a voxel-based model and a volumetric mesh, a 3D solid meshing of individual grains is
performed to ensure mesh conformance between grain boundaries, as seen in Figure 12b.
This “conformal” grain boundaries is critical to modeling grain-to-grain interactions and is
not found in other spatially resolved full-field techniques [111].

After each deformation step, the procedure starts by obtaining the surface mesh of
deformed grains (Figure 12c) regardless of whether a twin already exists, which twin
variants are first formed, or a pre-existing twin variant thickens. The extraction of surface
mesh, finding the intersecting points between two cutting planes (that form twin), and the
3D mesh of the parent grain are performed by a Python script, as seen in Figure 12d,e.
The script also contains the commands to generate and export surface meshes for each
intersection plane. The surface meshes of the neighboring grains are also adjusted to
preserve the mesh conformity of the grain boundaries of neighboring grains touching the
twins (see Figure 12f). At this point, the model that is made of each grain is assembled,
and a surface mesh cleanup is performed. Then, an Abaqus input file containing the
new mesh, state variables, and boundary conditions for the subsequent step is generated.
After meshing, the state variables FP, dislocation densities, and crystal orientation are
mapped onto the new mesh.
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The criterion used to insert a twin lamella is based on the threshold value of 1% for the
twin volume fraction f PTS. In each deformation step, a twin volume fraction for each twin
variant is calculated. When the twin volume fraction of a PTS reaches the threshold value,
the deformation is interrupted to insert the twin lamella. The twins are nucleated at the
grain boundaries (places with high von Mises stresses) and placed across the parent grain
with twin thickness such that the total volume fraction is matched. The plastic portion of
the deformation gradient in a freshly formed twin is given by:

FP−1
(τ) =

{
I− Stw,PTSmtw,PTS

0

}
(80)

The plastic deformation in the parent grain is updated to account for the strain
accommodation due to twin formation and growth as:

FP−1
(τ) = FP−1

(t)
{

I + f tw,PTSStw,PTSmtw,PTS
0

}
(81)

Simultaneously, Kumar et al. [139,140] used FFT-based explicit twin incorporation of a
twin into a single crystal and polycrystal materials to study the localized twinning behavior.

5.11. Energy-Based Micro-Twin Nucleation Model

Based on energy-partitioning following the dislocation dissociation process, micro-
twin nucleation criteria were developed by Cheng and Ghosh [109,110]. For a heteroge-
neous type of nucleation, a dislocation-assisted mechanism for {1 0 1 2} twins involves
non-planar dissociation of a sessile 〈c + a〉 lattice dislocation into a residual sessile stair-rod
partial dislocation and n layers of glissile twinning dislocations. The occurrence of such
a dissociation process, shown in the equation below, at a sufficiently large applied shear
stress on a 2nd order pyramidal 〈c + a〉 dislocation system {1 2 1 3}〈1 2 1 2〉 is presented
by Ghazisaeidi and Curtin [51].

bini → br + btw (82)

where bini is the Burgers vector of the initial 〈c + a〉 dislocation, br is a Burgers vector for
the residual stair-rod dislocation, and btw is a Burgers vector for twin partial dislocations.
For 〈c + a〉 2nd order pyramidal dislocation with bini =

1
3 〈1 2 1 3〉, the twin partial disloca-

tion is btw = ns〈1 0 1 1〉, where n is the number of twin layers, and s is the magnitude of
shear on each layer [109]. Figure 13 shows {1 0 1 2} twin nucleation where dislocation on
(1 1 2 2) plane with the line direction along [4 2 2 3] dissociates onto the (1 1 0 2) plane and a
schematic of 〈c + a〉 dislocation dissociation on the {1 0 1 2} twin plane.

Figure 13. Crystallographic schematic showing the dissociation of pyramidal 〈c + a〉 dislocation
in (1 1 2 2) plane (a) into twinning dislocation on (1 0 1 2) plane (b), reproduced from [109], with
permission from Elsevier 2015.
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The initial energy before the dissociation of dislocation is given by:

Eini =
L

4π

[
Ke

ini(b
e
ini)

2 + Ks
ini(b

s
ini)

2
]

ln
R
r0

(83)

where edge and screw dislocations are represented by superscript e and s, and Kini is the
elastic energy coefficient for dislocation, for which the values are calculated using integral
methods [170] and tabulated in [109]. R and r0 are outer and inner radii of the dislocation
core, respectively. The energy in the system after dissociation is given as:

EF = Etw + Er + Einter + Efault −Wex (84)

where energies on the right side are associated with self–energy of the twinning dislocation
loop Etw, self–energy of the stair-rod dislocation Er, interaction energy between the twin-
ning dislocation and stair-rod dislocation Einter, stacking fault energy from twinning Efault,
and Wex represents the work done by external stress. The self–energy of twinning dislo-
cation Etw is evaluated as the sum of the line energy of the front segment, the transverse
segment, and the interaction energy between the transverse segments as:

Etw =
1

4π

(
L
[
Ks, f t

tw (bs, f t
tw )2 + Ke, f t

tw (be, f t
tw )2

]
+ 2d

[
Ks,tr

tw (bs,tr
tw )2 + Ke,tr

tw (be,tr
tw )2

])
ln

R
r0

− d

(
Ke,tr

tw

[
(be,tr

tw ⊗ ξtr).(be,tr
tw ⊗ ξtr)

2π
ln

L
r0

+
[(be,tr

tw ⊗ ξtr).L][(be,tr
tw ⊗ ξtr).L]

2πL2

])

− d

(
Ks,tr

tw
(bs,tr

tw )2

2π
ln

L
r0

) (85)

The superscripts f r and tr denote the front and transverse parts of the twin partial
dislocation loop. L is the length of the front segment, which is equal to the length of the
initial 〈c + a〉 dislocation L. The transverse segment of twinning dislocation has a length
of the dissociation distance d, and ξtr represents the unit vector of the transverse portion of
twin partial dislocation.

