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Abstract: Acid corrosion is a problem pertaining to corrosion that involves an acid solution. It is
important to treat metal to preserve its integrity. Thus, acids are utilized to clean and treat metal
surfaces. In return, this may lead to over-etching and metal degradation. Corrosion inhibitors were
introduced as a solution for the issue. However, there are some problems associated with the usage
of conventional corrosion inhibitors. Traces of nitrites and chromates that are present in the inhibitors
may lead to serious health and environmental issues. As a solution, organic green corrosion inhibitors
have been studied to replace the conventional corrosion inhibitors. These inhibitor molecules form a
protective layer on top of the metal surface to suppress metal dissolution when added to the acid
solution. This process prevents direct contact between the metal surfaces and the acid environment.
This study explores the usage of natural resources and biomass wastes as the basis for organic green
corrosion inhibitors. This study also provides some suggestions for new biomass wastes that can be
studied as new organic corrosion inhibitors, and it is aimed at opening the perspective of researchers
on exploring new organic inhibitors by using natural resources and biomass wastes.

Keywords: green inhibitors; corrosion; biomass wastes; inhibition studies; adsorption studies

1. Introduction

Srivastava [1] and Zaher et al. [2] highlighted the profuse usage of mild steel in the in-
dustry, especially in the fabrication of machines and structural foundations. Zaher et al. [2]
further explained that mild steel is chosen due to its affordability and strength. However,
corrosion has always been a challenge faced by the industry players. This is due to the
usage of acid as the cleaning medium for mild steel, as explained by Zaher et al. [2] and
Sulaiman et al. [3]. This was corroborated by Dehghani et al. [4]. Acid scaling and acid
pickling are some examples of such processes. Sulaiman et al. [3] explained that acid erodes
the surface of the metal while efficiently cleaning the metal surface. Ikeuba and Okafor [5]
further explained that the corrosive nature of acid can lead to metal dissolution. Moreover,
Wang et al. [6] stated that this condition can lead to over-etching.

Furthermore, corrosion may have later effects on the industry in terms of money loss,
wastage, and engineering disasters. This motion was supported by Koch et al. [7]. The
authors reported that the National Association of Corrosion Engineers (NACE) predicted
that the loss suffered due to corrosion amounts to 2.5 trillion USD globally. This is equiva-
lent to 3.4% of the global gross domestic product (GDP) in 2013. In addition, Petrovich [8]
suggested that engineering disasters that were caused by corrosion totaled 42% worldwide.
Koch et al. [7] also agreed that corrosion protection can cut loss by up to 35%. This is
equal to savings of 875 billion USD. Ikeuba [5] concluded that corrosion is an unavoidable
phenomenon. The author mentioned that, although it cannot be avoided, it can be slowed
down by deploying appropriate corrosion protection strategies.

In this context, this study initiated a review of the recent literature concerning cor-
rosion inhibitors in an acidic environment. This study is divided into several sections.
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Section 1 gives a brief overview of the calamities caused by corrosion. Section 2 presents
the fundamental aspects of corrosion. Issues regarding conventional corrosion inhibitors
are discussed next. A discussion on the organic green corrosion inhibitors is presented as a
solution to problems associated with their conventional counterparts. Lastly, the conclusion
and summary are presented in the Section 11.

2. Fundamental Aspects of Corrosion

According to Hassan et al. [9] and Bashir et al. [10], corrosion is the degradation of a
metal due to environmental attack through chemical reactions. Furthermore, Bashir et al. [10]
explained that a metal continuously undergoes corrosion to reach its stable state once it is
extracted from its core underground. Equation (1) can be used to explain the reactions in an
electrochemical cell that lead to corrosion. Popoola [11] highlighted the oxidation half reaction
of mild steel, as shown in Equation (2).

Anode : M(s) → Mn+
(aq) + ne−. (1)

Oxidation half reaction : Fe→ Fe2+ + 2e−. (2)

Popoola [11] also outlined the general reaction that occurs at the cathode, as portrayed
in Equation (3). According to the author, a few types of cathodic reactions have been
identified including neutral and alkaline solutions, metal ion reduction, metal depositions,
and acid solutions. However, a discussion on neutral and alkaline solutions, metal ion
reduction, and metal depositions falls outside the scope of this paper. Thus, only cathodic
reactions that happen in an acidic environment are portrayed in this paper, as shown in
Equations (4) and (5). Lastly, the overall basic equation is displayed in Equation (6).

Cathode : nOx(aq) + n
(
e−M
)
→ nRed(e−redox)(aq). (3)

Acid solution : O2 + 4H+ + 4e− → 2H2O. (4)

Hydrogen evolution : 2H+ + 2e− → H2. (5)

Overall equation : M(M) + nOx(aq) = Mn+
(aq) + nRed(e−

(redox))(aq)
. (6)

3. Corrosion in Acidic Environment

Zaher [2] and Bouraoui [12] affirmed that mild steel is very prone to acid attack. The
types of acids usually used for acid cleaning and acid pickling are nitric acid (HNO3),
sulfuric acid (H2SO4), and hydrochloric acid (HCl). This was confirmed by Rodriguez-
Torres et al. [13] and El-Haddad et al. [14], who added that the most common types of acids
used are HCl and H2SO4.

Furthermore, Umoren et al. [15] suggested that HCl is more favorable compared to
H2SO4. They stated that there are several reasons that may contribute to this finding, such
as HCl needing less pickling time and lower operating temperature. In return, a good
surface quality of the metal can be obtained by using less energy. Hence, industry players
can operate at a lower budget.

Corrosion of mild steel in the HCl environment has been addressed by El Haddad
et al. [14]. The authors found that an acidic environment may accelerate the corrosion of
mild steel. Thus, they concluded that the correct selection of corrosion protection method
in an acidic environment is very vital. This was corroborated by Ogunleye et al. [16], who
mentioned that an understanding of the corrosion behavior is crucial in estimating the
corrosion rate. Therefore, corrosion inhibitors have been widely chosen to combat corrosion
in an acidic environment.

