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Abstract: Possibilities of using laser irradiation to enhance mass transfer in the solid phase of metallic
materials in order to form structures with improved physical and mechanical properties were
reviewed. The features of the diffusion mass transfer in metals and alloys under shock exposure were
specified. In this case, the rate of diffusion processes of mass transfer can be significantly increased.
The conditions for intensification of mass transfer in metallic materials by pulse-periodic laser
irradiation were determined and the synthesis of nanoporous and composite oxide nanomaterials
was described. A significant increase of the diffusion coefficient in a metallic material, in comparison
to plain exposure to laser beam heating, was identified. It could be attributed to the synergy of heat
exposure and laser-induced vibrations, mainly in the range of sound frequencies, as a result of a
pulse-periodic laser irradiation. The condition for intensifying mass transfer in the solid phase of
selectively oxidable metallic materials was identified as a non-stationary stress-strain state caused by
laser-induced sound waves. The exploitation of this synergy effect permitted the implementation of a
novel approach for the creation of structures of nanomaterials. At the same time, a targeted influence
on mass transfer and the accompanying relaxation processes make it possible to achieve an increase
in the efficiency of methods for processing metals and alloys.

Keywords: laser irradiation; mass transfer; metallic materials; solid phase; pulse-periodic; non-stationary
stress-strain state; synergy effect; structures; nanomaterials

1. Introduction

The creation of new technological methods of exposure, which ensure the formation
of structures of materials with the required properties [1–3], is one of the possibilities that
can solve the task of increasing the operational characteristics of mechanical engineering
products. It is known that the development of such processes in metal alloys, such as
recovery and recrystallization, homogenization, and relaxation, determine the rates and
mechanisms of diffusion, which are essential for the formation of their structures and
properties [4,5]. In addition to changes in the grain size and microstructure of metals
and alloys, diffusion processes cause the appearance of nanostructural effects: a change
in the angular misorientations of subgrains in the grain composition, crushing of blocks,
the formation of an ordered distribution of nanosized inclusions and pores, a change in
the level of microdistortions, and dislocation density. These effects have the potential to
improve not only such structure-dependent properties as mechanical strength, hardness,
and plasticity, but also electrical conductivity, thermal conductivity, optical characteristics,
etc. Increasing the temperature is an effective way to increase the mobility of atoms,
since the diffusion coefficient is exponentially related to temperature, but in some cases
this method has significant limitations, for example, due to grain growth and material
embrittlement [6,7].

Investigations of behaviour of metallic materials under mechanical shock compression
have substantiated a notable increase in the rate of atoms movement in the solid phase [8].
Occurrence of enhanced mass transfer due to non-equilibrium conditions under pulsed
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deformations in the elastic as well as plastic range has been observed during mechanochem-
ical thermal treatment of the following types: ultrasonic, laser, electro-hydropulses, pulsed
magnetic fields, electrical discharge, deformations during reversible structural changes
of martensite, and several other sorts of pulsed strain [9–11]. External energy influences
at high levels including periodic laser pulses [12,13] significantly increase the mobility of
atoms in alloys and metals of solid phase. Non-stationary deformation limited to a local
zone of the material is a necessary prerequisite for the occurrence of a general thermody-
namic force effectuating rapid mass transfer [14]. It should be noted that the physics of
the procedure displaying vibrations in the material at its natural frequency and such fre-
quencies that are proportionally related to the forced fundamental are explained in [15–17].
Nevertheless, the profound nature of the processes determining formation of gradient
conditions and subsequent evolution of structural phased states of metallic materials needs
further investigation [18,19]. That can be attributed to the number of physical influences
and factors, like structural modifications in the metal, manifestation and disappearance
of crystalline defects, arising of stress, etc., all simultaneously contributing to the mass
transfer in the greatly non-equilibrium condition.

The study of the mechanisms and regularities of physical processes responsible for
the intensification of mass transfer in metallic materials using an external high-energy
exposure is of considerable scientific and practical interest, since a targeted influence on
mass transfer and the accompanying relaxation processes will allow us to increase the
efficiency of methods for processing metals and alloys. This opens up the possibility of
creating new materials with the desired complex of physical and mechanical properties.
One of the progressive methods is laser processing. An increasing interest of researchers
in the search for new methods of laser processing [20–26] and welding [27–30], which are
widely used to control the properties and microstructures of advanced materials, can be
observed. The feasibility of using methods of laser exposure is determined by the possibility
of a non-contact, strictly dosed intensive supply of energy to the surface of the product.
During laser irradiation on a metal material, its temperature significantly increases over a
short period of time, which leads to the diffusion enhancement [31–35]. The mechanisms
of heat transfer during laser heating take into account the heat transfer into the bulk of the
material. An important parameter for laser heating processes is the characteristic time of
propagation of the thermal field within the spatial scale. This parameter depends on the
coefficient of thermal diffusivity, if heat transfer is carried out by a diffusion mechanism,
i.e., the mechanism of heat conduction, as it happens in solids [36,37]. In [38,39] it was
shown that pulsed periodic laser irradiation ensures the formation of a stable stress state
on the samples surface, which is the reason for a significant intensification of mass transfer.
A range of nanomaterials from nanoporous to layered based on ZnO nanowires were
synthesized by periodically pulsed laser irradiation. For the first time, a notable increase in
the diffusion coefficient (several times as compared to heat exposure of the laser beam only)
in the metallic material, caused by the synergy of heat exposure and vibrations induced by
laser, predominantly in the range of sound frequencies, as a result of a pulse-periodic laser
irradiation with a pulse duration in the milli- and microsecond range, was described.

Expanding the application area of laser irradiation as a progressive method for mod-
ifying the properties of metals and alloys in modern production requires a detailed and
comprehensive study of new possibilities for improving technologies for processing metal-
lic materials. The main purpose of this article is to provide systematized information on the
possibility of using laser irradiation to enhance mass transfer in the solid phase of metallic
materials in order to form structures with improved physical and mechanical properties.

2. Increasing the Atom Diffusion Rate in the Solid Phase of Metallic Materials

Mass transfer in crystalline materials that are in the solid state is one of the most
important and general physical processes. Thus, the rates and mechanisms of diffusion
determine the course of many processes in metal alloys, such as recrystallization, homoge-
nization, relaxation, and a number of others, i.e., they are essential for the formation of their
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structures and properties [40–42]. The diffusion processes underlying such technologies
such as thermal and chemical-thermal (carburizing, nitriding, etc.) processing of metal
alloys, diffusion hardening, etc., are strongly influenced by temperature, grain size, den-
sity of crystal lattice defects, the associated value of internal stresses, and the type and
distribution of impurities along the grain boundaries [43,44].

A significant increase of the atom diffusion rate in the solid phase of metallic materials
was discovered and highlighted as a new effect in the study of processes occurring under
shock compression [8,45]. The manifestation of this acceleration effect of mass transfer
in unsteady state conditions, which is caused by pulsed elastic or plastic deformations,
was recorded in the processes of mechanical-chemical-thermal treatment of various types:
ultrasonic shock; pulsed laser; electrohydropulse; electrospark; pulsed magnetic field; high-
speed rolling; shock compression from the energy of the explosion; and deformation in the
process of reversible martensitic transformations and a number of other types of impulse
loading. A necessary condition for the manifestation of a generalized thermodynamic
driving force, which ensures the acceleration of mass transfer in unsteady state conditions,
is a nonstationary local deformation caused by an external high-energy influence. This
exposure leads to a non-equilibrium state of the material, which causes a significant
acceleration of the mobility of atoms in metals and alloys in the solid state. As a result,
diffusion zones are formed, the length of which is hundreds (and more) micrometers.