The self–energy for stair-rod dislocation is given as:

Er =
L

4π

[
Ke

r(b
e
r)

2 + Ks
r(b

s
r)

2
]

ln
R
r0

(86)

The interaction energy Einter is given as:

Einter =− LKs, f t
tw

(bs, f t
tw .ξ f t)(bs

r.ξr)

2π
ln

d
r0

− LKe, f t
tw

(
(be, f t

tw ⊗ ξ f t)(be
r ⊗ ξr)

2π
ln

d
r0

+
[(be, f t

tw ⊗ ξ f t).d][(be
r ⊗ ξr).d]

2πd2

) (87)

Similarly, the stacking fault energy and work done due to external shear stress τtw are
given by:

Efault = νtwdL

Wex = τtwbtwdL
(88)

where νtw is the twin boundary energy.
The stable separation distance ds after the dissociation of dislocation is calculated by

minimizing the energy, EF, such that:

∂EF
∂d

= 0,
∂2EF

∂d2 ≥ 0, d = ds (89)
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The minimum stable separation distance ds is assumed to be ds > 2r0. The criterion
for twin nucleation is determined by comparing initial self–energy of 〈c + a〉 dislocation
to the sum of self–energies for twinning dislocations and stair-rod dislocation for each
twin variants:

Eini ≥ Etw(d = 0) + Er and

Eini > EF(ds, τtw) ∀ds > 2r0
(90)

This work is extended to include the twin propagation model by Cheng and Ghosh [110],
which incorporates both shear and shuffle processes.

5.12. Thermal Activation Based Propagation Model

Cheng and Ghosh [110] expanded their energy-based nucleation model to incorporate
the thermal activation-based propagation model. The velocity of a twin partial dislocation
gliding on a plane, νglide, is provided by Keshavarz and Ghosh [171] as a function of the
thermal activation energy barrier, which also accounts for the shear-shuffle process.

νglide = fshuffleλshear

[
exp

(
−

∆F− τApbtw

KBT

)]
(91)

where the frequency of shuffle is fshuffle, the shear distance is λshear, and the probability
of gliding in the presence of the energy barrier ∆F is exp

(
−∆F−τApbtw

KBT

)
. The effective

resolved shear stress on the twin plane is τ, and the shearing area during the plastic
deformation is given by Ap.

Further, the twin growth along the twin plane perpendicular is determined as a
function of the growth velocity, which is obtained from the stimulated slip model by
Yu et al. [172]. The twin growth, the transfer of twin-partial dislocations from current twin
plane to the adjacent twin plane, is promoted by the dislocation dipoles. The rate of
encountering a promoter is a function of the total dislocation density (ρtot), the fraction of
dislocations that penetrates the twin plane (Ppromoter), the glide velocity (νglide), and the
length of twin (ltw).

R = Ppromoterρtotνglideltw (92)

The twin growth is determined by the velocity of twin partial dislocations crossing
twin planes, νgrow, which is given as the distance between two planes divided by the
time interval:

νgrow =
dtw

∆ttw
= dtw × R = dtwPpromoterρtotltwνglide (93)

Here, the time interval ∆ttw is inversely proportional to the rate R. The time-averaged
plastic shear rate, γ̇tw, due to micro-twinning is derived from the Orowan equation as a
function of twin partial dislocation ρtw and its Burgers vector btw:

γ̇tw = ρtwbtwνglide = γ̇0,tw exp
(
−∆F− τAPbtw

KBT

)
(94)

where γ̇0,tw = ρtwbtw fshuffleγshear. Further manipulation of Equation (93) and using the
fact that there is no thermal activation at 0 K temperature, the shear rate for twin can be
written as:

γ̇tw = γ̇0,tw

∣∣∣∣ τ(T)
τ(T = 0)

∣∣∣∣ ∆F
KBT

sign(τ(T)) = γ̇0,tw

∣∣∣∣τ(T)τtw
α

∣∣∣∣ sign(τ) (95)

The rate of shear resistance for the twin system α due to interactions with dislocation
slips is given by the phenomenological hardening law:

τ̇tw
α =

Ns

∑
β=1

hαβ|γ̇β| (96)
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The hardening of slip systems due to twinning is expressed as:

τ̇sl-tw
α =

Ntw

∑
β=1

hαβ|γ̇tw
β | (97)

The numerical implementation of the twin propagation model is based on the criterion
determined by glide and growth velocity.

νglide ≥
lglide

∆ttwin

τcrit ≥
ln
( lgrowth

∆ttwin fshuffleλshear

)
KBT + ∆F

Apbtw

(98)

Likewise, the twin growth criterion is a function of the growth velocity for which the
critical stress requirement is given by:

νgrow ≥
lgrowth

∆ttwin

τcrit ≥
ln
( lglide

∆ttwin fshuffleλsheardtwPpromoterρtotltw

)
KBT + ∆F

Apbtw

(99)

Equations (97) and (98) above provide the stress criterion to propagate a twin to
a neighboring material point in longitudinal and transverse directions of a twin plane,
respectively. Ghosh and Cheng [173] used subcycling–augmented CPFEM, which uses an
adaptive multi–time subcycling algorithm, to accelerate the simulation time required for
the prediction of a discrete twin formation and the resulting heterogeneous deformation.