Javed [17] estimated in his seminal report that the world’s market for corrosion
inhibitors will be 8.7 billion USD in the year of 2021. This is a big leap from the amount
recorded in 2016, which was 6.9 billion USD. The yearly expansion was calculated to be
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4.6%. A similar trend was reported by Grand View Research [18], who stated that the global
market for corrosion inhibitors is expected to be 9.9 billion USD by 2027. The annual growth
rate is expected to be 3.3% from 2020 through 2027. Likewise, the number of published
studies focusing on corrosion inhibitors has also increased. This clearly shows that there
is growing interest in corrosion inhibitors as a way to solve corrosion problems among
industry players and academicians alike.

Similar findings were reported by Hassan et al. [9], Anupama et al. [19], and Vorobyova
et al. [20]. The affordability and capability of the corrosion inhibitors are among the reasons
for choosing them. Monticelli [21] further explained that only a small volume of inhibitor is
needed to yield the appropriate response (i.e., reducing the corrosion rate), which may also
weigh in on the decision made.

4. Corrosion Inhibitors

Monticelli [21] mentioned that the standardized definition of a corrosion inhibitor
is a “chemical substance that, when presented in the corrosion system at a suitable con-
centration, decreases the corrosion rate, without significantly changing the concentration
of any corrosive agent”. Abbout [22] called into question the characteristics of effective
corrosion inhibitors. Thus, he proposed several characteristics that need to be possessed by
an effective corrosion inhibitor, namely, stability at a certain temperature, low cost, and,
more importantly, adherence to environmental laws and standards [22]. Furthermore, the
corrosion rate needs to decrease once the inhibitors are introduced into the HCl environ-
ment. Such is the goal of using corrosion inhibitors. Equation (7) can be used to calculate
the efficiency of corrosion inhibitors, where η% is the inhibition efficiency, and CRblank
and CRinh are the corrosion rate without and with corrosion inhibitors, respectively.

η% =

(
1− CRblank

CRinh

)
× 100. (7)

In addition, corrosion inhibitors can be divided into three categories: anodic, cathodic,
and mixed inhibitors. Monticelli [21] deduced that, regardless of the type of inhibitor, it should
form a protective film on top of the metal. In return, the protection layer can prevent the
metal from undergoing corrosion. She contemplated that there are three types of film formed:
precipitation film, passivating film, and adsorption film. Her assumptions seem to be well
founded as there have been numerous authors reporting similar findings. A protective film was
discovered in the experiments carried out by K et al. [23], Asadi et al. [24], and Haris et al. [25].

However, considerable attention must be paid when choosing the right inhibitors
to be used. It is vital to realize that some inhibitors are specifically designed for specific
metals and environments. For instance, inhibitors made of Camilia sinesis extract [26] are
designed for mild steel in a 1.0 M HCl environment, whereas Crataegus mexicana extract [13]
is designed for AISI 1018 carbon steel in an H2SO4 environment. In conclusion, inhibitors
may not work well when they are used for other types of metals and environments outside
of their design parameters. Extended research and elaborate testing may be needed to
study their efficiency prior to usage.

5. Types of Corrosion Inhibitors

As mentioned previously, there are three types of inhibitors, anodic, cathodic, and
mixed, as shown in Figure 1. The mechanisms vary depending on the inhibitor types, as
discussed further in this section.
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Figure 1. Types of corrosion inhibitors.

5.1. Anodic Inhibitors

In their analysis, Marzorati et al. [27] drew the attention to the protective film that
is formed on the surface of the metal. This finding is in line with Monticelli [21], who
also described that the film created by anodic inhibitors is passivating. The film is formed
because of the interactions between metal ions and anodic inhibitors. The negative ions
move toward the anode and form insoluble hydroxides, as described by Ahmed et al. [28].
This phenomenon can be easily described, as shown in Figure 2. Popoola [11] further
explained that the existence of the passivating film prohibits the anodic reaction portrayed
in Equation (2). Thus, this action prevents metal degradation.

Metals 2021, 11, 1062 5 of 24 
 

 

Figure 2. Mechanism of anodic inhibitors. 

5.2. Cathodic Inhibitors 

Ahmed et al. [28] highlighted that cathodic inhibitors have the same principles as 

anodic inhibitors. They further explained that, while anodic inhibitors involve reactions 

at the anode, reactions for cathodic inhibitors occur at the cathodic site of the electrochem-

ical cell. Marzorati et al. [27] concluded that cathodic inhibitors act by reducing cathodic 

reactions. This was supported by Popoola [11], who added that they may also reduce cor-

rosion through cathodic precipitation. 

Monticelli [21] added that another major difference between both types of inhibitors 

is the type of film created. The film made by cathodic inhibitors on the surface of the metal 

is the passivating type, which is porous. This notion has raised questions regarding the 

ability of the porous layer to protect the metal from corrosion. However, Monticelli [21] 

in her paper firmly believed that, despite the porous nature of the film, it can still serve its 

intended purpose of reducing the corrosion rate. 

Furthermore, Ahmed et al. [28] explained that cathodic inhibitors trigger the move-

ment of ions toward the cathodic site. Similar to the analysis of anodic inhibitors, 𝐸′𝑐𝑜𝑟  

moves to the cathodic region, which is more negative. At the same time, the values of 

current decrease, suggesting a reduction in corrosion rate. Thus, the claim made by Mon-

ticelli [21], which summarized the ability of the porous layer to protect the metal, is fully 

justified. 

5.3. Mixed Inhibitor 

According to Marzorati et al. [27] and Ahmed et al. [28], mixed inhibitors are able to 

act as anodic and cathodic inhibitors at the same time. Umoren [15] explained that mixed 

inhibitors are able to reduce anodic and cathodic reactions. Various experimental works 

have been carried out to study the mechanisms of mixed inhibitors. Among the most re-

cent experiments that have been carried out are Şahin et al. [33], Alvarez et al. [34], and 

Fadhil et al. [35]. 

Moreover, many attempts have been made by Dehghani et al. [4,36,37] to study a vast 

number of corrosion inhibitors, many of which are categorized as mixed inhibitors. This 

was corroborated by Popoola [11], who concluded that approximately 80% of organic 

green corrosion inhibitors fall in this category. Examples of experiments that have been 

done include green Eucalyptus leaf extract [4], Citrullus lanatus fruit extract [38], and Pega-

num harmala seed [39]. The authors have proven that, for all cases, the anodic and cathodic 

currents are lowered. Furthermore, the displacement of the value of 𝐸𝑐𝑜𝑟  is less than 85 

mV. This shows that the inhibitors are mixed type, as described in the previous section. 

