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Abstract: The demand for LNG-powered ships and related equipment is rapidly increasing among
major domestic and foreign carriers due to the strengthened IMO regulations on the sulfur con-
tent of ship fuel oil. LNG operation in a cryogenic environment requires a storage tank and fuel
supply system that uses steel with excellent brittleness and fatigue strength. A ship using LNG
is very sensitive to explosion and fire. For this reason, 9% Ni is often used, because ships require
high quality products with special materials and structural technologies that ensure operability at
cryogenic temperatures. However, research to derive uniform welding quality is urgent because the
deterioration of weld quality in the 9% Ni steel welding process is caused by high process difficulty
and differences in welding quality depending on a welder’s skill set. This study proposes a method
to guarantee a uniform quality of 9% Ni steel in a fiber laser welding process by categorizing weld
joint hardness according to the dilution ratio of a base material and establishing a standard for
quantitative evaluation.

Keywords: ASTM A553-1 (9% nickel steel); fiber laser welding; discriminant analysis; weld joint
hardening; optimization

1. Introduction

The International Maritime Organization (IMO) has applied a high standard to the
sulfur content of ship fuel oil since January 2020, and has finally confirmed a plan to reduce
the sulfur content of ship fuel oil from its current level of 3.5% to 0.5% in 2020. The IMO
2020 standards are legislated in each country around the world and the regulations are
voluntarily applied to designated emission control areas with more stringent standards
than other sea waters. Major domestic and foreign carriers are complying with the IMO’s
enhanced environmental regulations by considering the pros and cons of each alternative,
such as installing a scrubber, using low-sulfur oil, or using LNG.

As eco-friendliness has become an international trend, a major energy transition is
taking place around the world and the demand for liquefied natural gas (LNG) is increasing
in the shipping sector as well. The bunkering industry, i.e., refueling LNG to LNG-powered
ships, is also emerging worldwide. Equipment applied to an LNG propulsion ship can
be broadly divided into the engine, fuel tank, fuel supply system, and fuel supply control
system. A shipyard or a shipowner makes a packaged-type order, by which a tank or
supply system can be directly installed onto a ship. However, a high-quality product with
special materials and structural technologies for cryogenic operability is needed because
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operational disruption or anchoring due to equipment failure can cause serious economic
damage [1–4].

An LNG storage tank is a cryogenic structure, and 9% Ni steel, which has excellent
mechanical properties and fatigue strength at room temperature and in low temperature
environments, is widely used as a material for the inner tank of an LNG storage tank.
Nine percent Ni steel has excellent impact toughness and fatigue strength in a cryogenic
environment, and it is used worldwide in the production of LNG storage tanks because of
its low material price compared to steel density. When using 9% Ni steel, it is recommended
that the absorption energy specified in domestic and foreign regulations should be 34 J
or more at 196 ◦C, but there are slight differences depending on the standard applied.
Although it was first developed in 1944 by INCO (International Nickel Co., Ltd.) in the
United States, today Japan is leading the improvement of 9% Ni steel quality, developing
welding technology and continuing research on safety as the trend moves towards larger-
sized tanks [5,6].

The difficulty of the 9% Ni welding process is high and the welding quality differs
depending on a welder’s skill set, because the welding wire has a lower melting point
than the base material. Research is required to develop an advanced welding process
technology and to derive uniform welding quality, because the more advanced countries
that have already secured 9% Ni steel welding technology are keeping such technology
confidential. Therefore, it is urgent to pursue basic research to analyze the deterioration of
welding quality that may occur in the 9% Ni steel welding process and to derive uniform
high-quality weld joints by identifying their root causes.

This study has focused on the specific welding method and a material, namely FLW
and 9% nickel steel. For analyzing the welding quality, the hardness of upper welding part
after welding which is known to be vulnerable to cracks because of weld joint hardening
was defined for evaluation. The concept of weld joint hardening was used as an output
variable for the determination of a formula for evaluating the welding quality and many
parameters related to the welding process were used as input variables. By optimizing
those input variables based on the determined formula and a multi-objective optimization
algorithm, the improved welding qualities were obtained.

This study was related to previous research which evaluated weldability with so-
lidification crack susceptibility [7] and used similar evaluation methods such as welding
test optimization. However, this study focused differently on weld joint hardening as an
evaluation method.

Naturally, our previous studies are similar to other past research [7]. Yun [8] performed
an optimization of fillet laser welding for 9% Ni steel. Na [9] compared GTAW and
FCAW for 9% Ni steel. Kim [10] designed an LNG-fueled ship with 9% Ni steel and
evaluated welding performance. Watanabe [11] performed a double tension test of a
surface notch of A553-1 steel. Liu et al. [12] performed a study to measure and analyze the
fracture toughness of metals using machine learning models such as regression trees and
neural networks.