5.13. Phase-Field Twinning Model

In a phase field model, twin and parent regions are regarded as two different phases
and described by an order parameter η: η = 0 for parent region and η = 1 for twinned
region, and 0 < η < 1 represents the interface. While the evolution of the twin order
parameter (η) is driven by a discrete twin interface energy, the twin nucleation mechanism is
often incorporated using the stochastic method. The Ginzburg–Landau equation describing
the twin evolution (η) Liu et al. [142] is shown below

η̇ = M
(
Div κ∇η + ∆ f (2η − 1)− δηφCP − µ

)
(100)

where M is a mobility parameter, κ is a symmetric second–order tensor describing anisotropic
twin interface energy, ∆ f is the height of the GIBBS energy barrier between the twin and its
parent, and µ is the sub–differential of the indicator function. The mechanical contribution
to the free energy density is represented by φCP and derived using the crystal plasticity
formulation [142].

5.14. Others

A CP model has also been incorporated within the Marciniak–Kuczynski (M–K) approach
for forming limit curve predictions [174,175], which is not discussed in this paper. A ther-
modynamics based twin nucleation model was proposed by Mareau and Daymond [156].
Similarly, Zhang et al. [176,177] have used FE methods to perform a parametric study of
stress state development during twinning. Recently, Grilli et al. [178] incorporated discrete
twin nucleation and growth using criterion driven by stress-induced nucleation as well as
an atomic driving force based on energy barrier. They used CPFE with the discrete twin
model to study crack nucleation near the twin tip. A summary on each twinning criterion
discussed above is tabulated in Table 1. It should be noted that the PTR scheme or the VFT
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scheme is incorporated along with other twinning criterion so as to include a physical twin
in a simulation domain.

Table 1. A summary of twinning criteria used in crystal plasticity models.

SN Method Ref. Capabilities

1 PTR scheme [5,6,125,138,163,174,179–184]

- stress response for the materials system that involves
deformation from twinning

- predicts texture evolution using predominant
twin system

2 VFT scheme [6,130,185–187]

- discrete orientation space and texture evolution driven
by volume fraction transfer

- capable of predicting more accurate texture evolution

3 Lagrangian method [7,8,188–190]
- accurate prediction of texture evolution
- considers volume fraction evolution for all twin variants

4 Updated Lagrangian method [9,99,115,158,183]

- includes the effects primary, secondary, and/or tertiary
twins in constitutive relations

- study effect of extension twinning on dynamic recrystal-
lization in Mg AZ31 alloy

5 Composite Grain model [4,118,191]
- incorporates physical twin in a CP model
- both twinning and detwinning can be implemented

6 Twinning detwinning moddel [11,116,162,163,192–194]

- incorporates detwinning mechanism in a CP model
- simulate stress–strain hysteresis due to twinning and

detwinning
- describe the tensile and compressive yield asymmetry,

anisotropy, and strain hardening behavior along arbitrary
directions [194]

7 Dislocation density based
model [10,119,168,191,195–199]

- includes dislocation transmutation and twin accommo-
dation effects to predict plastic anisotropy of texture Mg
alloys

- Reproduce stress–strain response, anisotropic hardening,
and evolution of twin volume fraction and texture

- incorporate directionality of dislocation glide and de-
twinning and their effects on the evolution of stored dis-
location density populations and texture evolution

8 Probabilistic nucleation
method

[32,33,109,137,142,188,200,
201]

- bridge between grain boundary defect interactions at
the atomic scale, localized stress concentrations, inter-
granular stresses at the grain sclae and effective material
response at polycrstalline aggregate level

- effect of grain size and stress on twin volume fraction,
fractional twin length and the fraction of twin contact

- effect of grain size on the yield stress
- effect of grain sie on the general shape of the stress–strain

curve at low strains

9 Twin nucleation, propagation,
and growth model [12,114]

- stress relaxation effect for twinning
- explicitly show a twin propagation in the parent grain
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Table 1. Cont.

SN Method Ref. Capabilities

10 Explicit incorporation method [101,111,112,136,139,140,190,
202–204]

- simulates local stress fields produced by twins
- relate spatially resolved fields of stress, strains with mi-

crostructural changes during twin formation and thick-
ening

11 Energy-based micro-twin
nucleation model [109,110,173,178,205,206]

- study on large grain aggregates revealing the critical role
of crystallographic orientation and grain boundaries on
micro-twin formation

- heterogeneous twin formation with strain localization
- twin variant selection

12 Thermal activation based twin
propagation method [110,173,205]

- predict explicit twin formation and heterogeneous defor-
mation in hcp materials such as Mg

- simulate heterogenous deformation and strain localiza-
tion due to twinning effects

13 Phase field twinning model [141–145]

- couples twin evolution as a phase transformation
- predict twin nucleation, propagation, and growth
- study twin morphologies, twin thickness, as well as in-

teraction of twins with other grain defects

Figure 14 shows how these twinning criteria fit with incorporating different mecha-
nisms of twinning, such as twin nucleation, twin propagation, or twin growth, or how the
twins are represented such as physical twin (with actual reorientation), or tracking of twin
volume fraction. The schematic shows that more efforts have been made to incorporate
the twinning mechanisms associated with twin growth. Only in recent years, researchers
have turned their focus to twin propagation and twin nucleation. However, it is essential
to incorporate all twin nucleation, propagation, and growth mechanisms with the crystal
plasticity framework to capture the damage in hcp metals.

