# Lifetime Assessment for Multiaxial High-Cycle Fatigue Using Twin-Shear Unified Yield Criteria

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

^{4}cycles, which is a major part the crack initiation phase [2]. From the view of load path, fatigue can also be separated into uniaxial and multiaxial. Multiaxial high cycling is a kind of fatigue characterized by more than 10

^{4}cycles and a complex load path, for instance, bending and torsion stresses which are out of phase. For this fatigue, various approaches have been proposed and improved on the basis of experimental observations and mechanisms [3,4,5,6,7,8,9,10]. From these approaches, we may notice some yield criteria are in extensive application and have gained fairly good results, e.g., Tresca yield criteria and Huber-von Mises yield criteria. As one of outstanding delegates, the concept of critical plane associated with Tresca yield criteria have gained widespread usage [11]. It should be noted that critical plane approach is a product related to the generalized application of Tresca yield criteria. This conclusion can be obtained since maximum shear stress amplitude is constantly employed for critical plane approach [12,13]. However, the adaptability of the yield criterion determined by material properties (e.g., fragile materials and ductile materials) results in these approaches perhaps being more suitable for directional materials [14]. Detailly, Tresca yield criteria and Huber-von Mises yield criteria are experimentally suitable for fragile materials and ductile materials, respectively. Such experimental results may lead to adaptability of the critical plane approach in different kinds of materials. Consequently, it is very necessary to develop a new multiaxial high-cycle fatigue life prediction approach associated of yield criteria that is available for more materials. Twin-shear unified yield criteria, the clusters of yield criteria embodying Tresca and the linearization of Huber-von Mises, provides a reliable approach to develop the adaptability.

## 2. Fatigue Criteria Based on Twin-Shear Unified Yield Criterion

_{0}(O), R

_{1}(O

_{1}), and R

_{2}(O

_{2}) in Figure 1 reflect the evolution of local residual stress tensor of materials subjected to cyclic loading based on combining kinematic and isotropic hardening.

## 3. New Fatigue Criteria Applied to Tension and Torsion

#### 3.1. Stress State Analysis

_{1}(O

_{2}) (Figure 5) and its semi-axes C

_{a}and C

_{b}are given by [28]:

_{0}, the following equation can also be obtained:

_{0}. According to the theory above, we can also obtain the following equation:

_{1}.