In prior studies, the correlations between various variables and mechanical properties,
as applied to the welding process of cryogenic steels such as the STS or Ni alloy series’,
were reviewed, and the process issues and quality deterioration that occurred when thet
were used in LNG-related equipment were also reviewed. However, research on the quality
of the weld joints of cryogenic steel did not reflect the complex alternating effects, and
most of the studies were about implementing automation, high melting, or high speed
to compensate for the shortcomings of manual welding [13,14]. In addition, research on
the correlation between bead shape and weldability was conducted in previous studies
to improve welding quality by establishing key factors affecting the bead formation, but
similar size areas and heat-affected zones were derived intermittently even from different
welding process variables, so the applicability of the analysis and consideration as limited
to bead shape is reduced in an actual site.
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As such, an analysis with various perspectives is required to clearly distinguish the
specific conditions that can produce a similar bead shape compared to the intermittent
variables, and it is necessary to identify the phenomenon that causes the structure of a weld
joint to be hardened by matching the characteristics generated from the correlation between
the partially divided shapes within a weld joint to the dilution ratio of a weld joint.

In 9% Ni steel, a higher dilution ratio of the base material results in lower strength.
Therefore, excessive dilution of the base material should be avoided in order to secure the
required strength. Although prior studies on the relationship between the dilution ratio
and strength have found that the tensile strength does not change significantly even when
there is a 10–20% change in the dilution ratio, it was reported that it may be lower than the
API standard of 363 MPa due to the hardening of a weld joint if it is 25% or more [15,16].

Therefore, in this study, the dilution ratio formed in a weld joint was calculated for
the fiber laser welding process applied to 9% Ni, a cryogenic steel, and the phenomenon in
which a hardened weld joint is created compared to the heat-affected zone was identified in
a procedure based on the calculated dilution ratio. Accordingly, this study tried to suggest
a method of quantitatively evaluating the quality of a weld joint.

2. Experimental Works

The experiment was performed to determine the quality of a fiber laser weld joint of
9% Ni steel and to develop the optimal process parameters. A MIYACHI ML-6950A model
(Amada Weld Tech Co. Ltd., Chiba, Japan) 5 kW fiber laser welding machine was used,
and a YASKAWA’s DX100 model (Yaskawa Electric Co., Kitakyushu, Japan) MOTOMAN
was used to configure the entire system, as shown in Figure 1.
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Figure 1. Equipment for fiber laser welding.

The test piece used in the welding test was used in a size of 150 mm (W)× 200 mm (H)
× 15 mm (H) of 9% Ni steel. The specimen was cleaned with ethyl alcohol and sandpaper
to prevent foreign substances such as rust, scale, oxide, etc. from causing welding defects
on the surface of a specimen to be welded. The schematic diagram of a fiber laser welding
process is shown in Figure 2. The chemical composition and mechanical properties of 9%
Ni steel are shown in Tables 1 and 2, respectively.
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Figure 2. The fiber laser welding process.

Table 1. Chemical composition of base metal.

Component C Si Mn S P Ni Fe

Percentage (wt.%) 0.05 0.67 0.004 0.003 0.25 9.02 Bal.

Table 2. Mechanical properties of base metal.

Material Yield Strength (MPa) Tensile Strength (MPa) Elongation (%) Hardness (HV)

A553-1 651.6 701.1 26.6 243

Laser power, defocusing, and welding speed were selected as input variables because
the fiber laser welding process applied in this experiment welds by generating a keyhole
while delivering the high energy required for welding to the material surface. Weldability
was analyzed by collecting mechanical properties such as the heat-affected zone and weld
joint hardness [11]. Figure 3 shows a schematic diagram for the measurement of the
penetration shape of the weld joint [17].
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Figure 3. Schematic diagram of penetration geometry.

In this experiment, it is possible to estimate all the factor effects for the response
of an output variable according to the change of an input variable, and the full factorial
placement method (FFD) was applied to detect the correlation effect of higher orders.
Full factorial design is a general Kn factorial design DOE with n factors and k levels, and
experiments are designed at the combination of all factor levels. Therefore, Kn experiments
should be performed even without repeated experiments. FFD forms a cube diagram of
the experimental points in case of 3 factors and 2 levels, and the factor experiment by the
factor arrangement method has the advantage that all factor effects can be estimated. The
level and range of input variables (laser power, defocusing, welding speed) were chosen
through preliminary experiments. A total of 18 experimental conditions were designed
from 32 × 2 (3 laser powers, 3 defocusing and 2 welding speeds). Tables 3 and 4 show the
experimental variables, levels of the input variables, and the experimental conditions for a
total of 18 trials, respectively.
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Table 3. Parameters and levels of fiber laser welding.