Mazanko [46] et al. studied diffusion processes in copper, nickel, and their alloys
subjected to high-speed compression at elevated temperatures by methods based on the
use of radioactive indicators (63Ni) and ion mass spectrometry. This compression was
performed by imposing powerful pulses of electric current on the quasi-statically deformed
metals. This loading method is associated with the discharge of a powerful capacitor bank
onto statically deformable samples. The applied load was ~1–3 kN. The capacitor was
charged up to an amplitude value of the voltage of 250–400 V. The energy accumulated in
the process of capacitor charging was supplied to the samples, while the duration of the
discharge, and, accordingly, the pulsed deformation, was 0.02 ms. The effect of the structure
defectiveness and the rate of plastic deformation on the mobility of atoms, the depth of
penetration, and the shape of the concentration profile were established. It is known that
at the moment of time when the current passes through statically deformed metals, an
electroplastic effect is observed, i.e., material softening occurs. With a deformation of no
more than 2–10%, the rate of plastic deformation of the near-surface layers, depending on
the loading conditions, ranges from 10 to 104 s−1, which contributes to the manifestation of
the effect of accelerating mass transfer in the solid phase. Investigations carried out during
the stretching of metals in a pulsed electromagnetic field in the absence of heating at a
deformation rate of up to 50–100 s−1 showed that the diffusion coefficients reach values of
~2 × 10−5, 9 × 10−6, 6 × 10−5 cm2/s, respectively, with the penetration of nickel atoms
into copper, copper into nickel, and titanium into aluminum. The presence of the field
imparted an additional acceleration of ~40–50% to the migration of atoms in comparison
with deformation at the same rate, but under conditions of pulsed mechanical loading.

In [18], it was established theoretically and experimentally by autoradiography meth-
ods that under pulsed loading, the mobility of atoms in the upper part of the sample is
higher than in the lower one; moreover, in the volume of the diffusion zone, the mass
transfer is greater than in the surface layers. A correlation was established between the rate
of mass transfer and the distribution of deformation in the sample under pulsed loading.
In [47], diffusion along migrating grain boundaries interacting with an impurity was taken
into account in order to interpret the intensification of mass transfer in metallic materials
subjected to high-energy exposure.

Vasil’ev [48] investigated the features of diffusion mass transfer in metals under
mechanical shock exposure. Diffusion flows arising during severe plastic deformation
of the material were also determined. It was shown that, under certain conditions, the
diffusion of impurities from the outer surface into the bulk of the metal can develop as a
wave process, in which mass transfer occurs in the form of convective motion of atoms
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through the crystal lattice of a solid. The propagation speed of diffusion waves was
determined. It was noted that during shock and explosive processes of plastic deformation
of metals and alloys, a fast mass transfer of atoms was experimentally recorded, and it took
place under conditions of insignificant heating (Figure 1) [18]. In Figure 1 are shown [48]:
Fex—vector indicating the direction of the shock exposure; I—the depth of penetration of
the impurity, in the usual (non-shock) mode of diffusion mass transfer for a time equal to
the shock time Tex; II—The depth of penetration of the impurity during the shock exposure.
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pre-applied to the outer surface of the material.

It was pointed out that there are currently several different interpretations of this
effect. In [19,49], the opinion was expressed that fast mass transfer can be associated with
the ordinary diffusion under conditions of an increase in the density of linear defects of the
crystal structure and subsequent processes of stress relaxation in the defective subsystem.
In this case, a significant increase in temperature was assumed during the impact of the
shock load and the possibility of aftereffects when the load was removed. In [18,50],
the influence of aftereffect and elevated temperatures on the rate of mass transfer was
practically excluded, relying mainly on the corresponding experimental data. At the same
time, an assumption was made about non-thermal fluctuation kinetics of diffusion mass
transfer under low-temperature shock exposures. However, no constructive mechanism
for this process was proposed. In [51], the possibility of accelerated mass transfer during
severe plastic deformation of metals was shown and was explained by the generation of
unsteady point defects (vacancies and interstitial atoms) and their subsequent relaxation
after shock exposure. However, this approach does not take into account all the features of
plastic deformation of metals under powerful shock effects. The problem of mass transfer of
interstitial defects under the exposure of elastic and shock waves was also considered [52].

In solving the problem of finding mechanisms for accelerating mass transfer, there are
many alternative approaches, and so far, there is no single generally accepted point of view
on the physical essence of this effect. It is assumed that intensive mass transfer is a complex
and multifactorial process in which each of the above factors plays a distinct role. And only
all of them, considered in a complex, can give a physically substantiated picture of the effect
of acceleration of mass transfer. In [48], the main physical factors were investigated, the
combined effect of which determines the high rate of diffusion mass transfer during plastic
shock deformation of metals. This shows that, within the framework of the traditional
diffusion theory, there are opportunities sufficient to explain all the features of this effect. It
was demonstrated that under shock exposures on materials, the rate of diffusion processes
of mass transfer can be significantly increased by a force field acting on atoms from the side
of deforming external stresses. Under certain conditions, the processes of mass transfer
of impurities can be of a wave nature. Diffusion mass transfer under powerful shock
exposures is possible even in the absence of an impurity concentration gradient. In this
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case, it has the character of a perforating convective flow of an impurity through the
deformable crystal lattice of atoms of the main element.

In [14], the features of the diffusion mass transfer in metals under mechanical shock
exposure were investigated. The influence of shear stresses on diffusion processes was
considered. It was noted that shock loads acting on alloys with polymorphic modifications
lead to the development of structural-phase transformations occurring as a consequence
of the martensitic mechanism and multiple generation of vacancies. In combination with
high temperatures and significant shear stresses in the diffusion zone, these processes
significantly accelerate the processes of diffusion mass transfer. The main result of the shock
exposure is the transfer of the medium into a strongly unsteady state, which is characterized
by the experimentally observed high velocities of movement of diffusion fronts. It was
found that shear stresses can play a decisive role in accelerating the processes of diffusion
mass transfer under shock exposures. Shock exposures can lead to a significant change
in the temperature regime of the diffusion zone of metals. In particular, a local increase
in temperature due to the dissipation of mechanical energy during plastic deformation
can reach values close to the melting point of the metal. In metals with polymorphism,
shock exposures cause structural-phase transformations of the martensitic type. This
leads to a high vacancy supersaturation of the near-surface layers of the metal, which
significantly affects the rate of mass transfer in the diffusion zone. The combined effect of
these factors completely determines the high rate of diffusion mass transfer during plastic
shock deformation of metals.