CPFEM/CPFFT/VPSC

Twin	Nucleation Twin	Propagation Twin	Growth

Probabilistic	
twin	nucleation

Dissociation	
based	 twinning	

criterion

Twin	nucleation,	
propagation,	 and	
growth	(TNPG)

Thermal	
activation	based	
propagation	
model

Physical	twin-
based	criterions

Tracks	twin	
volume	fraction

Predominant	
twin	reorien-
tation (PTR)

Twinning	De-
twinning	
(TDT)

Composite	
grain	(CG)	
method

Lagrangian	
method

Updated	
Lagrangian	
method

Dislocation	
density	based

Can be used with other criterions to reorient twinned region

Phase-field	
twinning	
model

Volume	
fraction	

transfer	 (VFT)

Figure 14. Hierarchy showing how different twinning criteria fit with twinning mechanisms in crystal plasticity (CP) models.
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6. Gaps and Future Directions
6.1. Preface

Despite appreciable efforts over the last three decades by various prominent authors,
a physically motivated model that reflects the early stages of embryonic twin nucleation
and lengthwise burst is lagging. This can be clearly understood when considering the bases
of the phenomenological criteria employed to capture twinning, exemplified by the pseudo-
slip approach, the absence of site-specific nucleation, and the lack of subsequent evolution
of the observed twin spacing, including the case of multivariant twinning. Likewise,
the evolution of deformation twins with strain and ultimately calculations of constitutive
response along with a proper description of twin interfaces and twin boundaries are yet to
be incorporated into the CP models [31]. The dynamics of twin expansion have not been
treated realistically either. The Schmid factor based on far-field stress turned out to be
inadequate to describe variant selection [31].

While atomistic simulations and experimental results provide great insight into the
mechanisms underlying twin nucleation and propagation, there is no widely accepted
mechanism for twin nucleation and twin expansion. Continued progress in atomic–scale
studies can provide the needed insight to develop physics-based criteria for nucleating and
propagating twins in the CPFE and FFT frameworks.

The following subsections pinpoint some key gaps and propound ideas that might
have the potential to fill these gaps for what they are worth.

6.2. Embryonic Twin Nucleation Mechanisms and Their Crystal Plasticity Rendering

One of the major challenges in crystal plasticity modeling efforts for twinning is to
render twin nucleation events and their localized effects. While nucleation of the twin itself
is a great focus of study in the materials community, major advances on the understanding
of twin nucleation events have been made through experimental observations and atomistic
simulations. In the following subsections, we will discuss major features/mechanisms
that assist in twin nucleation and how these mechanisms can be incorporated into crystal
plasticity models.

6.2.1. Faceting vs. Pure Shuffle for Nucleation

Twinning is mediated through shear and shuffle at the atomic level. While some
researchers [207,208] may argue that {1 0 1 2} twin mode in magnesium is predominantly
mediated through pure shuffle without the action of twinning dislocations, [209–212]
showed that the purely “shuffle-dominated” mechanism for twin nucleation is inaccurate.
Serra et al. [213] presented how the core width of active twinning dislocations is affected
by the complexity of atomic shuffles, whereas El Kadiri et al. [25] derived the values
for shear and the net shuffles required for each atom at the intermediate planes for the
{1 1 2 2} and {1 0 1 2} twins. In particular, shear displacements and net shuffles for b2
twinning dislocation for the {1 0 1 2} twinning mode at the intermediate planes are shown
in Table 2. The net shuffles for {1 0 1 2} twinning in Table 2 depict that the shuffle directions
switch from one K1 plane to another, and the signs of the net shuffles are opposite in the
same plane.

Li and Ma [207] argued for shuffle-mediated twinning by explaining the large devia-
tions of twin boundaries from the twinning planes using the shuffle-dominated mechanism.
Similarly, Tang et al. [208] showed that the shuffle-induced twin nucleation energy require-
ment is on the same level or even less than the energy required for a partial pyramidal
dislocation when the c–axis stress/strain is sufficiently large, which resulted in an initial
90◦ misorientation. This idea is debunked in the works by [16,210,211,213] as faceting
is responsible for these large deviations in twin boundaries. Barrett and El Kadiri [16]
showed that faceting mechanics are vital to understand the nucleation of twin embryos
and mobility of twin boundaries. They also showed that faceting promotes the nucleation
of an octahedral faceted twin from a defect inside of a single crystal magnesium, and the
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mobility of twinning dislocation along these facets, disclination dipoles, and cross-faceting,
among others, aid in the nucleation and growth of twin embryos into a stable twin.

Table 2. Shear displacements and net shuffles for b2 twinning dislocation for the {1 0 1 2} twin-
ning mode.

Plane n Shear Displacement Net Shuffle

0a
1

12 b2 − 1
12 [1 0 1 1]

0b − 1
12 b2

1
12 [1 0 1 1]

1a
7

12 b2
1

12 [1 0 1 1]

1b
5

12 b2 − 1
12 [1 0 1 1]

Crystallographic evidence has accumulated that shuffling plays a major role in the
nucleation events for hcp materials. Atomic shuffling is, in fact, required for all twin modes
with the exception of {1 1 2 1} shear twinning. Atomic shuffle pertains to atomic motion
by diffusion. Thus, the associated driving force must be connected to the gradient of the
hydrostatic pressure and not only the deviatoric stress, which is traditionally utilized for
plasticity. This is why triaxiality should also play an important role in the embryonic stages
of twin nucleation, consistent with the observed needs of defects to trigger {1 0 1 2} twins
and higher stress levels tallied for nucleation than propagation. Consequently, any twin
nucleation constitutive model should engage both the resolved shear stress and hydrostatic
pressure, and this is yet to be implemented in the flow rule.