  

Figure 2. Mechanism of anodic inhibitors.

Goyal et al. [29] mentioned that anodic passivation films can be further categorized
into two types: oxidizing and nonoxidizing films. Examples of oxidizing films are chro-
mates and nitrates, which can be formed with the absence of oxygen. However, Mon-
ticelli [21] explained that chromates and nitrates have been linked with issues related
to environmental and human health. Recently, doubts about classic anodic oxidizing
inhibitors have been raised due to these issues. On the other hand, nonoxidizing types
cannot form without the presence of oxygen in the system. Examples of nonoxidizing films
are phosphate and molybdate [29].

Furthermore, the effect of anodic inhibitors can be seen by using potentiodynamic
polarization (PDP). Analysis done by Anupama et al. [19] proved that corrosion potential
(E′cor) shifts to the anodic region, which conforms to the characteristics of anodic inhibitors.
The current after the addition of an inhibitor (I′corr) is lower than that without inhibitor
(Icorr). The reduction in current denotes a reduction in corrosion rate [30].
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Moreover, Hedge and Nayak [31] and Seshian et al. [32] suggested that the shift in
Ecor before and after the addition of inhibitors is ideal in signifying the type of inhibitor.
They suggested that, when the displacement of Ecor is less than 85 mV, the inhibitor may
be categorized as mixed type.

5.2. Cathodic Inhibitors

Ahmed et al. [28] highlighted that cathodic inhibitors have the same principles as
anodic inhibitors. They further explained that, while anodic inhibitors involve reactions at
the anode, reactions for cathodic inhibitors occur at the cathodic site of the electrochemical
cell. Marzorati et al. [27] concluded that cathodic inhibitors act by reducing cathodic
reactions. This was supported by Popoola [11], who added that they may also reduce
corrosion through cathodic precipitation.

Monticelli [21] added that another major difference between both types of inhibitors
is the type of film created. The film made by cathodic inhibitors on the surface of the metal
is the passivating type, which is porous. This notion has raised questions regarding the
ability of the porous layer to protect the metal from corrosion. However, Monticelli [21] in
her paper firmly believed that, despite the porous nature of the film, it can still serve its
intended purpose of reducing the corrosion rate.

Furthermore, Ahmed et al. [28] explained that cathodic inhibitors trigger the movement
of ions toward the cathodic site. Similar to the analysis of anodic inhibitors, E′cor moves to
the cathodic region, which is more negative. At the same time, the values of current decrease,
suggesting a reduction in corrosion rate. Thus, the claim made by Monticelli [21], which
summarized the ability of the porous layer to protect the metal, is fully justified.

5.3. Mixed Inhibitor

According to Marzorati et al. [27] and Ahmed et al. [28], mixed inhibitors are able to act as
anodic and cathodic inhibitors at the same time. Umoren [15] explained that mixed inhibitors
are able to reduce anodic and cathodic reactions. Various experimental works have been
carried out to study the mechanisms of mixed inhibitors. Among the most recent experiments
that have been carried out are Şahin et al. [33], Alvarez et al. [34], and Fadhil et al. [35].

Moreover, many attempts have been made by Dehghani et al. [4,36,37] to study a vast
number of corrosion inhibitors, many of which are categorized as mixed inhibitors. This
was corroborated by Popoola [11], who concluded that approximately 80% of organic green
corrosion inhibitors fall in this category. Examples of experiments that have been done
include green Eucalyptus leaf extract [4], Citrullus lanatus fruit extract [38], and Peganum
harmala seed [39]. The authors have proven that, for all cases, the anodic and cathodic
currents are lowered. Furthermore, the displacement of the value of Ecor is less than 85 mV.
This shows that the inhibitors are mixed type, as described in the previous section.

6. Organic Green Corrosion Inhibitors

A key problem with conventional inhibitors is that they can be potentially harmful
and toxic to the environment and humans, as shown in Table 1. This was highlighted by
Anupama et al. [40], Fidrusli et al. [41], and Vorobyova et al. [24]. Furthermore, Omoto-
sho et al. [42] concurred and added that the aftermath might be due to the nitrites, chromates,
and benzoates. Hassan et al. [9] agreed and explained that most inhibitors have been found to
be nondegradable and poisonous. Chromates are categorized as carcinogenic, and extended
inhalation can cause serious health issues.
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Table 1. Problem with conventional corrosion inhibitors.

Problem with Corrosion Inhibitor Author Ref.

Harmful and toxic to nature and humans
Anupama et al. (2016);
Fidrusli et al. (2017);

Vorobyova et al. (2019)
[20,40,41]

Presence of nitrites, chromates, and benzoates Omotosho et al. (2016) [42]

Nondegradable and poisonous Fidrusli et al. (2017) [41]

Extra cost for residual water treatment Rodriguez-Torres et al. (2019) [15]

According to El-Haddad [14], fears regarding the practice of using conventional
inhibitors began in the year of 1980. Critically, in the year of 1990, the United States of
America (USA) introduced The Pollution and Prevention Act to combat this issue. This
was reported by Bouraoui et al. [12] and supported by Koch et al. [7]. Koch et al. [7]
stressed that strict international law needs to be enforced in order to control the usage of
the harmful inhibitors.

In response, Rodriguez-Torres et al. [13] claimed that some industries may design
and build residual water treatment methods to abide by the laws and legislations. This
approach may incur extra operating cost for the operators and, thus, is deemed financially
unfeasible. Accordingly, numerous studies have suggested the usage of organic green
corrosion inhibitors. Hassan et al. [9] and Rodriguez-Torres et al. [13] highlighted that
organic green corrosion inhibitors must possess the same capabilities as conventional
inhibitors, i.e., to reduce corrosion rate and protect the metal.

Rodriguez-Torres et al. [13] claimed that green corrosion inhibitors were discovered
long before the concern with conventional inhibitors arose. The first investigation on
green corrosion inhibitors was detected in the year of 1930. Interestingly, the study of
green corrosion inhibitors is ongoing as shown in Table 2. This shows that the potential of
plant-based corrosion inhibitors is limitless.