In [53,54], structural changes in a steel matrix near inclusions of various types during
laser treatment were investigated. It was shown that under laser irradiation, between the
inclusion and the steel matrix, there is a high-speed exchange of atoms across the interface
under conditions of high mobility of atoms, which does not meet the conditions of classical
diffusion. Any pulsed loading is characterized by the so-called acceleration of mass transfer,
which, under pulsed laser irradiation, is intensified by heating to high temperatures, the
movement of crystal structure defects arising from thermal shock, melting and convective
mass transfer, electronic and electromagnetic interaction of inclusions and a matrix, as
well as the formation of surface areas of inclusions of zones with increased density of
dislocations. Figure 2 shows deformation stress-induced local structures of the steel matrix
near inclusions. Under unsteady state conditions of laser irradiation, the directed mass
transfer of elements across the inclusion-matrix boundaries is a complex quantity that
depends on the level and inhomogeneity of the reached temperatures, stresses, chemical
potentials of elements, and other factors. As a result of alloying local regions of the matrix
under conditions of accelerated mass transfer from internal sources, such as non-metallic
inclusions, hardened zones are created in the matrix near the inclusions. By mutual alloying
in the inclusion-matrix system, composite layers are created that have a heterogeneous
structure and consist either of solid solutions of different degrees of alloying, or of a solid
plastic matrix and solid plastic dispersed inclusions. The presence of cascade layers in
the matrix and (or) inclusion indicates the wave nature of the contact interaction of these
phases in the process of mass transfer during laser irradiation. The features of micro-
inhomogeneous hardening of steels during laser processing were investigated. The total
hardening effect from the action of various factors in the vicinity of non-metallic inclusions
was determined.
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The intensification of mass transfer in the solid phase is promising for solving the
urgent problem of degassing metallic materials for structural purposes. Gases can be in
metals not only in the form of interstitial solid solutions, but also in the form of excess
phases (both condensed and gaseous), accumulations around dislocations, and sorption
layers on inner surfaces [55]. In a real metal, the transition of an impurity from the gas
phase through the surface to the condensed phase can be represented by several successive
stages: adsorption, dissociation, formation of a surface solution, diffusion, dissolution,
distribution of impurities between the solid solution and structural defects, nucleation,
and release of excess phases. At various stages of production and technical exploitation
of metals, there is a redistribution of gas-forming elements between different forms of
their presence.

3. Mutual Mass Transfer of Contacting Solid Metallic Substances under External
Energy Influences

Panin et al. [56] described the regularities of mutual penetration of particles in compos-
ites “steel-copper-lead slip” and “iron-lead” under electrical impulse or shock-wave action.
A theoretical interpretation of the observed effect was proposed on the basis of a multilevel
approach of physical mesomechanics and the concept of atom-vacancy configurational
excitations in strongly nonequilibrium systems. It was noted that the so far observed
effect of superdeep penetration of solid particles into the metal target without violating its
continuity has no clear physical explanation and does not fit into the traditional concepts
of physics and mechanics of a deformable solid.

In the physical meaning, the model developed in [57] is the closest to reality. It was
proposed to take into account the exposure on the target of the entire flow of projectile
particles, which should cause changes in the state of the target itself. In [57], a special state
of the target was associated with strong atom-vacancy excitations. A model was proposed
to explain the effect of superdeep penetration of microparticles into the target. This effect
is associated with the development of hydrodynamic instabilities in local regions of the
target surface loaded by a flow of high-speed microparticles, microcumulation processes
initiated by a background shock wave, and the formation of transport microvortices in the
front of this wave. These microvortices move together with the shock front and can collect
microparticles in the vortex flow. Thus, the material of the microparticles can be moved to
a considerable depth inside the barrier. It was noted that the proposed model also explains
all effects accompanying superdeep penetration. So, recrystallization and amorphization of
material in the vicinity of tracks—traces of material transfer of microparticles, are explained
by high temperature and pressure in the microcumulation areas. However, firstly, the
very assumption about the influence of the entire flow of projectile particles on the state
of the target required direct experimental confirmation. Second, the microcumulation
model proposed in [57] was studied in the one-level approximation of deformable solid
mechanics. Therefore, in [57] assumptions were introduced such as the formation of an
elongated cylindrical pore in the target, the occurrence of high temperatures and pressures
in the regions of microcumulation for the development of processes of recrystallization,
and amorphization of the material in the vicinity of the tracks.

These assumptions can be avoided within the framework of a different formulation of
the experiment—a multilevel description of the motion of a high-energy exposure front on
the target and the consistent application of the concept of atom-vacancy configurational ex-
citations [56]. When describing the two-level system “strongly excited crystal—equilibrium
substrate”, it is fundamentally important to consider the condition for compatibility of
deformation at the interface between them. According to [58], at this interface, a “checker-
board” character of the distribution of compressive and tensile stresses arose. In the zones
of compressive stresses, the material was intruded, and a system of grooves distributed in
the form of a “checkerboard” appeared along the entire interface. The motion of such a
front under conditions of atom-vacancy configurational excitations can provide viscous
penetration of solid particles into the substrate without violating its continuity.
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The effect of superdeep penetration of solid microparticles with a size of several
micrometers to depths exceeding their initial diameters by 102–104 times, when the surface
of metals is exposed to a flow of micropowder, is known [57]. One of the main questions in
explaining the effect of superdeep penetration of particles into a substrate without violating
its continuity is to substantiate the concept of a radical change in the state of the substrate
itself under conditions of high-energy exposure at the shock loading front. To answer this
question, it is necessary to set up an experiment in which the high-energy exposure on the
substrate is set independently of its interaction with solid particles. During experimental
studies in [56], instead of throwing the powder by an explosion onto an equilibrium metal
barrier, the metal powder was placed on the surface of the target, then the target was
exposed to high-energy pulses of electric current or explosive loading. In this formulation
of the experiment, the task was reduced to a multilevel analysis of the interaction between
solid particles and a target at the “highly excited layer—substrate” interface. During the
cyclic high-energy exposure, not only superdeep penetration of solid particles to the entire
depth of the target was detected, but also mutual penetration of two dissimilar media with
fragmentation of the entire material of the metal substrate.

When a solid body is exposed to concentrated flows of energy of any nature, the
state of the solid body changes radically. The superdeep particle penetration model
cannot be built on the basis of the material in the initial state. Under conditions of strong
excitation, new structural states appear at the interstices of the crystal lattice, which
correspond to an excited nonequilibrium crystal. According to [59,60], for N atoms of a
solid under conditions of strong excitation, there are 2N structural states, half of which
are vacant. When such a material is loaded, collective atom-vacancy configurational
excitations arise, which cause hydrodynamic mass transfer when atoms collectively move
through interstices.

The concept of atom–vacancy states has become widespread [61–65]. Various authors
use different terms to classify such states: precursor states [61,62], excited states [63],
reversible transformations of the martensitic type [64], and pairs of inversely populated
electronic states [65]. However, their nature is the same: these arise in solids naturally
under conditions of their strong deviation from thermodynamic equilibrium.