Parameter Symbol −1 0 1

Laser Power (kW) L 3.0 4.0 5.0
Defocusing (mm) D −0.5 0.0 0.5

Welding Speed (meter/minute, m/min) S 0.5 − 0.8

Fixed Parameter
Wavelength: 1070 nm

Optical Fiber Diameter: 200 µm
Shielding Gas Flow Rate: Ar 18 L/min, (L/min)

Table 4. Experimental conditions.

Case No. L D S Case No. L D S

1 3.0 −0.5 0.5 10 3.0 −0.5 0.8
2 3.0 0.0 0.5 11 3.0 0.0 0.8
3 3.0 0.5 0.5 12 3.0 0.5 0.8
4 4.0 −0.5 0.5 13 4.0 −0.5 0.8
5 4.0 0.0 0.5 14 4.0 0.0 0.8
6 4.0 0.5 0.5 15 4.0 0.5 0.8
7 5.0 −0.5 0.5 16 5.0 −0.5 0.8
8 5.0 0.0 0.5 17 5.0 0.0 0.8
9 5.0 0.5 0.5 18 5.0 0.5 0.8

3. Results
3.1. Penetration Geometry

The BOP fiber laser welding of 9% Ni steel, a cryogenic steel, was performed correctly
according to the welding process parameters. Based on the result of the experiment,
it was confirmed that good penetration was formed in general, and there were no pores or
defects in appearance. To properly represent the cross-sectional appearance of a specimen,
a 90% ethanol plus 10% nitric solution was mixed and used to etch the cross-section. An
optical microscope system was used to measure the penetration shape accurately. Table 5
shows the welding cross-section and penetration measurement results taken with a 10×
optical microscope.

Table 5. Results and Penetration Data.

Test No.
Penetration Width (mm) Penetration Depth (mm) Penetration

Geometry1st 2nd 3rd Average 1st 2nd 3rd Average

1 3.93 3.90 3.90 3.91 6.49 6.47 6.51 6.49
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Table 5. Cont.

Test No.
Penetration Width (mm) Penetration Depth (mm) Penetration

Geometry1st 2nd 3rd Average 1st 2nd 3rd Average

5 5.48 5.49 5.49 5.49 8.17 8.15 8.15 8.16
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3.2. Weld Joint Hardness

A hardness test was performed to confirm the phenomenon of weld joint hardening
caused by the change of internal strength and structure due to the difference in energy
density of a laser keyhole when the fiber laser weld joint was solidified. For the hardness
test, the Vickers hardness test was performed on the upper and lower parts and the heat-
affected zone, where the change in internal strength occurs. The load used in the hardness
test was 0.5 N and analysis was performed at 0.83 mm intervals so as not to affect the
nearby hardness. The 6-point positions for measuring the hardness of the HAZ were used
as the left and right positions divided into thirds between each boundary of the penetration,
the HAZ, and the base material. The 243 HV value shown in Table 2 was used as the
reference base material data to determine the hardness of the fiber laser welding. Figure 4
shows a schematic diagram of the hardness test for the weld joint of 9% Ni steel. Table 6
shows the results of the hardness test of the upper and lower parts of a weld joint and
the heat-affected zone. The hardness test result means the average value measured at
5 points. The hardness (lower part) of a fiber laser weld joint has a value between 339.4 HV
and 358.1 HV, which is higher than the 243 HV hardness that is standard for 9% Ni steel.
Therefore, it is judged that sufficient weldability was obtained.
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Table 6. Results of hardness according to welding process and parameters.

Test No. 1 2 3 4 5 6 7 8 9

Upper (HV)

1st 266.6 296.4 283.3 277.4 314.6 270.7 314.6 308.3 283.7
2nd 262.1 300.0 279.0 279.8 305.9 277.1 312.7 301.1 287.5
3rd 264.9 294.6 282.6 276.1 299.2 274.2 306.0 303.3 287.1
4th 262.3 293.6 282.7 287.3 300.6 269.5 313.7 302.8 280.6
5th 264.8 291.1 280.9 284.7 311.4 269.0 314.7 302.8 284.6

Avg. 264.2 295.2 281.7 281.1 306.3 272.1 312.4 303.7 284.7

Bottom (HV)

1st 343.9 345.7 346.3 358.0 351.5 349.8 355.3 346.6 350.4
2nd 344.9 345.6 344.9 358.3 350.6 349.5 356.2 348.1 350.0
3rd 345.0 346.5 346.4 358.1 349.5 350.5 356.4 347.4 350.4
4th 345.2 346.4 345.5 359.1 350.9 348.7 354.4 348.1 350.0
5th 345.3 345.9 346.2 356.7 350.6 349.7 355.2 346.5 350.6