#### 3.2. Evaluation of the Criteria

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Sines, G.; Ohgi, G. Fatigue criteria under combined stresses or strains. J. Eng. Mater. Technol.
**1981**, 103, 82–90. [Google Scholar] [CrossRef] - Guilhem, Y.; Basseville, S.; Curtit, F.; Stephan, J.-M.; Gailletaud, G. Investigation of the effect of grain clusters on fatigue crack initiation in polycrystals. Int. J. Fatigue
**2010**, 32, 1748–1763. [Google Scholar] [CrossRef][Green Version] - Wang, X.W.; Shang, D.G. Determination of the critical plane by a weight-function method based on the maximum shear stress plane under multiaxial high-cycle loading. Int. J. Fatigue
**2016**, 90, 36–46. [Google Scholar] [CrossRef] - Pereira, M.V.; Darwish, F.A.; Teixeira, M.C.; Gonçalves, R.A. Multiaxial high cycle fatigue criteria based on fracture plane identification: Applicability to metallic materials. J. Mater. Eng. Perform.
**2019**, 28, 4740–4750. [Google Scholar] [CrossRef] - Wang, C.; Shan, D.G.; Wang, X.W. A new multiaxial high-cycle fatigue criterion based on the critical plane for ductile and brittle materials. J. Mater. Eng. Perform.
**2015**, 24, 816–824. [Google Scholar] [CrossRef] - Kakuno, H.; Kawada, Y. A new criterion of fatigue strength of a round bar subjected to combined static and repeated bending and torsion. Fatigue Fract. Eng. Mater. Struct.
**1979**, 2, 229–236. [Google Scholar] [CrossRef] - Benasciutti, D.; Sherratt, F.; Cristofori, A. Recent developments in frequency domain multi-axial fatigue analysis. Int. J. Fatigue
**2016**, 91, 397–413. [Google Scholar] [CrossRef] - Li, B.; Santos, J.L.T.; Freitas, M.D. A unified numerical approach for multiaxial fatigue limit evaluation. Mech. Struct. Mach.
**2000**, 28, 85–103. [Google Scholar] [CrossRef] - Wei, H.; Liu, Y. An energy-based model to assess multiaxial fatigue damage under tension-torsion and tension-tension loadings. Int. J. Fatigue
**2020**, 141, 105858. [Google Scholar] [CrossRef] - Scalet, G. A convex hull-based approach for multiaxial high-cycle fatigue criteria. Fatigue Fract. Eng. Mater. Struct.
**2021**, 44, 14–27. [Google Scholar] [CrossRef] - Kluger, K. Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress. Int. J. Fatigue
**2015**, 80, 22–29. [Google Scholar] [CrossRef] - Zhang, J.L.; Shang, D.G.; Sun, Y.J.; Wang, X.-W. Multiaxial high-cycle fatigue life prediction model based on the critical plane approach considering mean stress effects. Int. J. Damage Mech.
**2016**, 27, 32–46. [Google Scholar] [CrossRef][Green Version] - Luo, P.; Yao, W.; Li, P. A notch critical plane approach of multiaxial fatigue life prediction for metallic notched specimens. Fatigue Fract. Eng. Mater. Struct.
**2019**, 42, 854–870. [Google Scholar] [CrossRef] - Marquis, G.; Socie, D. Long-life torsion fatigue with normal mean stresses. Fatigue Fract. Eng. Mater. Struct.
**2000**, 23, 293–300. [Google Scholar] [CrossRef] - Dang-Van, K. Macro-micro approach in high-cycle multi-axial fatigue. In Advances in Multiaxial Fatigue ASTM STP 1191; McDowell, D.L., Ellis, R., Eds.; ASTM Special Technical Publication: West Conshohocke, PN, USA, 1993; pp. 120–130. [Google Scholar]
- Xie, X.; Wang, L.; Zhang, Y. Unified solution of a borehole problem with size effect. Acta Mech.
**2014**, 225, 1769–1778. [Google Scholar] [CrossRef] - McDiarmid, D.L. Multiaxial Fatigue Life Prediction Using a Shear Stress Based Critical Plane Failure Criterion; Technical Research Centre of Finland, Fatigue Design: Helsinki Finland; Oulu, Finland, 1992; Volume 2, pp. 21–33. [Google Scholar]
- Liu, Y.; Mahadevan, S. Multiaxial high-cycle fatigue criterion and life prediction for metals. Int. J. Fatigue
**2015**, 27, 790–800. [Google Scholar] [CrossRef] - Guerchais, R.; Robert, C.; Morel, F.; Saintier, N. Micromechanical study of the loading path effect in high cycle fatigue. Int. J. Fatigue
**2014**, 59, 64–73. [Google Scholar] [CrossRef][Green Version] - Zhao, B.F.; Xie, L.Y.; Song, J.X.; Zhao, Z.Q.; Fan, F.Y.; Xu, G.L. Prediction of multiaxial fatigue life for complex three-dimensional stress state considering effect of additional hardening. Fatigue Fract. Eng. Mater. Struct.
**2019**, 42, 2558–2578. [Google Scholar] [CrossRef] - Yu, M.H. Generalized Plasticity; Springer: Berlin, Germany, 2005. [Google Scholar]
- Zambrano, H.R.; Härkegård, G.; Stärk, K.F. Fracture toughness and growth of short and long fatigue cracks in ductile cast iron EN-GJS-400–18-LT. Fatigue Fract. Eng. Mater. Struct.
**2012**, 35, 374–388. [Google Scholar] [CrossRef][Green Version] - Brighenti, R.; Carpinteri, A. A notch multiaxial-fatigue approach based on damage mechanics. Int. J. Fatigue
**2012**, 39, 122–133. [Google Scholar] [CrossRef] - Papadopoulos, I.V.; Davoli, P.; Gorla, C.; Filippini, M.; Bernasconi, A. A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue
**1997**, 19, 219–235. [Google Scholar] [CrossRef] - Li, H.R.; Peng, Y.; Liu, Y.; Zhang, M. Corrected stress field intensity approach based on averaging superior limit of intrinsic damage dissipation work. J. Iron Steel Res. Int.
**2018**, 25, 1094–1103. [Google Scholar] [CrossRef] - Turner, A.; Gillies, R.M.; Sekel, R.; Morris, P.; Bruce, W.; Walsh, W.R. Computational bone remodelling simulations and comparisons with DEXA results. J. Orthop. Res.
**2005**, 23, 705–712. [Google Scholar] [CrossRef] [PubMed] - Basquin, O.H. The Exponential Law of Endurance Test. ASTM Proc.
**1910**, 10, 625–630. [Google Scholar] - Papadopoulos, I.V. A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals. Int. J. Fatigue
**1995**, 16, 377–384. [Google Scholar] [CrossRef] - Lee, S.B. Out-of-Phase Combined Bending and Torsion Fatigue of Steels; Brown, M.W., Miller, K.J., Eds.; Mechanical Engineering Publications: London, UK, 1989; pp. 621–634. [Google Scholar]
- Zhang, C.; Yao, W. A new model for life prediction of multiaxial high-cycle fatigue. Chin. J. Theor. Appl. Mech.
**2010**, 42, 1225–1230. [Google Scholar] - Gonçalves, C.A.; Araújo, J.A.; Mamiya, E.N. Multiaxial fatigue: A stress-based criterion for hard metals. Int. J. Fatigue
**2005**, 27, 177–187. [Google Scholar] [CrossRef] - Crossland, B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In Proceedings of the International Conference on Fatigue of Metals, London, UK, 10–14 September 1956; Institution of Mechanical Engineers: London, UK, 1956; pp. 184–194. [Google Scholar]