Figure 3 shows the results of a structural analysis of a steel sheet after applying on
its surface a slip layer containing a powder of lead and copper in a ratio of 50:50 and
processing it with electric current pulses [56,66]. In the upper part of the sheet (Figure 3a),
a mechanical mixture of copper, lead, and steel fragments is clearly visible. A new result
in Figure 3a is the detection of copper-lead fragments in the composition of the steel
sheet. Meaning that not only superdeep penetration of copper and lead particles into the
substrate was recorded, but the mutual penetration of copper, lead, and steel particles.
The main matrix is a supersaturated solid solution of copper in iron. Figure 3b shows
the microstructure of the middle part of a steel specimen with a well-visible inclusion of
copper, while completely preserving the continuity of the surrounding material.

Figure 3c shows a micrograph of the same steel plate from the opposite side, on which
inclusions of copper particles that have passed through the steel sheet while maintaining
the continuity of the material are clearly visible. A mechanical mixture of copper, lead,
and steel fragments was also formed in the lower layer of the sheet. This indicates the
fragmentation of the sheet material caused by the passage of a front of copper and lead
particles through it, which is confirmed by the X-ray spectral microanalysis of the sample
after the electric pulse treatment.
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The performed theoretical analysis made it possible to conclude that the effect of
penetration of one solid metallic substance into another without disrupting the continuity
of the latest under the influence of concentrated energy flows is based on the following
fundamentally important provisions:

- the effect of the “checkerboard” in the distribution of stresses and strains at the
interface of two dissimilar media in the fields of external influences;

- the emergence of highly excited states and associated atom-vacancy configuration
excitations in the interface zone under the influence of concentrated energy flows;
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- multilevel vortex mass transfer in a highly excited medium under conditions of the
appearance of collective atom-vacancy configurational excitations.

Thus, in [56,66], the effect of mutual mass transfer of contacting solid metallic sub-
stances under pulse energy influence was discovered. This effect consists in the fact that
during intense pulse influence (shockwave, electrical, electromechanical, etc.) on the con-
tact zone, mutual mass transfer of the contacting substances occurs while maintaining their
continuity at a distance from the original contact surface, determined by the energy and
duration of the pulses. The results obtained indicate that superdeep penetration can occur
not only upon collision with a metal matrix of microparticles accelerated to high speeds,
but also under fundamentally different conditions. The action of high-energy impulses of
various natures (shockwave exposure, electric impulse, electromechanical impulse) on the
contact zone of solid metallic substances leads to an increased mass transfer. In addition,
under such conditions, mutual mass transfer occurs. Experimental facts confirming the
penetration of alloying metal microparticles into the metal matrix were obtained. This was
confirmed by metallography and micro-X-ray spectral analysis on a whole group of various
combinations of contacting metallic substances: Fe-Pb, Cu-Pb, Fe-Cu-Pb, Fe-Pb-W, Al-Pb,
Al-Cu, Fe-Sn, Fe-Sn-Pb, and Fe-Bi-Pb. From the point of view of the theory of physical
materials science, the discovered effect means the establishment of a specific interaction
in unsteady state multicomponent systems. In applied terms, the effect of rapid mass
transfer actually provides a basis for the development of fundamentally new methods of
purposefully changing the structure and operational characteristics of materials.

Varavka [67] reported on the study of the behavior of vacancies and dislocations, as
the most mobile elements of a defect medium in a metal, under substantially unsteady state
conditions, which are created in the surface layer of a metal during ultrafast cooling as a
result of processing with concentrated energy flows. Using dynamic analysis techniques,
the stage that precedes the phase transformation in the metal alloy during the cooling
phase was studied. The theoretical possibility of the formation of a specific dislocation
configuration facilitating the phase transition was shown. According to the research results,
diagrams of the mechanisms of unsteady state transformations in steel were developed,
differentiating the known diagrams of isothermal decomposition of supercooled austenite
in the region of hyperspeed cooling. On their basis, it was shown that the phenomenological
transformation mechanism, the main stage of which is nonequilibrium vacancy-dislocation
interactions, will increasingly dominate over the classical martensitic one as the carbon
content in the steel increases, cooling accelerates, the heating temperature increases, and
the steel defectiveness grows. It was found that under pulsed thermal-power exposure, the
deformation of the ferrite matrix, which precedes the phase transition, occurs according
to the mechanism of grain-boundary sliding with the participation of nonequilibrium
vacancy-dislocation interactions in near-boundary microvolumes. In this case, the degree
of deformation does not exceed the value of 5–6%. Dissolved carbon prevents deformation
processes by the mechanism of grain boundary sliding, which contributes to an increase in
the tendency of steel to form cracks. On the basis of experimental data on various types
of pulsed thermal power treatment of steel, a parametric description of the conditions for
unsteady state high-temperature phase transitions, structure formation, and deformation
was carried out. The values of thermal and deformation control parameters characterizing
the degree of non-equilibrium of processes during hardening treatment with concentrated
energy flows were determined. This made it possible to simulate structure formation by
mathematical and computer methods.

4. Intensification of Mass Transfer for the Formation of Nanoporous Structures in
Metallic Materials

Kazanskiy et al. [38] showed that the intensification of mass transfer in the solid
phase of metallic materials is a condition for the formation of nanoporous structures. Laser
pulse-periodic irradiation at a frequency of up to 5 × 103 Hz for brass with a copper content
of 62% was applied. Laser processing modes that allow us to modify the structure of the



Metals 2021, 11, 1359 10 of 26

metallic material at a nanoscale level were identified. With this heating, the temperature of
the material was below the melting point. SEM studies of the samples have shown that
laser irradiation of a crystalline material leads to a change in the surface relief. Depending
on the magnitude and distribution of the power density in the laser spot and the duration
of exposure, these changes influenced both the development of the relief (formation of
wedge-shaped pits) and its smoothing. It was established that uniform laser exposure at
depths of up to 25–30 µm activates the formation mechanisms of nanopores. Chemical
analysis of the material showed an increase in the relative surface content of Cu and a
decrease in the proportion of Zn.

For comparison, the near-surface structures of the material samples in the initial state
and after laser exposure were investigated on a transmission electron microscope. Figure 4a
shows the initial structure of the material, which was a subgrain structure with insignificant
angular misorientation. The subgrains had a multifaceted shape and a low density of
dislocations. The density of dislocations in metallic materials after recrystallization reached
values of 106–108 cm−2, and in heavily deformed materials it was 1011–1012 cm−2 [68].
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Figure 4. The initial structure of a brass specimen with a copper content of 62% (a) and the struc-
ture of the near-surface layer after laser treatment (b): 1—subgrain with low-density dislocations;
2—dislocation appearance zone; 3—subgrain boundary [38].

The structure of the material after laser processing is shown in Figure 4b. It was deter-
mined that the intensity of pore formation, as well as the size and shape of the resulting
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pores, depend on the temperature conditions of processing, which are determined by the
magnitude and distribution of the power density of the laser beam in the heating zone. In
addition, these also depend on the duration of exposure when the material is exposed to
periodic laser pulses.

The nanopores size ranged from 40 to 50 nm. The nanopores were evenly distributed
within the subgrains and had an almost stable size and shape. At the boundaries of
the subgrains, a larger spread in the sizes and shapes of nanopores was observed. This
structure was formed due to the formation of vacancies and their coagulation as a result
of zinc sublimation from the material surface, as well as due to the development of a
concentration and diffusion gradient to the material surface with a relatively high vapour
pressure (Zn).