Avg. 344.9 346.0 345.8 358.1 350.6 349.6 355.5 347.4 350.3

HAZ (HV)

1st 374.1 379.6 379.8 384.1 382.4 376.1 386.3 385.4 377.5
2nd 373.4 380.8 379.9 384.1 382.8 376.5 386.3 385.4 377.4
3rd 373.1 379.8 380.4 384.4 383.4 376.5 386.8 385.0 376.3
4th 373.2 380.0 381.0 384.0 382.8 376.3 386.0 385.6 378.5
5th 373.6 380.0 379.8 384.7 382.4 377.2 386.6 385.0 377.6
6th 373.7 379.6 380.6 384.3 382.7 376.8 385.9 385.8 378.5

Avg. 373.5 380.0 380.3 384.3 382.7 376.6 386.3 385.4 377.7
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Table 6. Cont.

Test No. 10 11 12 13 14 15 16 17 18

Upper (HV)

1st 289.6 295.3 280.9 279.2 279.1 278.2 276.5 280.3 277.6
2nd 284.2 295.6 278.1 276.2 276.1 279.8 275.7 280.4 280.9
3rd 274.6 293.0 272.8 282.4 273.7 291.8 275.7 285.7 271.5
4th 284.3 289.3 276.3 277.4 272.8 282.1 274.1 279.6 274.9
5th 281.8 294.2 279.5 283.2 276.1 284.0 274.0 278.3 278.6

Avg. 282.9 293.5 277.5 279.7 275.5 283.2 275.2 280.9 276.7

Bottom (HV)

1st 339.8 340.1 340.3 342.2 342.2 341.6 342.9 346.8 349.2
2nd 340.0 339.3 339.7 343.1 342.7 341.1 343.3 347.5 348.5
3rd 340.1 339.5 340.5 341.2 342.8 341.6 342.2 345.9 348.5
4th 339.2 339.1 339.8 341.1 343.2 342.0 342.7 347.1 348.1
5th 340.4 339.1 340.2 341.5 343.5 341.7 342.4 346.4 347.2

Avg. 339.9 339.4 340.1 341.8 342.9 341.6 342.7 346.7 348.3

HAZ (HV)

1st 372.4 371.4 372.6 373.0 373.6 371.9 375.7 381.4 375.9
2nd 371.9 371.8 371.8 373.2 373.4 372.8 375.5 381.2 376.3
3rd 373.0 370.8 371.7 372.6 373.5 371.6 376.0 381.9 376.2
4th 371.5 371.3 372.3 373.0 374.0 371.8 375.3 373.0 374.9
5th 371.8 371.3 371.2 373.6 372.6 372.5 375.6 373.8 374.9
6th 371.5 371.2 372.7 372.8 373.1 372.0 374.9 372.4 375.8

Avg. 372.0 371.3 372.1 373.1 373.4 372.1 375.5 377.3 375.7

3.3. Measurement of Weld Joint Dilution Ratio

Since the shape of weld joint penetration in a fiber laser welding process differs
according to beam shape and energy density due to the power and defocusing, there is
a high possibility of hardening due to changes in the chemical composition and internal
strength of the weld joint. In the fiber laser welding process, a special welding process
in which a welding wire is not consumed, the dilution ratio can be defined as the area of
the upper and lower parts divided by the keyhole and laser diameters. Figure 5 shows
a schematic diagram of the method used to calculate the weld joint dilution ratio of a
fiber laser welding process, and Figure 6 shows a picture of the calculation of a weld
joint dilution ratio using the area analysis tool in a system using an optical microscope.
Table 7 shows the dilution ratio of the weld joint area according to the fiber laser welding
process parameters.
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4 12.40 3.01 19.56 13 4.62 0.95 17.01
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4. Discriminant of Quality Characteristics of 9% Ni Steel
4.1. Weld Joint Hardening according to Dilution Ratio

In 9% Ni steel, a higher dilution ratio of the base material causes a lower strength.
Therefore, excessive dilution of a base material should be avoided to secure the required
strength. Although the prior studies on the relationship between dilution ratio and strength
have found that the tensile strength does not change significantly even when there is
a 10–20% change in dilution ratio, it was reported that it may be lower than the API
standard of 363 MPa due to the hardening of the weld joint if the dilution ratio is 25% or
more [15,16]. In addition, even under different welding conditions, the level of hardening
of the heat-affected zones is similar when the amount of heat input is the same. However,
the electromagnetic force and the energy density of the beam are different, so the effect
on bead formation is different. This leads to the disadvantage of the increased hardness
of a weld joint compared to the heat-affected zone. To address the shortcomings of prior
studies that established the characteristics of a welding process limited to the bead shape
as described above, the correlation between the concepts of dilution and the strength of the
weld joint was established.