**Figure 6.**Specimen made of aluminum alloy LY12CZ [29].

**Table 1.**Fatigue strength and material parameters of S–N curvilinear equation of aluminum alloy LY12CZ (${\sigma}_{-1}=168.73\mathrm{MPa}$, ${t}_{-1}=119.62\mathrm{MPa}$, ${{\tau}^{\prime}}_{f}=602.8\mathrm{MPa}$, ${b}_{0}=-0.1115$): experimental data [30] and predictions.

${\mathit{\sigma}}_{\mathbf{a}}\left(\mathbf{MPa}\right)$ | ${\mathit{\sigma}}_{\mathbf{m}}\left(\mathbf{MPa}\right)$ | ${\mathit{\tau}}_{\mathbf{a}}\left(\mathbf{MPa}\right)$ | ${\mathit{\tau}}_{\mathbf{m}}\left(\mathbf{MPa}\right)$ | $\mathit{\delta}$$\left({}^{\mathbf{o}}\right)$ | A | B | C | D | Exp. |
---|---|---|---|---|---|---|---|---|---|

126.491 | 0 | 91.571 | 0 | 0 | 281,670 | 1,082,449 | 243,628 | >10^{7} | 482,666 |

158.114 | 0 | 111.803 | 0 | 0 | 42,683 | 167,487 | 36,135 | 1,736,000 | 76,451 |

189.737 | 0 | 137.356 | 0 | 0 | 7421 | 28,518 | 6419 | 300,650 | 23,003 |

126.491 | 0 | 95.507 | 0 | 30 | 241,200 | 960,836 | 192,398 | 9,908,700 | 420,261 |

158.114 | 0 | 119.384 | 0 | 30 | 32,600 | 129,866 | 26,004 | 1,339,200 | 63,584 |

126.491 | 0 | 100 | 0 | 45 | 205,270 | 857,035 | 148,362 | 8,520,800 | 275,527 |

158.114 | 0 | 125 | 0 | 45 | 27,744 | 115,837 | 20,053 | 1,151,700 | 57,004 |

126.491 | 0 | 105.193 | 0 | 60 | 178,320 | 760,413 | 109,702 | 7,340,500 | 231,348 |

158.114 | 0 | 131.491 | 0 | 60 | 24,102 | 102,779 | 14,827 | 992,160 | 30,893 |

158.114 | 0 | 139.111 | 0 | 90 | 35,187 | 89,612 | 10,178 | 1,035,900 | 15,459 |

126.491 | 0 | 111.289 | 0 | 90 | 260,330 | 662,994 | 75,299 | 7,663,900 | 66,940 |

200 | 0 | 115.47 | 0 | 90 | 26,490 | 287,053 | 5303 | 874,420 | 14,296 |

250 | 0 | 144.34 | 0 | 90 | 3580 | 38,793 | 717 | 118,180 | 4634 |

200 | 0 | 100 | 0 | 90 | 40,853 | 837,823 | 7430 | 1,392,800 | 37,789 |

250 | 0 | 125 | 0 | 90 | 5522 | 113,241 | 1004 | 188,260 | 6811 |

**Table 2.**Fatigue strength and material parameters of S–N curvilinear equation of carbon structural steel SM45C (${\mathsf{\sigma}}_{-1}=442\mathrm{MPa}$, ${t}_{-1}=311\mathrm{MPa}$, $\eta =62.3\mathrm{MPa}$, ${b}_{1}=-0.53$): experimental data [29] and predictions.