In [69], the conditions that ensure the predominant formation of channel-type nanopores
in the Cu–Zn alloy with an increase in the depth of the formation zone of nanoporous
structures up to a value of 40–45 µm were identified. It was found that pulsed-periodic laser
irradiation makes it possible to form a stable stressed state on the surface of the samples.
Laser treatment was carried out within a rectangular area of 20 × 5 mm2 on the surface of
a metallic material. It was determined that laser irradiation with a uniform power density,
which varied in the range (3–4) × 106 W/m2, on a two-component Cu–Zn metal alloy,
caused a change in the surface relief. After laser irradiation, open pores of various shapes,
from spherical to irregular, were formed in the subsurface layer of the metallic material,
with structures fairly uniformly distributed over the area. Besides these, branched pores
with a characteristic dendritic structure were also formed as result of this treatment.

In the process of heating by laser irradiation, a change in the colour of the brass
samples from the initial yellow to red was observed, which indicated a decrease in the
concentration of zinc on their surface. Elemental analysis of the surface composition of
samples of a two-component metallic Cu–Zn alloy after laser pulse-periodic exposure
was made using an analytical scanning electron microscope, which was equipped with an
electron probe energy dispersive microanalysis system, which showed an increase in the
relative copper content from 63% to 92% and decrease in the proportion of zinc from 36%
to 7%. The results of surface analysis of the elemental composition and the ratio of alloy
components in terms of compact material before and after exposure to laser radiation are
presented in Table 1.

Table 1. Alloy component ratio in terms of compact material before and after the laser treatment [69].

Component Before (Weight %) After (Weight %)

Cu 63 92
Zn 36 7

other 1 1

The study of the microstructure showed that the concentration of pores decreases
with increasing distance from the surface of the processed material. Figure 5 shows the
distribution of pores in the depth of the processed material. Laser treatment has created
a nanoporous structure in the subsurface layer, in which nanopores uniformly located
on the surface of subgrains have relatively stable sizes and shapes. An image of typical
channel-type nanopores with a width of up to 100 nm is shown in Figure 6.

It was assumed that the main mechanism for the formation of a nanoporous structure
was zinc sublimation, which was the alloy component with a higher vapour pressure.
A concentration gradient was created in the material, and in the further development
this component was sublimated to such an extent to ensure its diffusional delivery to
the surface. Over time, the thickness of the layer, in which the amount of zinc was
reduced, increased and diffusion became the factor that limited the sublimation process. A
condition for increasing the mass transfer that was in the solid phase of metallic materials
was the nonstationary local deformation, which was caused by the external high-energy
laser exposure.
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In [70], the possibility of the formation of nanoporous structures in a metallic material
of 50 µm thick samples was investigated during pulse-periodic laser treatment with thermal
cycling. Variations in the average laser power in the range of 150–300 W, pulse frequency
from 3 to 6 Hz, and laser spot diameter on the sample surface from 5 to 15 mm were
chosen as the modes of laser treatment in order to obtain nanoporous structures. The
modes of pulse-periodic laser treatment were chosen in such a way that in the center
of the heat-affected zone, a section with a corrugated relief and a clear boundary was
formed. The corrugated relief was formed under the following conditions: a laser power of
250 W, a pulse frequency of 5 Hz, and a laser spot diameter on the sample surface of 7 mm.
The reverse side of the samples had a relatively smoother surface relief. The peripheral
section of the heat-affected zone was characterized by the presence of corrugations, which
were oriented in the radial direction. The formation of corrugations indicated an increase
in the volume of local areas of multicomponent aluminum-iron brass in areas of high
temperature differences.

A dislocation structure was discovered during studies of the metallic material by
means of transmission electron microscopy. Figure 7 shows the cross-sectional structure of
a multicomponent aluminum-iron brass after pulse-periodic laser treatment with thermal
cycling. After laser treatment, an increase in the dislocation density in comparison with
the initial structure was observed, which led to the formation of nanosized cavities. The
reason for the formation of nanopores was internal stresses arising as a result of cyclic
heating and cooling at high rates, under the influence of which there was an increase in the
number of vacancies, dislocations, and their accumulations in the material. Solid phase
transformations in the multicomponent alloy intensified the formation of nanoporous
structures. Taking into account the distribution of alloy components in the heat-affected
zone, there was a high-speed change of microvolumes with a predominance of tensile and
compressive stresses, which led to the formation of nano-sized cavities.
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Figure 7. The structure in the cross section of the multicomponent aluminum–iron brass after pulse-
periodic laser treatment with thermal cycling: 1—dislocations that were formed with increased
density in the material; 2—formation of nanoscale cavities [70].

During scanning electron microscopic investigations of the fine structure of the ma-
terial, it was established that during thermal cycling in the center of the heat-affected
zone, a dendritic structure of the α-solid solution was formed. In this central region of the
heat-affected zone on the surface of the metallic material, a phase precipitate with a higher
phase transformation temperature, enriched in Fe, was observed. Channel-type pores were
formed with an average width of 80–100 nm over the entire cross section of the material in
this region as a result of laser treatment. The resulting nanoporous materials can be used
as catalysts for improved electrochemical reduction of carbon dioxide [71,72].

5. Study of Vibration Characteristics of Cu–Zn Alloy Samples during Laser-Induced
Nanopores Formation

In [73,74], conditions for the formation of a nanoporous structure in metallic materials
subjected to pulse-periodic laser irradiation were defined. Samples of Cu–Zn alloy with di-
mensions of 30 × 20 × 0.05 mm3 were scrutinised. For the investigation, a diffusion-cooled
and radio-frequency excited CO2-laser with a single pulse duration of 0.026–125 ms was
used. Spectra of the samples’ responses to external vibroexcitation caused by pulse-periodic
laser irradiation were measured and their waveforms were ascertained and registered. A
three-component scanning laser vibration-measuring instrument was used to measure the
vibration rate. Figure 8 shows a photo of the experimental setup for studying the vibration
characteristics of objects during the formation of laser-induced nanopores.
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Figure 8. Photo of the experimental setup for studying vibration characteristics of objects during the
formation of laser-induced nanopores: 1—diffusion-cooled and radio-frequency excited CO2-laser;
2—three-axis scanning laser vibrometer; 3—optical system; 4—two-coordinate measuring instrument;
5—non-contact thermometer; 6—sample of brass L62 [74].
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In [73], the pulse-periodic laser irradiation was performed with frequencies of 500 Hz.
By analyzing the results of the samples’ responses to the described external laser vibrational
excitation, it was observed that the vibration rate increases in the case of frequencies that are
multiples of the laser pulse frequency. At these frequencies, local maxima of the vibration
rate, which decreases with increasing frequency, could be observed. Figure 9 shows images
of the sample that were re-established with the use of PSV Presentation software. The
maximum vibration rate could be assessed at the periphery of the sample; while however,
the intensity of the pore formation was much lower there, than in the middle of the heat
affected zone located in the centre of the sample.
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Figure 9. Images of the sample that were re-established with PSV Presentation software correspond-
ing to the frequency of 500 Hz; with a time step of 0.2 ms [73].