Since the shape of the weld penetration in the fiber laser welding process differs from
the beam shape and energy density due to the laser power and defocusing, the possibility
of hardening due to changes in the chemical composition and proof strength of the weld
is very high. Therefore, although it is different from the method of calculating the area of
the welded part analyzed in the general flux-cored arc welding process, the characteristics
of the welded part that are changed by the welding current, arc voltage, welding wire,
etc. are considered similarly to those of fiber laser welding. Therefore, in this study, the
dilution rate was defined as the upper and lower division areas by the keyhole and the laser
diameter by confirming that it is possible to analyze the strength reduction characteristics
for the dilution rate even in fiber laser welding.

Therefore, in this section, the dilution ratio formed in a weld joint is calculated for
each welding process and process variable and a standard for the generation of a weld joint
hardness compared to the heat-affected zone is established. According to the calculated
dilution ratio, to set up a stable weld joint dilution ratio standard.
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To analyze the correlation of hardness based on a dilution ratio that changes according
to the penetration shape, a standard for hardening or scattering of the lower weld joint
compared to the heat-affected zone was established. The difference and trend between the
measured hardness of the heat-affected zone and the hardness of the lower weld joint were
used to establish a standard dilution ratio that can avoid the hardening of a weld joint,
as shown in Figure 7. As a result, the degree of hardness (difference between the hardness
of the heat-affected zone and the hardness of the lower weld joint) of a fiber laser weld
joint was found to be between 26.2 HV and 38.0 HV, and the difference in hardness of a
weld joint was confirmed to be 26.2 HV or lower compared to the heat-affected zone when
the dilution ratio of penetration was determined to be 17.7% or more. It was confirmed that
the difference in hardness compared to the heat affected zone did not rise as the dilution
ratio was increased. It is judged that this kind of hardening of a weld joint will make it
difficult to secure quality against the brittle effect and durability.
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The standard 17.7% dilution ratio confirmed above is a standardized score, and can be
used as an evaluation index for the process. When a high score is calculated, it means that
a hardened structure of a weld joint was created. Therefore, the criteria for determining the
hardening of a weld joint can be defined as shown in Table 8. These standardized scores
can be later applied as learning data to determine the increase in weld joint hardness and
brittleness according to the penetration shape and dilution ratio, in part to prevent the
generation of a hardened structure and deterioration of weld joint strength due to energy
density of a 9% Ni steel weld joint in which this welding process was applied.

Table 8. Weld joint hardening data for discriminant analysis in fiber laser welding.

Test
No.

Hardness
Difference (HV)

Dilution Ratio
(%)

Weld Joint
Hardening

Test
No.

Hardness
Difference (HV)

Dilution Ratio
(%)

Weld Joint
Hardening

1 28.7 18.53 Regard 10 32.1 17.20 Regardless
2 34.0 15.99 Regardless 11 31.9 17.38 Regardless
3 34.4 16.97 Regardless 12 32.0 17.16 Regardless
4 26.2 19.56 Regard 13 31.3 17.01 Regardless
5 32.1 17.30 Regardless 14 30.5 18.14 Regard
6 26.9 18.98 Regard 15 30.5 16.35 Regardless
7 30.8 16.52 Regardless 16 32.8 18.61 Regard
8 38.0 17.28 Regardless 17 30.6 16.80 Regardless
9 27.4 17.77 Regard 18 27.4 18.05 Regard



Metals 2021, 11, 1308 11 of 18

4.2. Discriminant Analysis

The system to determine the weld joint hardening in the fiber laser welding process of
9% Ni steel is a technique used to determine the affiliation of the input data by making a
model using the collected data and entering it into developed group learning data [18–20].

For the weld joint hardening system developed in this study, a discriminant model was
developed using the SVM (support vector machine) technique. Unlike neural networks,
SVM is not a principle of minimizing the existing empirical risk, but an approximate
implementation that minimizes the structural risk. It is difficult to generalize and it is easy
to overfit the model to minimize the empirical risk used in the existing artificial neural
network. On the other hand, SVM minimizes the upper limit of the expected risk by
minimizing the structural risk, unlike minimizing the empirical risk that minimizes the
error on the training data. In other words, the method of minimizing structural risk is
based on a test error term whose range is determined by the sum of learning error ratios
and a term dependent on the VC-dimension of the learning machine. By minimizing
the sum of these two terms, it is possible to obtain better classification performance than
the conventional pattern discriminant. In the problem of finding the hyperplane that
maximizes margin in the two classes, where linear discrimination is possible based on
the VC (Vapnik–Chervonenkis) theory and Equation (1), this study tried to determine the
possibility of hardening of a weld joint in process [21].

w·x + b = 0 (1)

where w is the weight vector, x is the input vector, and b is the reference value, and the SVM
technique described above sequentially performs minimization of complex calculations
in the QP (quadratic programming) process. The variables for learning in the weld joint
hardening discrimination model are welding process variables (laser power, defocusing,
welding speed), penetration shape (penetration width, penetration depth), upper and
bottom hardness, heat affected zone hardness (HAZ hardness) and the dilution ratio. One
hundred and eighty data points were entered with 10 multiple variables. For the groups
to determine the hardening of a weld joint, the Regard Group was defined as 1 and the
Regardless Group was defined as 0, to confirm the discrimination performance predicted
by the SVM technique.