Table 2 shows the past studies conducted on plant-based organic inhibitors. The maxi-
mum inhibition efficiencies of all plant-based organic corrosion inhibitors were recorded
to be more than 70%. For instance, the study that done by Xiang et al. [43] on copper in
0.5 M H2SO4 managed to obtain a maximum inhibition efficiency of 97.3%. Moreover,
studies by Khadom et al. [44] and Haldhar et al. [45] on low-carbon steel in 1.0 M HCl
and 0.5 M H2SO4 successfully achieved maximum inhibition efficiencies of 74.04% and
97.31%, respectively. These results prove that the usage of organic corrosion inhibitors
is not only limited to mild steel. Moreover, all the studies listed in Table 2 considered
several variables in their experiments, with inhibitor concentration considered in all cases.
This shows that the efficiency of an inhibitor is heavily dependent on its concentration.
However, interactions between variables have been proven to be as important in achieving
high maximum inhibition efficiency, thus resulting in a lower corrosion rate of the metal.

According to Wang et al. [66], inhibition efficiency increases with the increase in in-
hibitor concentration. The authors also further explained that, at a specific temperature,
the efficiency starts to decrease regardless of the increase in inhibitor concentration. This
phenomenon is known as extreme concentration [66]. Similar findings were also discussed by
Perumal et al. [73]. On the other hand, El-Katori and Al-Mhyawi [70] observed that a rise in
temperature can decrease the inhibition efficiency, as shown in Figure 3. Salmasifar et al. [47]
agreed and clarified that this scenario is caused by the rate of desorption of inhibitor molecules
being higher than the rate of inhibitor adsorption as the temperature increases [50].
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Table 2. Past studies concerning organic corrosion inhibitors.

Plant Extracts Type of Metal
Medium Variables

Maximum Inhibition
Efficiency (%) Ref.

Type Concentration Inhibitor
Concentration Temperature Time

Xanthium strumarium leaves
(XSL) Low-carbon steel HCl 1 M 0.5–1.5 g/L 40–70 ◦C 5–8 h 74.04 [44]

Pennisetum purpureum Mild steel HCl 3.5% 0.1–5.0 g/L 30–60 ◦C - 95.0 [46]
Portulaca grandiflora leaves (PGL) N80 carbon steel HCl 0.5 M 5–20 mL/L 30–60 ◦C 95.0 [35]

Cannabis sativa Low-carbon steel H2SO4 0.5 M 40–200 mg/L - - 97.31 [45]
Artichoke extract Mild steel HCl 1 M 200–1000 ppm 298–328 K - 98.7 [47]

Ixora coccinea extract Mild steel HCl 1 M 1–5% v/v - - 89.38 [48]
Ixora coccinea extract Mild steel H2SO4 0.5 M 1–5% v/v - - 77.96 [48]
Swertia chirata extract Carbon steel H2SO4 0.5 M 100–500 mg/L - - 92.32 [30]

Justicia secunda leaf extract Aluminium HCl 0.5 M 50–250 ppm 30–50 ◦C - 94.3 [49]
Gongronema latifoliuim Mild steel HCl 0.5 M 0.1–0.5% w/v 303–323 K - 81.69 [50]

Clinopodium acinos Mild steel HCl 1 M 50–300 ppm 25–45 ◦C - 89.9 [51]
Idesia polycarpa Maxim fruit

extract Copper H2SO4 0.5 M 50–300 mg/L 298–308 K - 90.8 [52]

Saraca ashoka extract Mild steel H2SO4 0.5 M 25–100 mg/L - - 95.48 [53]
Tilia cordata Carbon steel HCl 1 M 50–300 mg/L 30–60 ◦C - 96.0 [54]

Sunflower seed hull extract Carbon steel HCl 1 M 50–400 ppm - - 98.0 [55]
Rhus verniciflua Mild steel H2SO4 0.5 M 100–500 ppm 303–333 K 86.0 [56]
Ficus religiosa Mild steel H2SO4 0.5 M 100–500 mg/L - - 92.26 [57]

Citrus aurantifolia leaves (CAL) Mild steel H2SO4 0.5 M 50–250 mg/L - - 96.46 [58]
White tea Mild steel HCl 1 M 20–80 ppm 25–60 ◦C - 96.0 [59]

Citrus reticulata leaves (CRLE) Copper H2SO4 0.5 M 50–500 mg/L - 97.3 [43]
Glycyrrhiza glabra leaves Mild steel HCl 1 M 200–800 ppm - - 88.0 [60]

Phoenix dactylifera seed (PDSE) Mild steel HCl 1 M - - 1 and 6 h 97.3 [33]
Lecaniodiscus cupaniodes Mild steel HCl 0.5 M 1–5 mL/L - 5–35 days 90.0 [61]

Cleome droserifolia Mild steel HCl 1 M 50–300 ppm 25–45 ◦C - 92.0 [62]
Momordica charantia Carbon steel H2SO4 0.5 M 100–500 mg/L - - 93.51 [63]

Malva sylvestris Mild steel NaCl 3.5% 1000–2000 ppm - - 91.0 [64]
Lilium brownii leaf extract X70 Steel HCl 1 M 10–200 mg/L 298–308 K - 85.0 [65]
Pueraria lobata leaf extract 10# steel HCl 1 M 0.1–0.9 g/L 25–70 ◦C - 94.37 [66]

Allamanda cathartica Mild Steel H2SO4 1 M 0.2–1.0% v/v 303–333 K - 72.54 [67]
Cauliflowers extract Copper H2SO4 0.5 M 100–400 mg/L - 1–48 h 99.0 [68]

Peach pomace extract Mild Steel NaCl 0.5 M 50–800 ppm - 12–265 h 88.0 [69]
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Table 2. Cont.

Plant Extracts Type of Metal
Medium Variables

Maximum Inhibition
Efficiency (%) Ref.

