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Abstract: Joining metallic alloys can be an intricate task, being necessary to take into account the
material characteristics and the application in order to select the appropriate welding process. Among
the variety of welding methods, pulsed laser technology is being successfully used in the industrial
sector due to its beneficial aspects, for which most of them are related to the energy involved. Since
the laser beam is focused in a concentrated area, a narrow and precise weld bead is created, with
a reduced heat affected zone. This characteristic stands out for thinner material applications. As a
non-contact process, the technique delivers flexibility and precision with high joining quality. In this
sense, the present review addresses the most representative investigations developed in this welding
process. A summary of these technological achievements in metallic metals, including steel, titanium,
aluminium, and superalloys, is reported. Special attention is paid to the microstructural formation in
the weld zone. Particular emphasis is given to the mechanical behaviour of the joints reported in
terms of microhardness and strength performance. The main purpose of this work was to provide an
overview of the results obtained with pulsed laser welding technology in diverse materials, including
similar and dissimilar joints. In addition, outlook and remarks are addressed regarding the process
characteristics and the state of knowledge.

Keywords: pulsed laser welding; metallic materials; aluminium; titanium; steel; superalloys; mi-
crostructure; hardness; mechanical properties

1. Introduction
1.1. Description

Laser technology is being widely used as a joining technique in several materials,
including metallic alloys. As a non-contact process, the laser source generates a small spot
beam focused on top of the surfaces, producing high energy densities for melting and
mixing the base materials into a welding pool. After a rapid laser beam exposition, the
fast solidification creates the weld seam [1–3]. In this process, the joints are autogenously
generated without additional material. However, in some cases a filler metal or interlayer
material is commonly used in dissimilar welds as a strategy for diminishing thermal and
physical properties differences [4,5].

A remarkable advantage of this technology is the capacity to achieve high irradiance,
which concentrates laser beam with low divergence, generating joints with minimal me-
chanical stress and low distortion [2,6–8]. Moreover, another important factor related to the
focused energy density is its singular joining efficiency, higher than the arc welding pro-
cesses [9]. In terms of industrial applications, this technique offers flexibility and precision
besides the excellent joint quality, aligned with the fast welding speed, leading to a high
production rate [10,11]. In addition, the possibility to join dissimilar materials with high
quality amplifies its range of implementation [12–14]. Similar to other welding technologies,
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laser technology has some limitations and disadvantages, which can be related to the high
costs of equipment and its restricted requirements of operation and training, besides the
precise alignment of the laser beam and the contacted faces of materials [10]. Furthermore,
the thermal and physical characteristics of the materials can affect the weldability when
materials with high thermal conductivity or high reflectivity are involved [15].

The operability of the laser process can be worked in two main distinguished modes,
continuous and pulsed. In the continuous modes, the incidence of the laser beam on
the material is uninterrupted, the laser irradiation is constant during the time and forms
a continuous weld bead. Meanwhile, in the pulsed, the intermittent laser wave has
a predetermined duration (milliseconds or less), which repeats in a specific frequency,
creating a sequence of spots. Furthermore, the periodic high energy density of pulsed
mode promotes a single point of material heating, reaching the fusion state and creating a
weld pool, followed by the rapid cooling rate during the solidification stage. Therefore,
the series of pulsed fusion zones overlapped generates the weld seam [15–18]. Even with
the high peak power of each pulse, the intermittent configuration conducts a low average
power [11,19,20]. Moreover, the behaviour of lower heat input and sharply high energy
focused provokes minor disturbances in the materials, developing welding seams with
condensed melting and affected areas [9,21]. Another important aspect is the penetration
efficiency, which is higher in pulse than continuous mode under similar conditions [19,22].
The concentrated heat input and the quality issues aforementioned have given special
attention to the use of this pulsed welding for joining thin materials [15–17].

Pulsed laser welding equipment usually involves CO2, Nd:YAG, or fibre sources [18,23].
Among them, Nd:YAG displays a flexible beam delivered with industrial units commer-
cially available [24,25]. The majority of the pulsed laser investigations have been performed
with this system, probably due to the higher production efficiency and ability to control
welding parameters [26]. The main experimental parameters in pulsed laser welding are
peak power, pulse time, spot size, welding speed, and the distance between consecutive
pulses [21,23,27,28].