A thermovision camera was used to analyse the heating of the samples by laser
irradiation. Figure 10a shows the temperature field of the sample under pulse-periodic
laser irradiation, with the highest temperature at the centre of the laser beam.
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Figure 10. Temperature field of the sample during pulse-periodic laser irradiation (a). Image of
a ~100 nm wide nanopore formed during laser irradiation in the subsurface layer of the metallic
material (b) [73].

Prolonged laser irradiation exposure led to a temperature rise in the sample’s centre
area and consequently to increased pore formation. Since the diffusion coefficient is
related to the temperature exponentially, a temperature rise is an effective way to increase
the mobility of atoms. At that, a condition for implementation of the process is pulse-
periodic laser irradiation that supports a persistent stress condition developing on the
surface of the samples. The study of the fine structure was performed with a scanning
electron microscope. Figure 10b shows an image of a characteristic nanopore with a width
of ~100 nm. Nanopores formed a nanoporous network in the metallic material during
pulse-periodic laser irradiation.

In [74], a study of the vibration characteristics of Cu–Zn alloy samples was performed
during laser-induced nanopores formation with a pulse frequency of 3 Hz. Figure 11
shows a typical range of the vibration rate of the sample during laser irradiation. It was
confirmed that the vibration rate increases at frequencies that are multiples of the laser
pulse frequency, which demonstrates a decrease of local maxima of the vibration rate at
raised frequencies. A study of the fine structure showed that the pulse-periodic laser
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irradiation formed a nanoporous structure in the subsurface layer, mostly channel type
nanopores ~100 nm wide, arranged as a nanoporous network. The dimensions and shapes
of the nanopores were uniformly distributed on the subgrains surface and were relatively
stable. For the study of samples heating during laser irradiation, a thermovision camera
capable of measuring temperatures in the range of 5–1500 ◦C was used.
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Figure 11. Spectrum of vibration rate, averaged over the entire surface of the sample during laser
irradiation with pulse frequency 3 Hz [74].

The highest temperature was registered at the centre of the heat affected zone. An
increase of the time of laser irradiation led to a rise of the centre area temperature; the
intensity of pore formation also increased. With a significant reduction in the vibration
rate by a damping device, the formation of nanopores in the metallic material did not
occur. Likewise, no nanopores were generated in metallic materials during continuous
laser irradiation. Consequently, conditions for the synthesis of the nanoporous layer are an
increase in temperature along with laser-induced vibrations. Thus, the role of synergies
of heat exposure and laser-induced vibrations was shown for the increase of nanopores
formation in the subsurface layer and on the surface of metallic materials.

6. Determination of Conditions for Nanostructure Formation in Metallic Material by
Pulse-Periodic Laser Irradiation

Particular attention was paid to the production of structures based on nanoele-
ments [75–77] permitting creation of sensor devices, clearly surpassing currently com-
mercially available sensors [78,79]. Among possible technical implementations of these
structures are metal oxide layered materials being of interest as functional electro-contact
materials. In [80], synthesis of metallic-semiconductor nanocomposite based on ZnO
nanowires under pulse-periodic laser irradiation on brass with a pulse frequency of 3 Hz
was performed. For the purpose of synthesizing such nanowires on the surface of the
metallic material, pulse-periodic laser treatment was realized. For the first time it was
shown that the use of synergies of thermal effects and laser-induced vibrations in the sound
frequency range of pulse-periodic laser beam allows to create structures of oxide-based
composite nanomaterials.

In [81], pulse-periodic laser irradiation was carried out with an average laser beam
power of 330 W and a frequency of 100 Hz. Measurements of the spectra of samples’
responses to vibrational excitation during pulse-periodic laser irradiation were performed.
Figure 12 shows an averaged spectrum of vibration rate V over the entire surface of the
samples. Sample’s responses to the defined laser vibrational excitation were analysed and it
was established that the values of vibration rate had local maxima in the case of frequencies
that were multiples to the fundamental frequency. The local maxima values decreased with
increasing frequency. Additionally, at frequencies near the natural oscillation frequency,
an increase in the vibration rate values occurred. According to [82,83], natural oscillation
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frequency was calculated for the size of the selected sample and was around 48.5 Hz.
Figure 13 demonstrates graphical images of samples on which were displayed the magni-
tudes of the vibration rate at every point of the sample with time intervals of a quarter of
the oscillation cycle. A thermal imaging camera was used to record the temperature on the
reverse samples surface during heating. Since an increase in the temperature was induced
by laser irradiation that had its maximum in the centre, then with time in the central region
the temperature increased more than at the periphery.
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Figure 13. Graphical images of samples on which were displayed the magnitudes of the vibration
rate at every point of the sample with time intervals of a quarter of the oscillation cycle, obtained
using PSV Presentation software that correspond to the frequencies of the sound range: 100 Hz (a),
200 Hz (b) and 300 Hz (c) [81].

7. Investigations of the Material after a Pulsed-Periodic Laser Treatment, Realized in Air

The investigations of the surface of the material after a pulsed-periodic laser treatment,
realized in air, made it possible to observe an oxide coating formed on the brass surface,
which consisted of needle-shaped elongated crystals that had a lemon yellow colour [81,84].
After an increase of the treatment time, this yellow colour transformed into a whitish-
gray, which is representative for zinc oxide. An elemental composition analysis of the
whitish-gray film was performed using a scanning electron microscope equipped with
the energy-dispersive electron probe microanalysis system. It was determined that the
proportion of zinc amounted up to 98% from all metals. This indicated that, after treating
the surface with laser pulses, mainly zinc oxide remained on the Cu–Zn alloy surface. The
heating of the brass foil in air induced the intensified oxidation of the material surface.
The factors that influenced the preferred formation of ZnO were the higher rate of zinc
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oxidation than the rate of copper oxidation, as well as the diffusion of zinc to the surface.
Typical ZnO nanoobjects as nanowires were formed by pulsed-periodic laser irradiation
in the central region where the maximum temperature was approximately 600 ◦C, in
comparison with the peripheral areas where the formation intensity was much lower.

A scanning electron microscope was applied for analytical evaluations of the chemical
composition of the materials’ near-surface layer. A modification of the chemical structure
was established, i.e., in the dispersion of alloy constituents close to the surface layer. An
increase in the copper content of up to around 90% with a remaining lowered zinc content
of down to merely ~10% at the surfaces of the laser-treated sample was registered.

Investigations of the microstructure in the near-surface layer were carried out utilizing
slightly slanted thin sections. For the inspection of the microstructure, metallographic
microscopes were put to use on etched as well as non-etched parts at various rates of
magnification. The applied metallographic studies enabled to substantiate the emergence
of pores in the near-surface layer down to a depth of 15–25 µm. Both single pores and
formed ramified channels with typical sizes less than 1 µm were identified. Pores were
allocated more densely closer to the surfaces. The origination of pores in the near-surface
layer vastly occurred along grain and block boundaries causing the formation of additional
boundaries and grain refinement. In this way the forming of the structure took place along
with diffusion movement of zinc atoms to the surfaces. Then zinc was oxidized at the
surfaces in an amount provided by its diffusion. With zinc oxidizing at the surface, a
concentration gradient in the alloy was ensued. The decreasing zinc content of the Cu–Zn
alloy also manifested itself in the colour change of the surface layer.