Corroborating evidence for the need to including hydrostatic pressure in the flow
rule is supported by the results recently reported by Russell et al. [214] on in situ EBSD
characterization of tension and compression of an AM30 extruded sheet showing a double
in–plane basal fiber. It was found that {1 0 1 1} twinning occurs easier under contraction
than the compression of the 〈c〉–axis with nearly an order of magnitude difference in the
CRSS levels. In a contraction {1 0 1 1} twin, <c> axis compression happens as a result of
{1 0 1 0} tension, thus resulting in different stress states than that of actual <c> axis com-
pression [214]. The difference of CRSS in compression and contraction {1 0 1 1} twins was
explained by the higher triaxiality naturally induced along the 〈c〉–axis under contraction
than compression. It confirms the importance of the hydrostatic pressure in twin nucle-
ation, especially for twinning disconnections requiring substantial shuffles at their core of
{1 0 1 1} b4 disconnection. The effect of hydrostatic pressure during {1 0 1 2} twinning is
further elaborated in the work of Serra and Bacon [21]. In the paper, the local fluctuation
in hydrostatic pressure at the twin interface is demonstrated. Wang et al. [50] suggested a
process where a twin embryo nucleates from lattice dislocation pile-up at a symmetric tilt
wall. This now acts as stress-concentrator motivating nucleation through “pure-shuffle”
rather than the dissociation of lattice dislocations into twinning dislocations. All of these
twin nucleation mechanisms exhibit the necessity for the current crystal plasticity models
to incorporate the combined effects of shear and shuffle during twin nucleation events.

6.2.2. Grain Boundary Energy and Defects

Another effect of considerable importance to polycrystalline materials is the sensitivity
of twin nucleation to the grain boundary atomic structure. Generally, grain boundaries
with low misorientation angles and high energy have been observed to contain more twins.
However, this could be an artifact of the autocatalysis phenomena [215] or the fact that a
highly misoriented grain is inherently associated with a neighboring grain, which has a
low Schmid factor, so few twins would nucleate at this grain boundary. Generally, twins
nucleate at the free surface of the tested sample, and if the texture is sharp enough, they find
their way to punch through boundaries and continue propagating by autocatalysis. In the
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case of weak textures (e.g., rare-earth containing Mg alloys), however, grain boundary
nucleation is needed in grains that are not completely surrounded by the grains with a
high Schmid factor for the same twinning mode. Therefore, the sensitivity of twinning to
grain boundary atomic structure must be considered.

Twins often nucleate from grain boundaries. Misorientation [33], interface angle, de-
fects, segregated elements, and strain rate are some of the major nucleation criteria. Studies
show that symmetric tilt grain boundaries with the 〈2 1 1 0〉 axis are able to spontaneously
twin under a relatively small loading and a pile-up of basal dislocations [50]. Boundaries
with this axis and low angle misorientation have high energy and hence are likelier to
encourage twin nucleation by grain boundary energy relaxation.

Twin nucleation, a heterogeneous event, depends upon the embryo’s interaction
with existing defects. The effect of dislocations, vacancies, tilt axes, and tilt angles have
been studied by Giri et al. [71,216] using atomistic simulations. Their studies show that
while the twin nucleation energy barrier increases with a higher number of vacancies,
twin nucleation eventually becomes easier as there is more energy relaxation. Through
atomistic simulations on {1 0 1 2} twin nucleation on a number of [2 1 1 0] axis-symmetric
tilt grain boundaries, the study showed that there is a simple relation between grain
boundary energy and applied stress that has the potential to be implemented in larger scale
plasticity models. The observation of the most stable {1 0 1 2} twin embryo on the {1 0 1 1}
grain boundary depicts the significance of the misorientation angle, apart from the grain
boundary energy, on the nucleation of a twin.

Figure 15 shows that 〈a〉 tilt grain boundaries demonstrate a strong correlation of
grain boundary energy with the stress required for exothermic twin nucleation [216]. This
is consistent with the experimental observation that shows the correlation of the non–
Schmid twin nucleation behavior with the neighboring grains and the grain boundary
effects [214,217,218]. Basu et al. [218] showed that the twin nucleation was favored for the
twin variant that has a higher local Schmid factor. Furthermore, highly ordered low-energy
boundaries nucleate twins more easily than disordered boundaries, and the addition of
vacancies into the boundaries encouraged twin nucleation [216]. This correlation between
nucleation stresses, grain boundary energy, and grain boundary defects shows a major role
in the twin nucleation mechanism that should be generalized and inform a deterministic
site-specific twin nucleation model for the robust prediction of twin nucleation sites, double
twinning, or secondary twinning.
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Figure 15. A plot showing the correlation between grain boundary energy and nucleation stress with
tilt grain boundaries, data from [216].
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6.2.3. Lengthwise Shooting Mechanism

Atomistic simulations performed by Barrett and El Kadiri [16] showed that a stable
twin embryo nucleated through faceting acquires an octagonal diamond–shaped morphol-
ogy, as shown in Figure 16a. Experimental observations present a propagating twin as a
sharp pointed lenticular twin. In metals, the deformation twin propagates at the speed of
sound [219]. The crystallographic explanation for rapid lengthwise propagation of twins
has been a challenge, though Oberson and Ankem [220] attempted to explain why some
deformation twins do not propagate at the speed of sound.
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Figure 16. (a) Atomistics simulation showing an octagonal diamond–shaped morphology for a stable twin nucleus, and (b) a
schematic for a rapid lengthwise growth of a twin across a parent grain as a result of a highly unstable PB/BP boundary
that becomes highly glissile twinning diconnections moving rapidly across the grain.