Type Concentration Inhibitor
Concentration Temperature Time

Bassia muricata extract Aluminium H2SO4 1 M 50–300 ppm 298–318 K - 90.0 [70]
Cinnamomum zeylanicum extract Carbon steel HCl 1 M 100–600 ppm 25–55 ◦C - 81.1 [71]
Morus alba pendula leaf extract Carbon steel HCl 1 M 0.1–0.4 g/L 25–60 ◦C - 96.0 [72]
Bauhinia tomentosa leaf extract Mild steel HCl 1 M 550–700 ppm 308–333 K - 93.47 [73]

Butea monosperma Mild steel H2SO4 0.5 M 100–500 ppm - - 98.0 [74]
Origanum vulgare Mild steel HCl 1 M 400–1200 ppm - - 91.2 [75]

Canarium schweinfurthii Mild steel HCl 0.1 M 0.1–0.5 g/L 303–333 K - 88.2 [76]
Ircinia strobilina Mild steel HCl 1 M 0.5–2.0 g/L - - 82.0 [77]
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Figure 3. Relationship between inhibition efficiency (IEWL) and inhibitor concentration for various
temperatures of Justicia secunda leaf extracts. Reprinted from [49].

Moreover, the effect of immersion time was studied by Joseph et al. [61] and Karki
et al. [78]. The authors concluded that the inhibition efficiency improves with the increase in
concentration time. However, a longer exposure period led to a decrease in the maximum
efficiency. This scenario is similar to that of the relationship between temperature and
concentration. Nevertheless, organic inhibitors possess large potential. However, careful
consideration and planning need to be executed to maintain the quality and efficiency of the
corrosion inhibitors. Figures 4–6 illustrate the effect of concentration, time, and temperature
on the inhibition efficiency, respectively.
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7. Inhibition Mechanism

More recently, Vorobyova et al. [20] analyzed the role of the inhibition mechanisms
of the corrosion inhibitors. In the paper, the authors listed several types of inhibition
mechanisms. In the first type, electronic adsorption, the charged molecules of inhibitors are
attracted electrostatically toward the surface of the metal. In the second type, the uncharged
electron from the inhibitors is attracted to the charged metal surface. Singh et al. [79] also
added that attraction happened via the process of acceptance and donation of ions. Lastly,
the third mechanism involves π-bond orbital adsorption. This is defined as the interaction
between conjugated molecules of organic inhibitors with the metal surface. It is also
possible that the inhibition mechanisms can be a combination of two or more types of the
interactions mentioned.

Furthermore, Dariva et al. [26] demonstrated that there are a few criteria regarding ef-
fective inhibitors. Chemisorption is one that has been listed by many authors. Several stud-
ies, for example, Chaudhari and Patel [80], Salinas-Solano et al. [81], and Idouhli et al. [82],
have concluded that chemisorption forms a strong interaction between the metal and
inhibitors, as shown in Figure 7. Thus, a film is formed on top of the metal surface. There is
still considerable ambiguity regarding chemisorption as one of the criteria. This is because
there are still corrosion inhibitors that only undergo physisorption with the metal surface.
This was proven by the experiments conducted by Haris et al. [25] and Ituen et al. [46].
They studied the ability of an empty fruit bunch of oil palm and elephant grass as corrosion
inhibitors, respectively. Although the inhibitors could only undergo physisorption, which
is weaker than chemisorption, the maximum inhibition efficiencies were still consider-
ably high at more than 80%. Subsequently, the corrosion rate was reduced. Accordingly,
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the existence of a protection film was nominated as the second criterion for an efficient
corrosion inhibitor.
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Chemisorption can be measured by using standard free energy (∆G0
ads). It can be

easily calculated using Equation (8), where Kads is the adsorption equilibrium constant, R
is the universal gas constant, T is the absolute temperature, and 55.5 is the concentration
of water.

∆G0
ads = −RTln(55.5Kads). (8)

Chaudhari and Patel [80] suggested that negative values of ∆G0
ads denote a sponta-

neous reaction. Ogunleye et al. [16] calculated the values of ∆G0
ads for Luffa cylindraca leaf

extract at 333 K, which ranged between −11.56 and −11.45 kJ/mol. Similar findings were
also presented by Nchewi et al. [83] for Tamarindus indica leaf extract tested at numerous
temperatures. They obtained values between −1.47 and −1.57 kJ/mol. Fadhil et al. [35]
also obtained values of ∆G0

ads between −17.71 and −22.03 kJ/mol. The authors concluded
that the protective layer on the metal surface is stable. The experiments conducted by
Nchewi et al. [83] and Fadhil et al. [35] showed that the values of standard free energy are
in parallel with the temperature of the acidic environment. This means that ∆G0

ads increases
as the environment becomes hotter.

In addition to the negativity of the standard free energy, the magnitude can be used
to recognize the type of sorption of the corrosion inhibitors. Dehghani et al. [37] and
Chaudhari and Patel [80] proposed that physisorption occurs when the value of ∆G0

ads is
more than −20 kJ/mol. On the other hand, chemisorption happens when the value of
∆G0

ads is less than −40 kJ/mol. Idouhli et al. [82] explained that chemisorption involves the
sharing of molecules of the inhibitors with the metal surfaces. Chemisorption is a stronger
type of adsorption compared to physisorption. Physisorption is an electrostatic interaction
between the inhibitor molecules and metal surfaces [82,84]. This is portrayed in Figure 8.
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There also exist inhibitors that may undergo both physisorption and chemisorption,
which is known as comprehensive adsorption. This type of inhibitor is more desirable as it
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will create a much stronger interaction compared to just one type of adsorption. Table 3
shows some of the research that has been done that indicates the nature of sorption for
various plants-based inhibitors.

Table 3. Standard free energy for various plants-based inhibitors.

Plants ∆G0
ads (kJ/mol) Adsorption Type Ref.

Solanum lasiocarpum L. −23.5 to −17.1 Comprehensive [6]
Sweet melon peel extract −4.91 to −3.71 Comprehensive [85]

Rice bran oil −53.80 Chemisorption [81]
Luffa cylindraca leaf −11.56 to −11.45 Comprehensive [16]

Green Eucalyptus leaf −35 to −32 Comprehensive [4]

Anupama et al. [19] described that nucleophilic and hydrophobic properties are the
criteria of organic corrosion inhibitors. Monticelli [21] cited that hydroxyl is an example of
a nucleophilic group. Anupama et al. [19] stated that nucleophilic groups may encourage
better coordination between the metal surface and inhibitors, as they support the process
of chemisorption. Moreover, hydrophobicity is preferred as it repels water, which causes
corrosion. Arkles et al. [86] defined hydrophobicity as the interaction between the metal
surface and liquid molecules. This criterion can be measured by using contact-angle tests,
as done by Dehghani et al. [38] and Bahlakeh [84]. Asadi et al. [24] mentioned that a larger
contact angle is preferred as it shows the hydrophobicity of the inhibitors.