The configuration of both the power density and welding speed and the laser beam
interaction with the materials define the welding regime, which can be characterised as
three modes: penetration or keyhole, conduction, and the most recent type—transition
(Figure 1). The penetration mode requires the use of a high energy density (usually higher
than 106 W/cm2, although this threshold reference value depends on the material) to reach
a high evaporation rate, allowing the beam to enhance deep penetration inside the material
and creating a vapour cavity. This phenomenon, also known as keyhole, produces a hole
surrounded by melted material interfaced with the solid substrate. The vapour pressure
within conserves the keyhole due to a complex combination of physical mechanisms
of conductive and convective heat transfer, laser absorption, and hydrodynamic flow
around the keyhole inside the melt pool. Then, this mode promotes weld seams deeper
and thinner than in the conduction mode. However, the unstable mechanism of the
keyhole can produce porosities as a consequence of the gas trapping during the weld pool
solidification [10,16,18,29,30]. In contrast, conduction mode is more stable than the keyhole.
It implies less energy density, with insignificant vaporisation of the material [31]. The
generation of the melt pool is mainly controlled by the heat input and welding speed, in
which the absorbed intensity is lower than 106 W/cm2 [16]. Meanwhile, the low penetration
depth is the main disadvantage of this regime [18,29].

The intermediate configuration has been identified as transition mode. Interestingly,
this mode allows higher welding tolerances than the keyhole mode with deeper penetration
than the conduction mode. Therefore, it complements the characteristics to develop a
quality joint, maintaining the composition and welding properties similar to the base
metal [32–35].



Metals 2021, 11, 640 3 of 34
Metals 2021, 11, x FOR PEER REVIEW 3 of 38 
 

 

 

Figure 1. Different regimens of pulsed laser process. Adapted with permission from [36]. Copyright 2017 MDPI. 

In all regimes, the optimisation of strategic factors enhances joint quality. Among 

these, the energy delivered to the materials is fundamental, and it depends on the input 

parameters as laser peak power, pulse time, spot diameter, welding speed, and pulses 

overlapping [21,25,37,38]. 

Regarding the overlapping factor, in order to produce a superposition of consecutive 

pulses, the distance between two pulse centre points must be lower than the superficial 

melting diameter (Figure 2). In this case, the partial superposition interferes in the fusion 

zone (FZ) of the previous pulse, generating a continuous FZ of the weld seam [21,39,40]. 

Consequently, a high overlapped factor can be used to obtain a homogeneous weld bead. 

It will depend on the thickness of the materials and the welding parameters involved. 

 

Figure 2. Overlapping schematically illustrated. Adapted with permission from [41]. Copyright 

2014 Elsevier. 

1.2. Microstructural Evolution 

Microstructure evolution is a consequence of the arrangement of welding parame-

ters, which designates the energy generated by the combination of laser beam power, peak 

power, welding speed, spot diameter, frequency, pulse overlap, and time [18,21]. Accord-

ing to this combination, the cooling rate and heat input define the behaviour of melting 

and solidification profiles. One pulse usually takes milliseconds, which indicates that this 

stage is indubitably fast, especially for the reduced volume of material implicated. 

The main effect of pulse welding is to create a FZ located in the centre of the weld 

bead. The sharp and focused beam generated by a single pulse concentrates the energy, 

enhancing temperatures above the melting point. After that, the temperature decreases, 

and the material returns to the solid state. In this cooling process, grains start to grow into 

the welding pool perpendicular to the fusion boundary due to the high heat conduction 

developed in this direction. The subsequent laser pulse is displaced at a close distance 

from the previous pulse, repeating the same steps successively. If the distance between 

the two pulses is lower than an FZ radius, the volume of material affected will be over-

lapped, creating the weld seam. This overlapped volume is submitted to multiple exposi-

tions, undergoing melting and solidification processes repeatedly. In this sense, some in-

vestigations characterised the FZ in sub-regions, which are created by the successive rapid 

thermal cycles [11,17,21,42]. As illustrated in Figure 3, according to this division, one re-

gion corresponds to the material only subjected to a single pulse (Z1 of Figure 3), while 

the two following pulses affected the other zones. The Z2 was first exposed to pulse I, and 

Figure 1. Different regimens of pulsed laser process. Adapted with permission from [36]. Copyright 2017 MDPI.

In all regimes, the optimisation of strategic factors enhances joint quality. Among
these, the energy delivered to the materials is fundamental, and it depends on the input
parameters as laser peak power, pulse time, spot diameter, welding speed, and pulses
overlapping [21,25,37,38].