Using the interfacial defect theory, Barrett and El Kadiri [16] proposed an explanation
on why embryonic twin propagates at a rapid speed. They used faceted boundary mechan-
ics to understand the nucleation of twin embryos and the mobility of twin boundaries. A
twin may readily use boundaries other than the twin plane boundary and overcome obsta-
cles or lower interface energies through faceting. In the particular case of {1 0 1 2} twins,
twinning disconnection pile–up is converted into new facets on the BP, PB, or {1 0 1 2}
twin boundaries. The BP and PB boundaries that are fully coherent contain long–range
strains proportional to their length, making them unstable except over short distances.
This explains the octagonal shape for a stable twin nucleus, as shown in Figure 16a. Af-
ter the critical size of the embryonic twin, BP and PB boundaries are highly unstable;
thus, they transform into a kinematically equivalent pile–up of highly mobile twinning
partials, which, finding themselves outside the boundary, immediately shoot over a grain
or several grains at the speed of sound (see Figure 16b). This possible explanation for rapid
twin propagation adheres with the fact that high stress concentrations develop ahead of a
shooting twin [68].

6.2.4. Computation of Adequate Twin Spacing

Imagine a single crystal or a grain in a polycrystal undergoing a very high resolved
shear stress on a twin plane. Though every single plane of the grain parallel to this plane
is equally highly stressed, only a few localized planes will yield to twinning. The result
is a single or a few twin lamellae burst with a characteristic spacing. It would be hard to
imagine that there might be a way to exactly capture the sites on which these twin lamellae
nucleate unless the free surface or grain boundary experiences large stress fluctuations
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due to the presence of defects (e.g., case of intergranular precipitates), which is only a
particular case and not a general rule. However, twin spacing must be properly captured
to adequately simulate the microstructure evolution. So, perhaps instead of site–specific
nucleation, a sound crystal plasticity model should accurately reproduce how many twins
should first nucleate per unit grain boundary area as well as their spacing. There should
also be a critical strain where no more nucleation events at the grain boundary are needed,
paving the way to homogeneous twin nucleation to begin in spaces that are confined by
existing twin lamellae from various variants [221].

Figure 17a shows one such scenario where the multiple twin variants nucleate, grow,
and engulf a parent matrix showing a pattern of multiple twins nucleation with character-
istic spacing [221]. Later, Paudel et al. [68] provided the insight into the mechanisms that
drive twin spacing. In fact, they developed a micromechanics–based analytical model that
was able to suggest the minimal distance at which a second twin could simultaneously nu-
cleate in an idealistic single variant twinning scenario within a single crystal. The analytical
solution to the stress field was obtained for a spherical oblate twin domain with uniform
eigenstrain in homogenous, isotropic, and half–infinite space (see Figure 17b). The model
was validated through in situ three–point bending characterization of a highly textured
AZ31 sheet, which behaves similarly to a single crystal. Under these conditions, twinning
occurs by localized bands separated by a critical distance during nucleation, which con-
formed well with model predictions. Furthermore, the model justifiably suggested that
this critical distance depends upon the height of the twin domain, while the maximum
stress relaxation depends upon the thickness of the twin domain.

𝜎"
(𝑀𝑃𝑎)

2.3% 3.8%

(𝑎) (𝑏)

Figure 17. (a) Grain experiencing the double {1 0 1 2} twin variant with a characteristic twin spacing in Mg AM30 [221]
and (b) the stress response (σx) of an ellipsoidal twin in an isotropic, homogeneous, half–infinite domain as obtained from
micromechanics–based analytical solution. The twin spacing determined by the zero–stress contour line is a function of
twin height, whereas the magnitude of stress relaxed is a function of twin thickness.

6.3. Twin Thickening
6.3.1. Thickening of Different Variants and Effect of Grain Boundaries

The selection of variant in {1 0 1 1}–{1 0 1 2} double twins are found to be strongly
dependent upon the orientation and loading condition (tension or compression) [64].
For primary twins in Mg, the variant selection for twins does not fully obey Schmid’s
law [222]. Jonas et al. [222] observed that 5% of the twins had very low Schmid’s factors,
ranging from 0.03 to 0.15, and more interestingly, many potential “high Schmid factor”
twins did not form. They also found that twin variant selection was associated with the
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“easy" accommodation of strain in highly plastic anisotropic Mg grains. Figure 18 shows the
{1 0 1 1} contraction twin boundaries and variants of double twin boundaries after tensile
strains of 0.08 and 0.15 strains. The statistical analysis of twin variants, as observed in
Figure 18, shows that two of the secondary twin variants (38° and 69.9°) are more favorable
than the others. The former twin variant is favored due to the least amount of strain
accommodation requirements, whereas the latter twin variant is favored by CRSS (obeys
Schmid’s law) [223].

56° < 12'10 > 	±5°

38° < 12'10 > 	±4°

66.5° < 347'2 > 	±	4°

69.9° < 15	7'	72	3 > 	±	4°

30° < 12'10 > 	±	4°

{101'1}	contraction	TB	

Double	TBs

(𝑎)

(𝑏)

Figure 18. EBSD micrograph showing microstructure of Mg AM30 obtained after tensile strains of
(a) 0.08 and (b) 0.15. Statistical analysis showed that secondary twin variants with misorientation
of 38◦ and 69.9◦ are more preferred than others, reproduced from [223], with permission from
Elsevier 2010.