Additionally, the inhibition mechanism of organic green corrosion inhibitors relies
heavily on the phytochemical and functional groups of the plants. This was agreed
upon by Bashir et al. [10] and Sanaei et al. [87]. Examples of phytochemicals are tannins,
flavonoids, and saponins [42]. Figures 9–11 show the backbone units of tannins and
flavonoids, and the chemical structure of saponins, respectively. Phytochemicals are
usually connected with antioxidant properties. Furthermore, Bashir et al. [10] explained
that heteroatoms that naturally exist in the plant structure may be major contributors to the
ability of plants to be green corrosion inhibitors, i.e., oxygen (O), sulfur (S), and nitrogen (N).
Bahlakeh et al. [88] suggested that π electrons in π-bonds are the site for the interactions
discussed in the previous section. This was also reported by Goyal et al. [29], who explained
that, in most cases, chemisorption happens following physisorption. Ogunleye et al. [16]
proposed that OH groups such as OH, –COOC2H5, –COOH, and –OCH3 can also react
with metal surfaces.
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8. Adsorption Mechanism 

An adsorption isotherm can reveal the extent of the interaction between inhibitors 

and the metal surface, as described by Ogunleye et al. [16]. The authors refuted that the 

inhibition effect of organic inhibitors can be explained using thermodynamics and adsorp-

tion. The usage of empirical equations (e.g., exponential, power, and logarithmic) has not 

escaped criticism. This is due to the complexities in fitting the data using such an ap-

proach. Thus, this issue can be addressed by using equation isotherms such as Langmuir, 

Temkin, and Freundlich, as shown in Equations (9)–(11). The best type of adsorption can 

be obtained from the linear correlation coefficient (𝑅2) of the plot, whereby values closer 

to 1 are more suitable [51], as shown in Figure 12. 
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8. Adsorption Mechanism

An adsorption isotherm can reveal the extent of the interaction between inhibitors
and the metal surface, as described by Ogunleye et al. [16]. The authors refuted that
the inhibition effect of organic inhibitors can be explained using thermodynamics and
adsorption. The usage of empirical equations (e.g., exponential, power, and logarithmic)
has not escaped criticism. This is due to the complexities in fitting the data using such an
approach. Thus, this issue can be addressed by using equation isotherms such as Langmuir,
Temkin, and Freundlich, as shown in Equations (9)–(11). The best type of adsorption can
be obtained from the linear correlation coefficient (R2) of the plot, whereby values closer to
1 are more suitable [51], as shown in Figure 12.

Langmuir :
C
θ
=

1
Kads

+ C. (9)

Temkin : θ =
1
f

ln(KadsC). (10)

Freundlich : lnθ = lnKads + lnC. (11)

Kads =
1

999
exp

(
−

∆G0
ads

RT

)
. (12)
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The differences among the above isotherms were discussed extensively by Haris et al. [25].
The authors described that monolayer adsorption can be shown using the Langmuir isotherm.
The adsorption isotherm signifies the homogeneity of the system. Popoola [11], in his review,
highlighted that most organic corrosion inhibitors obey the Langmuir isotherm, such as sweet
potato tuber extracts [89], Feronia elephantum leaf [90], and Mangifera Indica [91]. In addition,
Anyiam et al. [89] concluded that Kads represents the strength of adsorption, whereby a
higher Kads suggests a higher adsorption. The adsorption mechanism can be determined and
measured using the fitting of data from the plot of C/θ versus C according to Wang et al. [6].

Moreover, there is a major difference between the Langmuir and Freundlich isotherms,
as raised by Haris et al. [25]. As stated, while the Langmuir isotherm is ideal for describing
monolayer adsorption, the Freundlich isotherm is suitable for depicting multilayer adsorp-
tion. This isotherm is also perfect for representing nonreversible and nonideal adsorption.
Another difference is that the Freundlich isotherm can be measured from the data fitting
of the plot of log C versus log θ. Peganum harmala seed extract [39] is an example of an
inhibitor with this type of adsorption.

Lastly, the Temkin isotherm can be used to categorize the gas phase equilibrium. This
is a major pitfall of this adsorption type, as it cannot be used to describe the liquid phase.
This paper does not further discuss Temkin adsorption as all the interactions happen in the
liquid phase.

9. Biomass Wastes as Organic Green Corrosion Inhibitors

Several studies have focused on organic green corrosion inhibitors; however, their
main weakness is that there have been limited attempts to study the potential of biomass
wastes as organic corrosion inhibitors, as proven by Marzorati et al. [27].

Table 4 shows the past research concerning corrosion inhibitors derived from biomass
wastes. Vorobyova et al. [20] mentioned that organic green corrosion inhibitors are very
uncommon. However, their efficiency shows that biomass wastes do have high potential
and are worthy of further investigation. According to Table 4, the maximum inhibition
efficiencies of all biomass-waste-based inhibitors reported by various authors were reported
to be more than 70%. Some of the inhibitors even recorded efficiencies of more than 90%.
This shows that there exists a blocking surface on top of the metal surface, which allows
reducing the corrosion rate. The efficiency of an inhibitor is inversely proportional to its
corrosion rate. In particular, there is one major property that is shared by all biomass
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wastes listed in the table below. Based on the analysis done using Fourier-transform
infrared spectroscopy (FTIR) and ultraviolet/visible light spectroscopy (UV/Vis), there
exists absorption bands of O–H, C–H, N–H, C–N, and C=O, as shown in Figure 13 [78].
As mentioned, these heteroatoms can form interactions with the metal through a distinct
type of adsorption. This shows that there are still traces of functional groups and plant
phytochemicals in biomass wastes.

Table 4. Past research concerning biomass waste-based organic corrosion inhibitors.

Biomass Wastes Maximum Inhibitor
Efficiency (%) Inhibitor Type Adsorption Type Ref.