Table 9 shows the learning data to discriminate the hardening of a weld joint and
Table 10 and Figure 8 quantitatively show the group discrimination performance predicted
by the data learned through the SVM technique.

Table 9. Learning data for discriminants of fiber laser welding quality.

Test No. L D S PW PD HU HB HH Di Group

1 3.0 −0.5 0.5 3.91 6.49 264.2 344.9 373.5 18.53 Regard
2 3.0 0.0 0.5 3.18 6.65 295.2 346.0 380.0 15.99 Regardless
3 3.0 0.5 0.5 4.71 7.19 281.7 345.8 380.3 16.97 Regardless
4 4.0 −0.5 0.5 5.84 8.53 281.1 358.1 384.3 19.56 Regard
5 4.0 0.0 0.5 5.49 8.16 306.3 350.6 382.7 17.30 Regardless
6 4.0 0.5 0.5 3.61 7.82 272.1 349.6 376.6 18.98 Regard
7 5.0 −0.5 0.5 6.58 9.11 312.4 355.5 386.3 16.52 Regardless
8 5.0 0.0 0.5 6.55 9.51 303.7 347.4 385.4 17.28 Regardless
9 5.0 0.5 0.5 7.03 10.1 284.7 350.3 377.7 17.77 Regard

10 3.0 −0.5 0.8 2.45 4.81 282.9 339.9 372.0 17.20 Regardless
11 3.0 0.0 0.8 2.27 4.93 293.5 339.4 371.3 17.38 Regardless
12 3.0 0.5 0.8 3.25 5.21 277.5 340.1 372.1 17.16 Regardless
13 4.0 −0.5 0.8 3.22 5.47 279.7 341.8 373.1 17.01 Regardless
14 4.0 0.0 0.8 3.24 6.26 275.5 342.9 373.4 18.14 Regard
15 4.0 0.5 0.8 2.84 5.47 283.2 341.6 372.1 16.35 Regardless
16 5.0 −0.5 0.8 4.94 6.21 275.2 342.7 375.5 18.61 Regard
17 5.0 0.0 0.8 4.22 7.25 280.9 346.7 377.3 16.80 Regardless
18 5.0 0.5 0.8 5.84 7.44 276.7 348.3 375.7 18.05 Regard

L: laser power (kW); D: defocusing (mm); S: welding speed (m/min); PW: penetration width (mm); PD: penetration depth (mm); HU: upper
hardness (HV); HB: bottom hardness (HV); HH: HAZ hardness (HV); Di: dilution ratio (%).
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Table 10. Results of group discriminants for weld joint hardening according to SVM.

Test No. Measured Group Predicted Group Test No. Measured Group Predicted Group

1 1 1(1.00) 10 0 0(0.00)
2 0 0(0.00) 11 0 0(0.00)
3 0 0(0.01) 12 0 0(0.01)
4 1 1(1.00) 13 0 0(0.01)
5 0 0(0.00) 14 1 1(0.95)
6 1 1(1.00) 15 0 0(0.00)
7 0 0(0.00) 16 1 1(1.00)
8 0 0(0.00) 17 0 0(0.01)
9 1 1(0.99) 18 1 1(0.96)
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5. Optimization of Fiber Laser Welding of 9% Ni Steel
5.1. Development of Mathematical Model Welding Factors

The response surface analysis method was used for analysis, as in the previous
research [7]. The functional relationship between the input variables x1, x2, x3, · · · xk and
the output variable y is expressed by Equation (2). Considering the predictive ability of
linear and nonlinear models, Equation (3) is expressed as a second order regression model
if it is assumed the predicted value of the output variable, i.e., the welding factor, has a
linear relationship with an input variable.

Yi = f (x1, x2, x3), (2)

Yi = β0 +
k

∑
i=1

βixi +
k

∑
i≤j

βijxixj + ε. (3)

Equation (3) can be arranged as Equation (4) by the least squares method:

Ŷi = β̂i +
k

∑
i=1

β̂ixi +
k

∑
i≤j

β̂ijxixj + c (4)

In this study, Equation (4) can be expanded as Equation (5) since the number of input
variables is 3; that is, k = 3 .

