Lifetime Assessment for Multiaxial High-Cycle Fatigue Using Twin-Shear Unified Yield Criteria
Abstract
:1. Introduction
2. Fatigue Criteria Based on Twin-Shear Unified Yield Criterion
3. New Fatigue Criteria Applied to Tension and Torsion
3.1. Stress State Analysis
3.2. Evaluation of the Criteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sines, G.; Ohgi, G. Fatigue criteria under combined stresses or strains. J. Eng. Mater. Technol. 1981, 103, 82–90. [Google Scholar] [CrossRef]
- Guilhem, Y.; Basseville, S.; Curtit, F.; Stephan, J.-M.; Gailletaud, G. Investigation of the effect of grain clusters on fatigue crack initiation in polycrystals. Int. J. Fatigue 2010, 32, 1748–1763. [Google Scholar] [CrossRef][Green Version]
- Wang, X.W.; Shang, D.G. Determination of the critical plane by a weight-function method based on the maximum shear stress plane under multiaxial high-cycle loading. Int. J. Fatigue 2016, 90, 36–46. [Google Scholar] [CrossRef]
- Pereira, M.V.; Darwish, F.A.; Teixeira, M.C.; Gonçalves, R.A. Multiaxial high cycle fatigue criteria based on fracture plane identification: Applicability to metallic materials. J. Mater. Eng. Perform. 2019, 28, 4740–4750. [Google Scholar] [CrossRef]
- Wang, C.; Shan, D.G.; Wang, X.W. A new multiaxial high-cycle fatigue criterion based on the critical plane for ductile and brittle materials. J. Mater. Eng. Perform. 2015, 24, 816–824. [Google Scholar] [CrossRef]
- Kakuno, H.; Kawada, Y. A new criterion of fatigue strength of a round bar subjected to combined static and repeated bending and torsion. Fatigue Fract. Eng. Mater. Struct. 1979, 2, 229–236. [Google Scholar] [CrossRef]
- Benasciutti, D.; Sherratt, F.; Cristofori, A. Recent developments in frequency domain multi-axial fatigue analysis. Int. J. Fatigue 2016, 91, 397–413. [Google Scholar] [CrossRef]
- Li, B.; Santos, J.L.T.; Freitas, M.D. A unified numerical approach for multiaxial fatigue limit evaluation. Mech. Struct. Mach. 2000, 28, 85–103. [Google Scholar] [CrossRef]
- Wei, H.; Liu, Y. An energy-based model to assess multiaxial fatigue damage under tension-torsion and tension-tension loadings. Int. J. Fatigue 2020, 141, 105858. [Google Scholar] [CrossRef]
- Scalet, G. A convex hull-based approach for multiaxial high-cycle fatigue criteria. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 14–27. [Google Scholar] [CrossRef]
- Kluger, K. Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress. Int. J. Fatigue 2015, 80, 22–29. [Google Scholar] [CrossRef]
- Zhang, J.L.; Shang, D.G.; Sun, Y.J.; Wang, X.-W. Multiaxial high-cycle fatigue life prediction model based on the critical plane approach considering mean stress effects. Int. J. Damage Mech. 2016, 27, 32–46. [Google Scholar] [CrossRef][Green Version]
- Luo, P.; Yao, W.; Li, P. A notch critical plane approach of multiaxial fatigue life prediction for metallic notched specimens. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 854–870. [Google Scholar] [CrossRef]
- Marquis, G.; Socie, D. Long-life torsion fatigue with normal mean stresses. Fatigue Fract. Eng. Mater. Struct. 2000, 23, 293–300. [Google Scholar] [CrossRef]
- Dang-Van, K. Macro-micro approach in high-cycle multi-axial fatigue. In Advances in Multiaxial Fatigue ASTM STP 1191; McDowell, D.L., Ellis, R., Eds.; ASTM Special Technical Publication: West Conshohocke, PN, USA, 1993; pp. 120–130. [Google Scholar]