Internal tensions in the near-surface layer of brass with a copper content of 62% were-
assessed pre and post laser treatment by X-ray diffraction analysis. With high solvability
along the lines of the intercrystalline plane of interference index (311), the most distinctive
variations of diffraction maxima could be identified there, subsequent to the laser pulses
having been applied. Quantitative evaluation was performed along these lines. The study
of the structures of the metallic material and the comparison between before and after laser
treatment displayed in the X-ray images produced the following findings. The deviation
of angle and width of the lines subsequent to laser treatment revealed a change of the
dislocations density and a redistribution of internal strains. Pulsed laser treatment caused
an increase in intensity of the α (311) line by 1.9 times in the central part of the heat-affected
area, while it was decreased by a factor of approximately 0.7 in the fringe area, revealing a
substantial redistribution in grain orientation of the alloy. As a result of laser treatment in
the near-surface layer of the metallic material, relative internal stresses of approximately
σ = 2.8 GPa were formed.

In subjecting brass to pulsed laser irradiation, the alloy component zinc will oxidize on
the surfaces in the quantity that its diffusion from deep within the material will be ensured.
It is possible to determine the diffusion coefficient of zinc with reference to the amount
diffused and oxidized at a certain period. For solution of the diffusion equation, the surface
concentration of the diffusant and the value at a certain depth into the material, having
been assessed in studies of the elementary alloy, were identified as boundary conditions.
When calculating the average diffusion coefficient of zinc in the Cu–Zn alloy at direct
heating in air and exposure to a temperature of 700 ◦C for 40 min, 160 min, and 360 min,
the obtained value was 9.5 × 10−8–1.5 × 10−7 cm2/h. Calculation of heating as a result of
laser pulses under conditions of the experiment, yielded a diffusion coefficient value of
3.2 × 10−7 cm2/h, being two to three times higher. Taking into account the fact that most
of the time the process was carried out at a temperature not exceeding 500 ◦C [65], it can
be assumed that the diffusion coefficient under the described conditions of laser pulsed-
periodic irradiation was an order of magnitude higher above the one found at conventional
heating. It could be attributed to the synergy of heat exposure and laser-induced vibrations,
as a result of a pulse-periodic laser irradiation.
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8. Discussion of the Presented Results

The intensity of mass transfer in metals and alloys determines such processes as
recrystallization, homogenization, aging, and a number of others, i.e., these are essential for
the formation of structures and properties in such materials. An increase in temperature as
a result of external influence is an effective way to accelerate the movement of atoms, since
the diffusion coefficient is related to temperature exponentially. At the same time, heating
the material above certain temperatures is not always rational, since it can lead to grain
growth, as well as negatively affect the structure and phase composition. For example,
for steels, the burning is an irreversible defect in metal heating. It occurs when the steel
is heated to temperatures below the temperature of the onset of melting by 50–100 ◦C.
Excessive overheating of brass (above the temperature of 1100–1200 ◦C) is also not allowed.

The effect of displacement of atoms in solids over distances of up to tens and hundreds
of micrometers in an extremely short time was recorded in the study of processes occurring
in metals under conditions of various types of pulse treatment. Non-stationary deformation,
which is localized only in a part of the sample, is a necessary condition that contributes
to the manifestation of the generalized thermodynamic driving force, which ensures
accelerated mass transfer. The successful solution to the problem of effective application
of this effect requires a search for fundamentally new and promising areas for the use of
pulsed loadings for the formation of structures of metallic materials with a given set of
physical and mechanical properties [85–87].

The complexity of studying the processes of mass transfer under substantially un-
steady state conditions is determined by the fact that mass transfer is the result of the
simultaneous action of several processes of different physical nature, such as a change in
the structural state of a metallic material, manifestation and disappearance of crystalline
defects, the appearance of stresses, and others. High-energy external influences, which
include laser-pulsed processing, lead to a significant acceleration of the mobility of atoms
in metals and alloys in the solid state. However, the profound nature of the processes
occurring during the formation and subsequent evolution of gradient structural-phase
states needs further investigation. In addition, the corresponding scientific direction is
currently at the stage of intensive accumulation and comprehension of experimental and
theoretical material [88–90]. The dynamic processes that occur in the near-surface layers
of metallic materials exposed to pulsed laser irradiation without any destruction of the
crystal structure were investigated in sufficient detail. Based on the idea of the interaction
of structural defects in dynamically deformed condensed media, a dislocation-interstitial
mechanism of laser-stimulated mass transfer in real crystals was proposed. It was demon-
strated that pulsed Q-switched laser irradiation stimulates deep penetration of atoms from
the surface into the depth of the irradiated metal, the value of which significantly exceeds
the thermal penetration. Within the framework of the proposed model of laser-stimulated
mass transfer, it was shown that the directed migration of atoms from the surface into the
crystal occurred as a result of relaxation of thermal stresses caused by unsteady heating
processes [53,91].

A method for intensifying diffusion processes in the solid phase of metallic materials
by pulse-periodic laser irradiation was developed [38,70]. Applying such exposure, the
conditions that contributed to the formation of nanoporous structures in the metallic
material, a two-component Cu–Zn alloy, were identified. Laser irradiation with a pulse
frequency mainly in the range of sound frequencies during simultaneous heating of the
material in vacuum below the melting temperature made it possible to form a stable stressed
state on the surface of the samples. The sublimation of the alloy component with a higher
vapour pressure was assumed as the main mechanism for the formation of a nanoporous
structure during treatment in vacuum. In the material, a concentration gradient was created,
and the further sublimation of this component ensured its diffusional delivery to the surface.
The diffusion was the limiting factor of the sublimation process. The nonstationary local
deformation, which was caused by an external high-energy exposure was a condition for
increasing the mass that was transferred in the solid phase of metallic materials.
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Thus, as a result of laser irradiation, nanopores were formed in the surface layer of the
material. These nanopores were both single and multichannel with branchings that were
fairly uniformly distributed over the area. This structure was formed due to the appearance
of vacancies and their coagulation as a result of zinc sublimation from the surface of the
material, as well as the creation of a concentration and diffusion gradient to the surface
of this component. Laser treatment made it possible to create a nanoporous structure
in the surface layer of a metallic material with an average pore size of 40–50 nm and an
increased size of about 100 nm, while the nanopores were uniformly distributed within
the subgrains and had relatively stable sizes and shapes. In addition, for the formation
of nanoporous structures of metallic materials, a method was developed, which involves
cyclic elastoplastic deformation. It was realized with a pulsed-periodic laser irradiation
with a frequency of the order of several units of Hertz. In this case, the reason for the
formation of nano-sized cavities in alloys was the formation and coagulation of vacancies
under the action of internal stresses arising as a result of high-energy exposure in various
zones, which was accompanied by significant heating of the metal.

Such processing of brass not in vacuum, but in air, leads to the formation of zinc oxide
nanowires on the material surface [39,75]. Different laser frequency has practically no
effect on the growth rate and geometric dimensions of nanowires. The values of vibration
intensity are significantly reduced by the vibration damping and in this case the growth rate
of nanowires reduces as well. Using spectral microanalysis, a change in the concentration
of alloy components in the near-surface layer was registered. It was established that the
surface of the samples after laser treatment was a layer enriched with copper and with a
reduced zinc content.