Furthermore, there could be an absence of potential variants for primary, secondary,
and tertiary twins in a deformed Mg alloy [224]. The selection process is based on
the amount of work required for strain accommodation in most of the neighboring
grains [222,224,225]. The statistical analysis on primary {1 0 1 1} contraction twins per-
formed by Jonas et al. [222] showed that Schmid factors ranging from 0 to 0.5 are associ-
ated with the observed twins (see Figure 19). Their results suggested that the value of the
Schmid factor itself does not determine the criterion for twin variant selection. Figure 19d
reveals that ∼45% of the twins had Schmid factor ranks of 3 or 4 (0.15 < SF < 0.3). An-
other study showed that the selection of the twin variant for extension twinning in Mg is
determined by a geometric compatibility factor (m′) between slip and twin [226]. This type
of non–Schmid’s behavior for twin variant selection have also been observed for titanium
alloys [227,228].

It is not clear yet, however, whether this behavior is due to grain–grain interactions so
it could be systematically captured by a sound full–field crystal plasticity model or due to
the grain boundary atomic structure, which would then truly pertain to a non–Schmid’s
behavior that warrants considerations of stresses other than the shear on the twin plane.
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Figure 19. EBSD maps showing {1 0 1 1} contraction twin boundaries in (a) AM30 and (b) AZ31 specimen at a tensile
strain of 0.15. (c) The cumulative frequency of the Schmid factors associated with the primary twins and (d) frequencies of
occurrence of primary twins displayed in terms of their Schmid factor rand (‘1’ being the highest and ‘6’ being the lowest in
particular grain), reproduced from [222], with permission from Elsevier 2011.

6.3.2. Effect of Twin–Twin Interactions

Twin–twin interactions leading to secondary twinning and nanovoids [37,229,230] are
abundantly evidenced through experiments and atomistic simulations. These twin–twin
interactions are responsible for stress localization and damage [37,231]. It has been observed
that twin nucleation is quickly saturated with the activation of a single twin variant, where
the strain accommodation is provided by twin thickening; however, the twin propagation
rate is reduced with the activation of two twin variants in Mg AM30 [221]. Although twin
nucleation stress is higher than twin propagation stress, twin–twin interaction in grains
with two twin variants results in profuse twin nucleation, which also challenges the classical
assumptions of twinning stress sensitivity to grain size [221]. The twin–twin interactions
have been correlated with an effect on hardening [221,229,232].

The thickening of a given twin in a crystal plasticity model, though can be handled
with PTR, shows discrepancy if the twin has an excessive source of twinning disconnections
compared to other engulfed variant as observed in the experiment [214]. This is the case of
an early twin nucleating at a grain boundary segment. Twin variants that can thicken along
the grain boundary segments showed growth within a grain compared to other variants
that are more likely to get engulfed away through twin–twin interactions [214]. A way
for crystal plasticity to capture such an effect is to consider slightly higher CRSS for twin
nucleation other than grain boundaries. Furthermore, twins that start meeting with other
twins will have their thickening become sluggish, allowing for twin nucleation in core
regions. At the macroscale level, this effect is observed on the twin band formation where
nucleation of a second twin variant obstructs the thickening of initial twin bands observed
during bending of highly basal textured Mg AZ31, as seen in Figure 20.
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Figure 20. The microstructure showing the growth of second twin variants, along the direction
shown by white lines, in-between initial twin bands (shown by dashed black lines) and traces
of residual second twin variant on areas A1 and A2 featuring pseudo-elasticity and twin–twin
interactions, reproduced from [233], with permission from Elsevier 2020.

6.3.3. Detwinning and Pseudoelasticity

A pseudoelastic behavior was observed upon stress removal during a three–point
bending experiment [233], which is associated with untwinning. Experiments have shown
that detwinning is not strictly limited to reverse loading but can also occur during un-
loading [11,192,234–239]. Twinning and detwinning processes have been associated with
the pseudoelastic behavior in hcp materials, such as zirconia [148], nitinol [240], and mag-
nesium [238]. The final microstructure from the three–point bending experiment shown
in Figure 20 shows the role of the second twin variant in accommodating higher strains
during the maximum loading. The residual twins indicate the untwinning of these variants
upon unloading that resulted in pseudoelastic behavior. This extensive untwinning, not
seen in simple compression or tension, is associated with the significant fraction of stopped
elastic twins in Garber’s notation. It is because autocatalysis phenomena are stopped at
the neutral axis, whereupon accommodation effects are not complete. Localized twins
form during a three–point bending load. However, since they do not reach the free surface,
unresolved twins vanish with unloading.