- Xie, X.; Wang, L.; Zhang, Y. Unified solution of a borehole problem with size effect. Acta Mech. 2014, 225, 1769–1778. [Google Scholar] [CrossRef]
- McDiarmid, D.L. Multiaxial Fatigue Life Prediction Using a Shear Stress Based Critical Plane Failure Criterion; Technical Research Centre of Finland, Fatigue Design: Helsinki Finland; Oulu, Finland, 1992; Volume 2, pp. 21–33. [Google Scholar]
- Liu, Y.; Mahadevan, S. Multiaxial high-cycle fatigue criterion and life prediction for metals. Int. J. Fatigue 2015, 27, 790–800. [Google Scholar] [CrossRef]
- Guerchais, R.; Robert, C.; Morel, F.; Saintier, N. Micromechanical study of the loading path effect in high cycle fatigue. Int. J. Fatigue 2014, 59, 64–73. [Google Scholar] [CrossRef][Green Version]
- Zhao, B.F.; Xie, L.Y.; Song, J.X.; Zhao, Z.Q.; Fan, F.Y.; Xu, G.L. Prediction of multiaxial fatigue life for complex three-dimensional stress state considering effect of additional hardening. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2558–2578. [Google Scholar] [CrossRef]
- Yu, M.H. Generalized Plasticity; Springer: Berlin, Germany, 2005. [Google Scholar]
- Zambrano, H.R.; Härkegård, G.; Stärk, K.F. Fracture toughness and growth of short and long fatigue cracks in ductile cast iron EN-GJS-400–18-LT. Fatigue Fract. Eng. Mater. Struct. 2012, 35, 374–388. [Google Scholar] [CrossRef][Green Version]
- Brighenti, R.; Carpinteri, A. A notch multiaxial-fatigue approach based on damage mechanics. Int. J. Fatigue 2012, 39, 122–133. [Google Scholar] [CrossRef]
- Papadopoulos, I.V.; Davoli, P.; Gorla, C.; Filippini, M.; Bernasconi, A. A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 1997, 19, 219–235. [Google Scholar] [CrossRef]
- Li, H.R.; Peng, Y.; Liu, Y.; Zhang, M. Corrected stress field intensity approach based on averaging superior limit of intrinsic damage dissipation work. J. Iron Steel Res. Int. 2018, 25, 1094–1103. [Google Scholar] [CrossRef]
- Turner, A.; Gillies, R.M.; Sekel, R.; Morris, P.; Bruce, W.; Walsh, W.R. Computational bone remodelling simulations and comparisons with DEXA results. J. Orthop. Res. 2005, 23, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Basquin, O.H. The Exponential Law of Endurance Test. ASTM Proc. 1910, 10, 625–630. [Google Scholar]
- Papadopoulos, I.V. A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals. Int. J. Fatigue 1995, 16, 377–384. [Google Scholar] [CrossRef]
- Lee, S.B. Out-of-Phase Combined Bending and Torsion Fatigue of Steels; Brown, M.W., Miller, K.J., Eds.; Mechanical Engineering Publications: London, UK, 1989; pp. 621–634. [Google Scholar]
- Zhang, C.; Yao, W. A new model for life prediction of multiaxial high-cycle fatigue. Chin. J. Theor. Appl. Mech. 2010, 42, 1225–1230. [Google Scholar]
- Gonçalves, C.A.; Araújo, J.A.; Mamiya, E.N. Multiaxial fatigue: A stress-based criterion for hard metals. Int. J. Fatigue 2005, 27, 177–187. [Google Scholar] [CrossRef]
- Crossland, B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In Proceedings of the International Conference on Fatigue of Metals, London, UK, 10–14 September 1956; Institution of Mechanical Engineers: London, UK, 1956; pp. 184–194. [Google Scholar]
A | B | C | D | Exp. | |||||
---|---|---|---|---|---|---|---|---|---|
126.491 | 0 | 91.571 | 0 | 0 | 281,670 | 1,082,449 | 243,628 | >107 | 482,666 |