${\mathit{\sigma}}_{\mathbf{a}}\left(\mathbf{MPa}\right)$ | ${\mathit{\sigma}}_{\mathbf{m}}\left(\mathbf{MPa}\right)$ | ${\mathit{\tau}}_{\mathbf{a}}\left(\mathbf{MPa}\right)$ | ${\mathit{\tau}}_{\mathbf{m}}\left(\mathbf{MPa}\right)$ | $\mathit{\delta}$$\left({}^{\mathbf{o}}\right)$ | A | B | C | D | Exp. |
---|---|---|---|---|---|---|---|---|---|

449 | 0 | 282 | 0 | 90 | 33,399 | 89,680 | 16,006 | >10^{7} | 29,900 |

354 | 0 | 334 | 0 | 90 | 37,667 | 41,856 | 20,236 | >10^{7} | 35,700 |

485 | 0 | 223 | 0 | 90 | 39,863 | >10^{7} | 25,852 | >10^{7} | 50,000 |

357 | 0 | 309 | 0 | 90 | 51,948 | 68,445 | 23,389 | >10^{7} | 73,800 |

449 | 0 | 217 | 0 | 90 | 63,825 | >10^{7} | 36,598 | >10^{7} | 106,000 |

370 | 0 | 285 | 0 | 90 | 67,675 | 133,212 | 25,257 | >10^{7} | 106,000 |

449 | 0 | 199 | 0 | 90 | 80,172 | >10^{7} | 41,222 | >10^{7} | 112,000 |

457 | 0 | 194 | 0 | 90 | 75,020 | >10^{7} | 38,516 | >10^{7} | 131,000 |

354 | 0 | 252 | 0 | 90 | 191,400 | 3,869,612 | 37,984 | >10^{7} | 333,000 |

437 | 0 | 154 | 0 | 90 | 236,950 | >10^{7} | 61,528 | >10^{7} | 431,000 |

286 | 0 | 143 | 0 | 90 | >10^{7} | >10^{7} | >10^{7} | >10^{7} | 1,660,000 |

354 | 0 | 165 | 0 | 90 | >10^{7} | >10^{7} | 2,980,185 | >10^{7} | 1,860,000 |

441 | 196 | 215 | 0 | 90 | 43,691 | >10^{7} | 40,658 | >10^{7} | 53,000 |

286 | 196 | 309 | 0 | 90 | 62,224 | 42,824 | 40,316 | >10^{7} | 59,200 |

464 | 196 | 155 | 0 | 90 | 56,322 | >10^{7} | 40,596 | >10^{7} | 70,100 |

473 | 196 | 136 | 0 | 90 | 57,808 | >10^{7} | 38,199 | >10^{7} | 86,300 |

173 | 196 | 334 | 0 | 90 | 83,584 | 40,007 | 81,343 | >10^{7} | 89,900 |

403 | 196 | 209 | 0 | 90 | 74,826 | 2,219,079 | 31,942 | >10^{7} | 92,100 |

437 | 196 | 177 | 0 | 90 | 66,929 | >10^{7} | 55,224 | >10^{7} | 102,000 |

167 | 196 | 321 | 0 | 90 | 130,430 | 59,441 | 128,539 | >10^{7} | 135,000 |

357 | 196 | 179 | 0 | 90 | 611,040 | 215,534 | 84,523 | >10^{7} | 351,000 |

182 | 196 | 274 | 0 | 90 | >10^{7} | 235,925 | 2,562,011 | >10^{7} | 394,000 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, H.; Wang, J.; Wang, J.; Hu, M.; Peng, Y.
Lifetime Assessment for Multiaxial High-Cycle Fatigue Using Twin-Shear Unified Yield Criteria. *Metals* **2021**, *11*, 1178.
https://doi.org/10.3390/met11081178

**AMA Style**

Li H, Wang J, Wang J, Hu M, Peng Y.
Lifetime Assessment for Multiaxial High-Cycle Fatigue Using Twin-Shear Unified Yield Criteria. *Metals*. 2021; 11(8):1178.
https://doi.org/10.3390/met11081178

**Chicago/Turabian Style**

Li, Haoran, Jiadong Wang, Juncheng Wang, Ming Hu, and Yan Peng.
2021. "Lifetime Assessment for Multiaxial High-Cycle Fatigue Using Twin-Shear Unified Yield Criteria" *Metals* 11, no. 8: 1178.
https://doi.org/10.3390/met11081178