Ŷi = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + ˆβ11x2
1 +

ˆβ22x2
2 + ˆβ33x2

3+ ˆβ12x1x2 + ˆβ13x1x3 + ˆβ23x2x3, (5)
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where, Ŷi is the estimator of welding characteristics, xi is the code unit of the input vari-
ables (welding process variables and mechanical properties), β̂0, β̂i, β̂ij are the min. square
estimators of β0, βi, βij, respectively, and ε represents an error. To develop Equation (5) from
the above regression model, it is necessary to obtain relevant data through many experiments.

To obtain relevant data through experiments, numerous trials and errors and economic
losses may occur. To reduce such losses, a full factorial design was applied among the
response surface analysis methods of the DOE method that well reflects the second order
regression model, and the coefficients of each term were calculated using MINITAB.

The mathematical prediction models of penetration width, penetration depth, upper
and bottom hardness, HAZ hardness and the dilution ratio developed using regression
coefficients and Equation (5), can be expressed using Equations (6)–(11):

PW = 8.871− 2.537L− 1.354D− 2.463S + 0.5375L2 + 1.440D2−0.06251LD− 0.7389LS + 2.556DS (6)

PD = 5.651 + 1.089L− 1.154D− 2.174S + 0.1233L2 − 0.5567D2+0.2800LD− 1.356LS + 0.7222DS (7)

HU = −660.3 + 761.7S− 190.7PW + 314.2PD − 7.524P2
W − 23.84P2

D+78.21SPW − 158.6SPD + 29.12PWPD (8)

HB = 123.1 + 144.7S− 24.54PW + 63.30PD − 0.4559P2
W − 4.080P2

D+9.244SPW − 27.10SPD + 3.248PWPD (9)

HH = 97.64 + 202.1S− 38.62PW + 83.79PD − 2.850P2
W − 6.157P2

D+19.67SPW − 42.32SPD + 7.325PWPD (10)

Di = 2690.2 + 35.34PW − 16.43HB + 0.7608HU + 0.1383P2
W + 0.02731H2

B
+0.00301H2

U − 0.1029PWHB − 0.0023PWHU − 0.0073HBHU
(11)

To check the predictive ability of the developed mathematical prediction model, the
graph showing the error range by comparing the average values of the measured welding
factors for each experimental condition with the predicted welding factors, is shown in
Figure 9. As shown in Table 11, the prediction model error range showed reliable results
in general.
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Table 11. Analysis variance tests for predicted model for welding factors.

Design Parameter SE (Standard Error) R2 (Coefficient of Determination, %)

PW 0.769 86.4
PD 0.423 96.3
HU 10.83 71.1
HB 2.847 84.4
HH 2.541 80.7
Di 0.568 83.2

In addition, the ANOVA (analysis of variable) results of the predictive model con-
firmed a high coefficient of determination of 96.3% at the maximum penetration depth and
a minimum coefficient of determination of 71.1% at the upper hardness of the weld joint.
This means that it is possible to make predictions using the coefficient of determination for
the entire variation of welding factors and the interaction, when the independent influence
of input variables affecting the regression model are simultaneously considered.

5.2. Optimization for the Welding Process of 9% Ni Steel

The MOO (multi-objective optimization) algorithm that was used in this study is
a technique used to search for non-dominant solutions by mimicking the evolutionary
process of an organism in an optimization problem with multiple objectives. This algorithm
was used as in the previous research [7].

First of all, based on the mathematical definition of Pareto Domination as in Equation
(12), the Pareto optimal set P0, and a set of non-dominant solutions xi, were created in a
destination space. Genes belonging to the Pareto optimal set P0—that is, decision vectors—
are randomly generated in as large a quantity as the number of populations in the decision
space. A cluster with a high degree of non-dominance and the best fit is generated to
calculate the crowding distance and an optimal solution set with a high cluster distance is
judged to have more variety of solutions, at which point a multi-purpose optimal solution
is derived [22–24]:

∀i ∈ {1, 2, 3, · · · , n} : fi(a) ≤ fi(b) ∧ ∃j ∈ {1, 2, 3, · · · , n} : fi(a) ≤ fi(b). (12)

In general, the multipurpose optimization problem can be described as a vector
function f (x) that maps m parameters to n objectives. Here, x is a decision vector, X is a
parameter space, y is an objective vector, and Y is an objective space. Decision vector a is
said to dominate decision vector b. Also, it is written as a < b (a dominates b). Also, for an
arbitrary decision vector a, if no vector in the subset X of the decision vectors dominates a,
it is said that the decision vector a is non-dominated by X. Based on the above theorem,
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the program schematic diagram of the MOO optimization method is shown in Figure 10
and MATLAB, a commercial numerical analysis program, was used to apply and modify
the optimization method. To optimize the welding process variables when the hardening
of a weld joint has occurred, the same 180 data in Table 9 and the variables and levels to
drive the MOO optimization technique are shown in Table 12.
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Table 12. MOO algorithm parameters and their values.