Tomato peel 75.9 Mixed - [92]
Pennisetum purpureum (elephant grass) 81.7 Mixed Physisorption [46]

Rice bran oil >99 Mixed Chemisorption [81]
Musa acuminata (banana peels) 90.0 Mixed - [93]
Empty fruit bunch of oil palm 99.95 Cathodic Physisorption [25]

Sweet melon peel 91.59 Anodic Comprehensive [85]
Coffee husk 90.3 Mixed Chemisorption [94]

Peganum harmala seed 95 Mixed Chemisorption [39]
Tamarind shell 87.77 Mixed Physisorption [95]

Watermelon waste 86.08 Mixed Physisorption [96]
Prunus dulcis (almond peel) 93.0 Mixed Comprehensive [97]

Jatropha leaves 82.0 Mixed Physisorption [98]
Mish Gush leaves 96.0 Mixed Comprehensive [99]

Cotton seed 97.3 Mixed Chemisorption [100]
Heracleum persicum seeds 95.0 Mixed Chemisorption [101]

Malva sylvestris leaf extract 93.0 Mixed Physisorption [102]
Lemon seeds 98.0 Mixed - [103]

Newbouldia laevis stem bark 85.0 Mixed Chemisorption [104]
Newbouldia laevis leaves 76.70 Mixed Chemisorption [104]
Aloysia citrodora leaves 94.0 Mixed Comprehensive [105]

Robinia pseudoacacia leaves 92.0 Mixed Comprehensive [106]
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In addition, Table 4 shows that most inhibitors are categorized as mixed type. Ac-
cording to Seshian et al. [32], mixed inhibitors are responsible for suppressing hydrogen
evolution at the cathode and decreasing metal dissolution at the anode. Alvarez et al. [34]
highlighted that this is a result of the geometric blocking effect. Anupama et al. [19] cor-
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roborated this effect in their paper. In return, a high corrosion efficiency may be achieved
due to a decrease in the reaction area, as clearly portrayed in Table 4. However, some past
research also found mixed inhibitors with a predominant anodic or cathodic action.

For example, Omothosho et al. [42] studied the effect of organic corrosion inhibitors
made from Termanalia catappa on mild steel. The authors discovered that the inhibitor acts
as a mixed inhibitor but is predominantly cathodic. Zaher et al. [2] learned that Ammi
Visnaga extract acts as a mixed type inhibitor with anodic dominance.

Furthermore, abundant resources of biomass wastes are readily available. On this note,
Marzorati [27] concluded that it is sensible to make use of the huge amount of resources.
In Malaysia alone, the biomass wastes produced yearly is 160 million metric tons. A
vast amount of waste is generated by the oil palm sector. It was estimated that, in 2020,
this amount could be as high as 100 million metric tons [107], which is supported by the
data generated by Agensi Inovasi Malaysia [108], who also stated that biomass waste will
increase yearly. According to the authors, the agriculture sector is the largest contributor
to this statistic [108]. In conclusion, it is believed that the principles and mechanisms of
biomass waste-based corrosion inhibitors are the same as those of plant-based corrosion
inhibitors, as reviewed comprehensively in an earlier section. The assumption is valid as
biomass waste originates from plants.

Opportunity to Explore Biomass Wastes

Table 4 shows the past research conducted on biomass waste-based corrosion in-
hibitors. It is clear that biomass wastes have the potential to achieve high inhibition
efficiency. As a result, the corrosion rate may be reduced. According to the World Bioen-
ergy Association [109] in their report titled “Global Bioenergy Statistics 2020”, agricultural
biomass wastes encompass about 10% of global wastes. The global supply of crops is
massive, which is reflected in the biomass wastes produced by the agricultural sector.
Thus, this may provide a great opportunity for the biomass wastes to be studied and
commercialized as organic corrosion inhibitors.

For instance, cassava peels and oil palm fronds may be explored as new biomass
waste-based corrosion inhibitors. Based on research by Mohd-Asharuddin et al. [110],
cassava peels fit the characteristics of plants studied as organic green corrosion inhibitors.
The authors stated that cassava peels possess hydroxyl and phenol groups. They also
found the existence of C=O carboxyl groups, ionic carboxylic groups, and COOH groups,
which were discussed extensively in Section 7.

10. Analysis Techniques for Efficiency

It is vital to measure the effectiveness of organic green corrosion inhibitors. There are
several reliable tests that are commonly used such as weight loss balance, electrochemical
analysis, and surface morphology, as detailed in this section.

10.1. Weight Loss Balance

The weight loss balance technique is often deployed to test the organic green corrosion
inhibitor efficiency, as supported by Haldhar et al. [57], who highlighted that this method
is chosen because of its reliability and straightforwardness. Various past studies used this
method for Xanthium strumarium leaves [44], tomato peel [92], and Chlorella sorokiniana [111].
According to Khadom et al. [44], the corrosion rate can be calculated from Equation (13).
The value calculated from Equation (13) can then be inserted into Equation (7) to get the
corrosion inhibitor efficiency.

Corrosion rate, CR :
weight loss (g)

area (m2)× time (day)
. (13)

According to de Oliveira et al. [111], the inhibition efficiency improves with the in-
crease in inhibitor concentration. Similar results were also observed by Zultiniar et al. [112]
and Mishurov et al. [113]. According to Karki et al. [78], there is a significant difference
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in corrosion rate and weight loss between blank solutions and solutions with corrosion
inhibitors, as shown in Figure 14. All authors agreed that this phenomenon is due to the
increase in coverage of the inhibitor molecules on the metal surface.
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However, the amount of weight loss increases with rising temperature even in the
presence of inhibitors. This trend was observed by Hassan et al. [114], who concluded that
this finding is caused by the desorption of inhibitor molecules from the metal surface, as
corroborated by Chaudhari and Patel [80].

10.2. Electrochemical Analysis

Papavinasam [115] and Ali et al. [116] highlighted the benefits of using electrochemical
analysis in their research. This technique requires a brief testing period and is able to mea-
sure a low rate of corrosion. Examples of this technique are potentiodynamic polarization
(PDP) and electrochemical impedance spectroscopy (EIS). Vorobyova and Skiba [69] and
Haldhar et al. [57] stated that electrochemical measurements are usually done by using
three-cell systems. The system comprises three electrodes: working electrode (WE), counter
electrode (CE), and reference electrode (RE). The working electrode is the metal to be tested,
while a platinum electrode and a saturated calomel electrode (SCE) are commonly used as
the CE and RE, respectively. According to Haldhar et al. [57] and Elabbasy and Fouda [62],
the WE is initially immersed in the test solution for 1 h to achieve a steady state.