6.4. Crystal Plasticity Rendering

Current crystal plasticity models are limited in terms of physics-based site–specific
twin nucleation or crystal plasticity rendering of twin nucleation events. Any CP model
attempting to capture the phenomenon discussed in previous subsections must use a size
threshold factor compatible with the maximum separation distance of the disclination
dipole associated with the coherent BP boundary before its disintegration into twinning
dislocations. Thereafter, the lattice regions laying ahead of the embryo should be reoriented
by simple geometrical considerations to make it grow till the next grain boundary. Recently,
Jin et al. [201] used a probabilistic approach to explicitly incorporate deformation twinning
in a crystal plasticity model, as seen in Figure 21a. Likewise, Cheng et al. [205] used
explicit twin nucleation based on the non-planar dissociation process of sessile pyramidal
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dislocations, which are assumed to follow a Weibull–type probability distribution function.
Multiple twins within a grain, see Figure 21b, nucleate with a characteristic spacing as
a result of stress field from the initial twin. In contrast, Paudel et al. [241] used a charac-
teristic twin spacing parameter, which is a function of twin length, as established by the
micromechanics-based analytical solution [68], to explicitly introduce multiple twins inside
of grain (see Figure 21c). Within a CPFFT framework, Paudel et al. [241] demonstrated a
way to include the effect of both shear and shuffle on site–specific nucleation. Figure 21c
shows the multiple twin nucleation in a soft grain of a tri–crystal system and autocatalysis
of different twin variants in another twin. Combined with the dislocation density-based
hardening mechanisms, hydrostatic stress gradient driven criterion is incorporated for a
site–specific twin nucleation criterion, rendering the twin microstructure observed in the
experiment, as seen in Figure 17a. The inclusion of hydrostatic pressure as a criterion for
twin nucleation renders the effect of initial grain boundary defects and grain boundary
energy into the crystal plasticity model. The site–specific twin nucleation criterion used by
the authors can nucleate a non-Schmid twin, where hydrostatic stress is favorable in the nu-
cleation of the twin. Figure 22 shows the site–specific twin nucleation based on both shear
and shuffle contribution, where the overall volume fraction of the twin is determined using
a shear calculation, but the site selection is determined with hydrostatic stress gradient.

Figure 21. Site–specific twin nucleation efforts using (a) probabilistic methods, date form [201],
(b) dissociation energy-based twin nucleation method, data from [205], and (c) characteristic twin
spacing as a function of twin length.



Metals 2021, 11, 1373 44 of 53

Figure 22. For a seven crystal system, (a) twin system with maximum Schmid values, (b) hydrostatic
stress gradient field before twinning, and (c) twin nucleation of predominant twin system at site
determined by hydrostatic stress gradient in b.

Figure 22a,b show a Schmid factor of the most favorable twin variant for each grain
and hydrostatic stress gradients in a seven crystal system, whereas Figure 22c shows the
twin nucleation based on the shear and hydrostatic stress gradient. The twin system
favorable inside of the grain that crosses a threshold volume fraction of twin ( f thres) at the
twin nucleation site is shown by the red arrow in Figure 22b. For the site–specific twin
nucleation, the code chooses the region at the grain boundary with a high hydrostatic
stress gradient. The results show that the combination of shear and shuffle can produce an
accurate twin microstructure evolution for HCP metals. Although more work is required to
fine–tune the algorithm, authors believe that the crystal plasticity models should refocus on
the inclusion of hydrostatic stress and shuffle mechanisms in the rendering of site–specific
twin nucleation. In addition to the hydrostatic stress gradient, one can quantify the grain
boundary energy based on the defects, dislocation density, and grain misorientation [216]
to make a robust twin nucleation criterion.

7. Conclusions

This paper reviews existing accomplishments with the incorporation of deformation
twinning into crystal plasticity models and the challenges they faced to break away from a
pseudo-slip approach, which has been consistently discounted by many phenomena related
to twin nucleation. In light of recent discoveries achieved by novel in situ experimental
techniques and powerful simulations at the atomistic level, we emphasized a few key
mechanisms for twin nucleation and suggested methods to reflect those mechanisms in a
crystal plasticity model:

1. Just like shear banding, twinning is a localized event, but one which challenges the
ability to deterministically pinpoint a favorable nucleation site. Due to the shuf-
fling requirement in hexagonal closed packed metals (with the exception of {1 1 2 1}
twinning), the choice of a nucleation point must account for the local hydrostatic
pressure gradients because twins always nucleate at a defect structure, most notably,
the sample–free surface or otherwise grain or phase boundaries. This incites a radical
modification of the flow rule to include the trace of the stress tensor in addition to its
deviatoric part. Furthermore, the minimum twin thickness, which does not seem to
be in the order of a few plane layers, number of twin variants inside a grain, and an
adequate twin spacing are factors that could affect each other but would need to be
quantified in order to predict the microstructure evolution during twinning and the
ensuing local deformation.

2. Variant selection for primary twins does not always obey Schmid’s law due to the
atomistic structure of the grain boundary, which seems to affect the adopted plan
for twin transformation. This is quite a challenge for crystal plasticity, and it is still
unclear how the choice of a variant is made during the nucleation stages at the grain
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boundary. Experimental evidence has accumulated, however, that grain boundaries
offering a good combination between low misorientation angles and high energies
are the best candidates for twin nucleation.

3. Profuse twin nucleation and rapid lengthwise propagation of twins invoke interac-
tions between different twin variants. The twin–twin interactions are correlated with
material hardening, so the incorporation of these interactions is warranted.

4. The rapid lengthwise propagation of twins across a grain occurs after the basal–
prismatic facet reaches a critical size that leads to its dissociation into twinning
partials. These shoot forthwith across the grain or across several grains in case the
stress value and state ahead of the twin at the neighboring grain is adequate for
another twin nucleation by virtue of the autocatalysis behavior.

5. Recent digital image correlation by the present authors emphasized substantial pseu-
doelasticity upon stress removal during three–point bending, which resulted from
significant untwinning behavior. This extensive untwinning, not seen in simple com-
pression or tension, is associated with the significant fraction of stopped elastic–twins
in Garber’s notation as autocatalysis phenomena are arrested at the neutral axis,
whereupon accommodation effects are not complete. Not capturing this phenomenon
in crystal plasticity would result in significant errors in spring–back predictions for
sheet-forming operations.

6. Twin nucleation mechanisms exhibit the necessity for current crystal plasticity models
to incorporate the combined effects of shear and shuffle during twin nucleation
events. Few advances in site–specific nucleation criterion based on probabilistic
and dissociation-based methods are discussed along with the preliminary results for
twinning site–selection based on hydrostatic stress gradients.
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