Optimal Method MOO (Multi-Objective
Optimization)

Range of Local Parameters
L (Laser Power) [−0.5 ≤ Input ≤ +0.5] kW
D (Defocusing) [−0.25 ≤ Input ≤ +0.25] mm

S (Welding Speed) [−0.15 ≤ Input ≤ +0.15] m/min
Range of Constraints Di (Dilution Ratio) Di ≤ 17.7%

Fitness Factor Population Size 50, 60, 70, 80, 90, 100
Solver Constrained nonlinear minimization

Algorithm Trust region reflective algorithm
Derivatives Gradient supplied

In the MOO technique, a range of fiber laser welding process parameters was cho-
sen from the minimum [3 kW, −0.5 mm, 0.5 m/min] to the maximum [5 kW, +0.5 mm,
0.8 m/min]. The purpose of this study was to analyze a multi-purpose optimization prob-
lem that considers weld joint hardness as a criterion to evaluate the quality deterioration
characteristics of a weld joint in 9% Ni steel. Therefore, Equations (13)–(15) represent the
objective function f (x) of an arbitrary system having x as a variable and the constraints
and ranges required to optimize this function [25].

Optimize f (L, D, S) (13)

g(L, D, S) (14)

Di < 17.7 (15)
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Test numbers 4 and 14 were selected to follow the MOO algorithm and Table 13 shows
the welding process variables, expected welding factors, and discrimination results that
were modified to satisfy the constraints according to the optimization procedure.

Table 13. Results of welding parameters modified by optimization process.

Test No.
Original Modified Welding Factors

Group
L D S L D S PW PD HU HB HH Di

4 4.0 −5.0 0.5 3.91 −0.51 0.51 5.0 7.7 289.9 350.4 382.4 16.7 Regardless
14 4.0 0.0 0.8 3.84 -0.08 0.86 2.5 5.3 298.0 343.5 376.0 16.6 Regardless

The possibility of hardening of a weld joint and the effectiveness of optimizing the
welding process for 9% Ni steel was confirmed by performing a comparative analysis with
the hardening of a weld joint caused by the existing input variables, as seen in Figure 11.
The X-axis represents the difference in hardness values between the HAZ and the bottom,
and the Y-axis represents the dilution ratio. This graph was constructed to compare and
examine whether the hardness of the bottom was close (∆HV = HV HAZ − HV bottom) to
the hardness of the HAZ with the dilution ratio. Finally, it was confirmed that the two raw
data points selected in the fiber laser welding process, satisfied the dilution ratio of 17.7%
or less, which is the limiting condition for the hardening of a weld joint, and the quality
degradation characteristics appearing in the previous process variables were resolved by
the modified process variables.
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6. Conclusions

This study tried to optimize the welding process for 9% Ni steel, which is predom-
inantly used in the LNG storage tank industry. After establishing the criteria for the
hardening of a weld joint in the process, conducting learning in the discriminant function,
and optimizing the process variables for hardening of a weld joint using the discriminant
group, these conclusions were obtained:

(1) The appropriate weldability of a weld joint was confirmed by measuring the penetra-
tion shape, mechanical strength, penetration area, etc. of a weld joint derived from
the fiber laser welding test. It was found that the hardening of a weld joint depends
on the energy density applied to the weld joint and the ratio of an area mixed with
foreign substances after melting. In addition, when the weld joint hardening index is
17.7% or more, the group that needs to consider quality deterioration for weld joint
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hardening is classified. Thus, quality deterioration characteristics, according to the
dilution ratio, were established.

(2) To determine the weld joint hardening phenomena of 9% Ni steel caused by welding
process variables, the quality deterioration characteristics were learned in the SVM
technique and it was determined whether the group with quality deterioration could
be accurately identified. As a result, it was confirmed that a group with the hardening
of a weld joint was predicted 100% repeatedly. This result was used as a procedure to
determine the deterioration of weld joint quality.

(3) A response surface method mathematical prediction model was developed to apply
an objective function to optimize the welding process variables where quality deterio-
ration occurs. By entering the raw data of weld joint hardening into the optimization
algorithm created by the objective function and constraint conditions, the quality
degradation characteristics contained in the process variables were supplemented.

(4) The predicted welding factors were calculated by entering the input variables sup-
plemented for their quality degradation characteristics into the response surface
mathematical model. By re-entering the corresponding output variables into the
discrimination system, all the raw data where the hardening of a weld joint was
expected, showed no quality deterioration.
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