10.2.1. Potentiodynamic Polarization (PDP)

Mostafatabar [101] and Dehghani et al. [117] mentioned that PDP can be used to
characterize kinetic reactions on the metal surface. The result of PDP is usually presented
in the form of a graph, as shown in Figure 15. Furthermore, Tehrani et al. [64] stated that
this test can be done using a scanning rate of 1 mV/s with a potential range between
−250 mV and +250 mV. Elabbasy and Fouda [118] cited that corrosion current densities
(icorr) can be obtained as a result. Banu et al. [67] added that Tafel slopes (βa and βc) may
also be measured. The authors also added that corrosion potential (Ecorr) can be determined
from extrapolation of the Tafel slopes. The values of Ecorr may be used to categorize the
type of inhibitor, as explained in Section 5. Furthermore, inhibition efficiency (η %) can be
calculated using the values of the corrosion current densities before (io

corr) and after (i′corr)
acid immersion, as shown in Equation (14).

η % =
io

corr − i′corr

iocorr
. (14)
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Figure 15. Potentiodynamic polarization plots for various concentrations of Clinopodium acinos with
mild steel in 1 M HCl. Reprinted from [51].

Dehghani et al. [91] stated that it is very important to choose an appropriate scan
rate to study the corrosion. The authors explained that the results will be distorted and
unreliable if this condition is not met. The authors suggested that, if a high scan rate
is used, the corrosion rate will be higher, in response to the higher discharged current.
However, if a lower scan rate is utilized, the system will yield unreliable results due to the
corrosive acidic environment. In conclusion, the authors suggested that a suitable scan rate
of 1 mV·s−1. The same scan rate was also adopted by Mohd et al. [119].

10.2.2. Electrochemical Impedance Spectroscopy (EIS)

Chaudhari and Patel [80] described that EIS is used to provide data for the electro-
chemical kinetics of the steel surface in an acid solution. This method is also useful to
provide information on the electrochemical interfaces, as the adsorption process that occurs
is interfacial. Ali et al. [116] further explained that the advantage of using EIS is the absence
of scan rate. Thus, it is suitable to test environments with a low conductivity.

Figure 16 shows the circuit diagram commonly used for the test, where Rs represents
solution resistance, CPE represents constant phase elements, and Rct is the charge transfer
resistance [58,116]. Thomas [48] explained that double-layer capacitance (Cdl) is abandoned
in favor of CPE. This is caused by a divergence from the ideal metal dielectric property due
to defects on the metal surface. Cdl can be calculated using Equations (15) and (16), where
Yo is the CPE constant, fmax is the maximum frequency, ω is the angular frequency, and n
is the phase shift (i.e., −1 ≤ n ≤ 1). In addition, n can also be used to assess the corrosion
dissolution mechanism [30]. Furthermore, Tehrani et al. [64] suggested using a frequency
range between 0.01 Hz and 10,000 Hz, while Haldhar et al. [30] recommended a frequency
range between 0.01 Hz and 100,000 Hz with an amplitude of 5 mV. The results can then be
presented in the form of a Nyquist plot, as shown in Figure 17. The inhibition efficiency can
be calculated using Equation (17), where ηEIS is the inhibition efficiency, Rct is the charge
transfer resistance without the inhibitors, and R′ct is the charge transfer resistance in the
presence of inhibitors.

Cdl = Yo (ωmax)
n−1. (15)

ω = 2π fmax. (16)
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ηEIS (%) =
Rct − R′ct

Rct
× 100 (17)
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More importantly, the frequency dispersion can be shown using EIS, which is a major
advantage of using this technique. This is because the frequency dispersion is impossible
to describe using simple parameters such as capacitance and resistance. According to
Anupama et al. [40], frequency dispersion is a feature of solid electrodes, as corroborated
by Ece Altunba [33]. The authors identified several factors that may contribute to the
phenomenon, such as surface heterogeneity, fractal structures, and impurities [33,40].

10.3. Surface Morphology

Bashir et al. [10] stated that surface morphology can be studied using a scanning
electron microscope (SEM). This method has been utilized by a number of researchers
such as El-Hadad [14] and Haldhar et al. [58]. According to the authors, SEM can capture
detailed images of the metal surfaces at the macroscopic level. The images of the metal
surface before and after acid immersion can then be compared and analyzed.

Figure 18 shows SEM images of a metal, presented by Karki et al. [78]. The authors
compared the images of metal surfaces immersed in the acid solution with and without the
Equisatum hyemale extracts. As shown in Figure 18, the surface of the metal immersed in an
acidic environment in the presence of organic inhibitors showed a lesser corrosion effect
compared to the metal immersed in a blank solution.
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11. Summary

Corrosion is a global issue that needs to be tackled properly and promptly. There
are many considerations that must be taken into account to choose a suitable corrosion
protection method. Therefore, corrosion inhibitors are a popular choice compared to
other types of prevention methods such as coating and paint. However, conventional
inhibitors have been found to be carcinogenic and harmful to the environment. Thus,
organic corrosion inhibitors can be used as an alternative. There are a few properties of
organic corrosion inhibitors responsible for protection of the metal, such as adsorption type
(i.e., physisorption, chemisorption, and comprehensive), the ability to form a protective
film on top of the metal surface, and nucleophilic and hydrophobic properties.

In recent years, there has been considerable interest in organic green corrosion in-
hibitors made from biomass waste extracts such as seed and peels. This is aligned with the
concerns regarding the staggering amount of biomass waste produced yearly. Despite the
increase in interest, the studies conducted on biomass wastes are far behind the research
done on plant-based organic green corrosion inhibitors. As a conclusion, it is recommended
to boost the number of studies focusing on biomass wastes. In return, the price of corrosion
inhibitors and the operating cost can be reduced, in addition to bringing the plant to its full
potential, while substantially decreasing the amount of waste.
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Abbreviations

PDP Potentiodynamic polarization
FTIR Fourier-transform infrared spectroscopy
UV/Vis Ultraviolet/visible light spectroscopy
EIS Electrochemical impedance spectroscopy
SEM Scanning electron microscope
WE Working electrode
RE Reference electrode
CE Counter electrode
SCE Saturated calomel electrode
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