158.114 | 0 | 111.803 | 0 | 0 | 42,683 | 167,487 | 36,135 | 1,736,000 | 76,451 |
189.737 | 0 | 137.356 | 0 | 0 | 7421 | 28,518 | 6419 | 300,650 | 23,003 |
126.491 | 0 | 95.507 | 0 | 30 | 241,200 | 960,836 | 192,398 | 9,908,700 | 420,261 |
158.114 | 0 | 119.384 | 0 | 30 | 32,600 | 129,866 | 26,004 | 1,339,200 | 63,584 |
126.491 | 0 | 100 | 0 | 45 | 205,270 | 857,035 | 148,362 | 8,520,800 | 275,527 |
158.114 | 0 | 125 | 0 | 45 | 27,744 | 115,837 | 20,053 | 1,151,700 | 57,004 |
126.491 | 0 | 105.193 | 0 | 60 | 178,320 | 760,413 | 109,702 | 7,340,500 | 231,348 |
158.114 | 0 | 131.491 | 0 | 60 | 24,102 | 102,779 | 14,827 | 992,160 | 30,893 |
158.114 | 0 | 139.111 | 0 | 90 | 35,187 | 89,612 | 10,178 | 1,035,900 | 15,459 |
126.491 | 0 | 111.289 | 0 | 90 | 260,330 | 662,994 | 75,299 | 7,663,900 | 66,940 |
200 | 0 | 115.47 | 0 | 90 | 26,490 | 287,053 | 5303 | 874,420 | 14,296 |
250 | 0 | 144.34 | 0 | 90 | 3580 | 38,793 | 717 | 118,180 | 4634 |
200 | 0 | 100 | 0 | 90 | 40,853 | 837,823 | 7430 | 1,392,800 | 37,789 |
250 | 0 | 125 | 0 | 90 | 5522 | 113,241 | 1004 | 188,260 | 6811 |
A | B | C | D | Exp. | |||||
---|---|---|---|---|---|---|---|---|---|
449 | 0 | 282 | 0 | 90 | 33,399 | 89,680 | 16,006 | >107 | 29,900 |
354 | 0 | 334 | 0 | 90 | 37,667 | 41,856 | 20,236 | >107 | 35,700 |
485 | 0 | 223 | 0 | 90 | 39,863 | >107 | 25,852 | >107 | 50,000 |
357 | 0 | 309 | 0 | 90 | 51,948 | 68,445 | 23,389 | >107 | 73,800 |
449 | 0 | 217 | 0 | 90 | 63,825 | >107 | 36,598 | >107 | 106,000 |
370 | 0 | 285 | 0 | 90 | 67,675 | 133,212 | 25,257 | >107 | 106,000 |
449 | 0 | 199 | 0 | 90 | 80,172 | >107 | 41,222 | >107 | 112,000 |
457 | 0 | 194 | 0 | 90 | 75,020 | >107 | 38,516 | >107 | 131,000 |
354 | 0 | 252 | 0 | 90 | 191,400 | 3,869,612 | 37,984 | >107 | 333,000 |
437 | 0 | 154 | 0 | 90 | 236,950 | >107 | 61,528 | >107 | 431,000 |
286 | 0 | 143 | 0 | 90 | >107 | >107 | >107 | >107 | 1,660,000 |
354 | 0 | 165 | 0 | 90 | >107 | >107 | 2,980,185 | >107 | 1,860,000 |
441 | 196 | 215 | 0 | 90 | 43,691 | >107 | 40,658 | >107 | 53,000 |
286 | 196 | 309 | 0 | 90 | 62,224 | 42,824 | 40,316 | >107 | 59,200 |
464 | 196 | 155 | 0 | 90 | 56,322 | >107 | 40,596 | >107 | 70,100 |
473 | 196 | 136 | 0 | 90 | 57,808 | >107 | 38,199 | >107 | 86,300 |
173 | 196 | 334 | 0 | 90 | 83,584 | 40,007 | 81,343 | >107 | 89,900 |
403 | 196 | 209 | 0 | 90 | 74,826 | 2,219,079 | 31,942 | >107 | 92,100 |
437 | 196 | 177 | 0 | 90 | 66,929 | >107 | 55,224 | >107 | 102,000 |
167 | 196 | 321 | 0 | 90 | 130,430 | 59,441 | 128,539 | >107 | 135,000 |
357 | 196 | 179 | 0 | 90 | 611,040 | 215,534 | 84,523 | >107 | 351,000 |
182 | 196 | 274 | 0 | 90 | >107 | 235,925 | 2,562,011 | >107 | 394,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, J.; Wang, J.; Hu, M.; Peng, Y. Lifetime Assessment for Multiaxial High-Cycle Fatigue Using Twin-Shear Unified Yield Criteria. Metals 2021, 11, 1178. https://doi.org/10.3390/met11081178
Li H, Wang J, Wang J, Hu M, Peng Y. Lifetime Assessment for Multiaxial High-Cycle Fatigue Using Twin-Shear Unified Yield Criteria. Metals. 2021; 11(8):1178. https://doi.org/10.3390/met11081178
Chicago/Turabian StyleLi, Haoran, Jiadong Wang, Juncheng Wang, Ming Hu, and Yan Peng. 2021. "Lifetime Assessment for Multiaxial High-Cycle Fatigue Using Twin-Shear Unified Yield Criteria" Metals 11, no. 8: 1178. https://doi.org/10.3390/met11081178