Internal tensions in the near-surface layer of brass were assessed pre and post laser
treatment by X-ray diffraction analysis. Pulsed laser treatment caused an increase in
intensity of the α (311) line by 1.9 times in the central part of the heat affected area, while it
was decreased by a factor of approximately 0.7 in the fringe area, revealing a substantial
redistribution in grain orientation of the alloy. As a result of laser treatment in the near-
surface layer of the metallic material, relative internal stresses of approximately σ = 2.8 GPa
were formed. It was established that during laser pulse-periodic irradiation on brass, the
component of the metal alloy, namely zinc, will oxidize on the surface in the extent that its
diffusion to the surface will be ensured. A significant increase of the diffusion coefficient in
a metallic material in comparison to plain exposure to laser beam heating was described.

The application of the intensification effect of mass transfer in the solid phase of
metallic materials by laser irradiation is promising for increasing the efficiency of thermo-
chemical treatment of metallic materials. As a technological operation, thermochemical
treatment is a combination of the following stages: the formation of a saturating medium,
the adsorption of active atoms of the saturating medium by the surface, and the subsequent
diffusional transition of the adsorbed atoms into the lattice of the metallic material that is
being processed. The processing of materials by laser irradiation offers the possibility to
increase the speed of the formation of active atoms, which depends on the composition and
aggregation state of the saturating medium, on the interaction of individual components
with each other, as well as on pressure and temperature. The main distinguishing feature
of this approach is the use of laser-induced vibrations, making it possible to intensify
diffusion processes in the solid phase of metallic materials. The implementation of this,
with such a high feasibility of enhancing efficiency, is also very beneficial for almost any
laser processing, including everyday industry applications (Table 2).
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Table 2. Enhancing efficiency of laser processing, including everyday industry applications.

Exploitable Effects

Laser Processing Methods State of the Art
Methods of Laser

Material Processing

Formation of Nanostructures
under Exposure to Periodic

Laser Pulses

Material heating
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The application of such methods of combined laser processing, which implement the
effect on a metallic surface of the thermal power of a laser beam and the energy of sound
or acoustic vibrations, is promising in the development of laser technologies. With such
a combined treatment by means of dosed introduction of mechanical vibrations into the
base material, it is also possible to control the hydrodynamic motion in the melt [92]. The
laser welding process is carried out with mechanical acoustic vibrations, with the help
of which an additional effect is exerted on the surface of the material under processing,
leads to an improvement in the granular structure of the welds, as well as affects their
microhardness in specific areas of the heat-affected zone [93,94]. There is a change in the
kinetics of diffusion processes and phase transformations, which has a positive effect on
the structurally stressed state of the treated material.

Additional effects arise if the intensity of acoustic vibrations is sufficient to excite
cavitation in the laser melt. It is known that cavitation leads to more intensive mixing and
refinement of the melt structure, a decrease in the surface tension coefficient, leveling of
temperature gradients, and, as a consequence, to a smoothing of the surface relief and an
increase in the depth of the melt [95–97]. Cavitation is possible with pulse-periodic laser
irradiation. For example, when using low-frequency ultrasonic vibrations, the development
of cavitation occurs within a few tenths of a millisecond. Since, with decreasing frequency,
the dimensions of cavitation voids tend to increase [98], the use of the energy of sound or
acoustic vibrations instead of ultrasonic ones will lead to an increase in the intensity of
cavitation in the melt.

Surface laser alloying consists in obtaining alloyed layers with forced supply of filler
materials directly into the action zone of the focused laser irradiation. Usually, only the
melting of the surfaces of metals and alloys allows this process to be carried out [99]. Due
to the short duration of the laser thermal exposure, the diffusion of elements from the
reflow zone to the heat-affected zone, as a rule, occurs at a distance of less than 10 µm.
Carrying out the processes of laser alloying with the application of the intensification effect
of mass transfer without melting the surface, it becomes possible to ensure the achievement
of diffusion saturation with alloying elements to a greater depth. Redistribution of alloying
elements in the solid phase near the reflow zone at a distance of up to 300 µm was
experimentally found in [100]. The processes of such mass transfer in the solid phase occur
due to the dislocation movement of atoms as a result of rapid local deformations. The
formation of a non-stationary stress-strain state caused by laser sound waves and the use
of the synergy of the plain effects of laser pulses and laser-induced vibrations will make it
possible to implement a new approach for the creation of structures of metallic materials.
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9. Conclusions

The presented analysis shows the effectiveness of the application of laser irradiation
as an effective mean for changing the structural state and mechanical properties of metals
and alloys in the solid phase through a local influence on the diffusion characteristics of
the components. Under pulsed-periodic laser irradiation, the realized nonstationary local
deformation leads to the formation of nonequilibrium structures. An acceleration of mass
transfer occurs, and it is enhanced: by heating to high temperatures, by the movement of
defects in the crystal structure, and by the formation of zones with an increased density of
dislocations in the surface areas.

Possibilities for generation of nanomaterials were evaluated and nanoporous nanoma-
terials as well as ZnO-based composite nanomaterials using pulse-periodic laser irradiation
were synthesized. A significant increase of the diffusion coefficient in a metallic material, in
comparison to plain exposure to laser beam heating, was described. It could be attributed
to the synergy of heat exposure and laser-induced vibrations, mainly in the range of sound
frequencies, as a result of a pulse-periodic laser irradiation. The condition for intensifying
mass transfer in the solid phase of selectively oxidable copper-zinc metallic materials was
identified as a non-stationary stress-strain state caused by laser-induced sound waves. The
exploitation of this synergy effect permitted the implementation of a novel approach for
the creation of structures of nanomaterials. At the same time, a targeted influence on mass
transfer and the accompanying relaxation processes make it possible to achieve an increase
in the efficiency of methods for processing metals and alloys.

The study of mechanisms and regularities of physical processes responsible for the in-
tensification of mass transfer in metallic materials is of considerable scientific and practical
interest. In addition to nanotechnology, the intensification of diffusion processes should
be considered promising for the processes of welding and chemical-thermal treatment
of metallic materials, since the rates and mechanisms of diffusion are essential for the
formation of their structures and properties. It can be assumed that the revealed regulari-
ties describing the enhancement of mass transfer in the solid phase, as well as synergies
of heat exposure and laser-induced vibrations, will be valid for all metallic materials. A
targeted influence on mass transfer and accompanying relaxation processes will increase
the efficiency of methods for processing metals and alloys, as well as open up the possibility
of creating new materials with the required complex of physical and mechanical properties.
For example, this will provide an opportunity to significantly increase the efficiency and
speed of chemical-thermal processing of metallic materials. The task of intensifying both
the processes of adsorption of active atoms by the surface and the subsequent diffusion of
adsorbed atoms into the lattice of the processed metallic material becomes achievable. The
development of this research promises to have a large impact on real-world applications in
the field of industries.

The use of the effect of enhancing mass transfer will allow to modify materials by
integrating unique strength, anti-corrosion, and other operational characteristics into
them, as well as to form materials structures with the required complex of physical and
mechanical properties.
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