Regarding the overlapping factor, in order to produce a superposition of consecutive
pulses, the distance between two pulse centre points must be lower than the superficial
melting diameter (Figure 2). In this case, the partial superposition interferes in the fusion
zone (FZ) of the previous pulse, generating a continuous FZ of the weld seam [21,39,40].
Consequently, a high overlapped factor can be used to obtain a homogeneous weld bead.
It will depend on the thickness of the materials and the welding parameters involved.
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Figure 2. Overlapping schematically illustrated. Adapted with permission from [41]. Copyright
2014 Elsevier.

1.2. Microstructural Evolution

Microstructure evolution is a consequence of the arrangement of welding parameters,
which designates the energy generated by the combination of laser beam power, peak
power, welding speed, spot diameter, frequency, pulse overlap, and time [18,21]. According
to this combination, the cooling rate and heat input define the behaviour of melting and
solidification profiles. One pulse usually takes milliseconds, which indicates that this stage
is indubitably fast, especially for the reduced volume of material implicated.

The main effect of pulse welding is to create a FZ located in the centre of the weld
bead. The sharp and focused beam generated by a single pulse concentrates the energy,
enhancing temperatures above the melting point. After that, the temperature decreases,
and the material returns to the solid state. In this cooling process, grains start to grow into
the welding pool perpendicular to the fusion boundary due to the high heat conduction
developed in this direction. The subsequent laser pulse is displaced at a close distance
from the previous pulse, repeating the same steps successively. If the distance between the
two pulses is lower than an FZ radius, the volume of material affected will be overlapped,
creating the weld seam. This overlapped volume is submitted to multiple expositions,
undergoing melting and solidification processes repeatedly. In this sense, some investi-
gations characterised the FZ in sub-regions, which are created by the successive rapid
thermal cycles [11,17,21,42]. As illustrated in Figure 3, according to this division, one
region corresponds to the material only subjected to a single pulse (Z1 of Figure 3), while
the two following pulses affected the other zones. The Z2 was first exposed to pulse I,
and subsequent pulse II affected it by the thermal gradient created. Meanwhile, Z3 was
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subjected to the superposition of pulses I and II. Due to the high temperatures, pulse I
changed the microstructure of the Z1 only once, while the subsequent pulses modified
Z2 and Z3 twice. In the Z2, pulse II reheats the microstructure generated by the previous
pulse without reaching the melting point for a second time. However, the temperature
involved in Z3 was high enough to reach the melting point for the second time by pulse
II. Altogether, all the thermal gradients generated in each zone are responsible for the
formation of the microstructures of each zone, created by the high cooling rates during the
solidification stage that varies with the local thermal cycles and the peak temperatures.

Another region created by the process is called the heat-affected zone (HAZ). Anal-
ogous to the other welding process, this region was exposed to temperatures below the
melting point but high enough to change its characteristics. The HAZ created by laser
usually has diminished dimensions compared to the fusion welding processes due to the
focused heat input [15].

All zones develop specific microstructures associated with the material type, the con-
cise chemical composition, and solidification conditions. Alloys with minimal differences
in chemical elements can generate significant variation in microstructure and properties.
Regarding the solidification condition, alteration in the solidification and cooling rates
can also notably modify the microstructure. Even with the same composition, the thermal
cycles experienced for each zone define the microstructures and properties. Generally, the
solidification process is divided into nucleation and growth mechanisms. It can be devel-
oped as planar, cellular, cellular dendritic, columnar dendritic, equiaxed dendritic modes,
and their combination, depending on the temperature gradient and the solidification rate,
as shown in Figure 4. Among these modes, dendritic or cellular are the most common
created in FZs. Planar growth occurs with a high temperature gradient or low solidification
rate and their combination. In opposition, the equiaxed dendritic mode is generated when
the temperature gradient is very shallow [43,44]. As the FZ boundary undergoes rapid
cooling rates due to the fast heat conduction, the centre displays a lower solidification
rate. Therefore, the region near the weld interface can be governed by planar and cellular
growth, while the centre of FZ exhibits a dendritic growth [45].
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For numerous engineering applications, joining two different materials is essential
to achieve the necessary component characteristics. Nevertheless, dissimilar welding is
a technological challenge since the materials exhibit different chemical compositions and
mechanical properties. In this sense, besides the microstructure evolution, the character-
istics of the materials involved are another important aspect to be considered. Since the
materials have different physical and thermal properties, some properties significantly
affect the interaction with the laser beam, influencing the performance of the process. For
this reason, the melting temperatures, thermal expansions, heat capacities, and thermal
conductivities could be considered during the selection of materials [46–50].
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1.3. Industrial Applications

Due to the abovementioned characteristics, the industrial sectors have adopted the
pulsed laser technology as an alternative to conventional welding processes. The precise
and controlled power generation supports a defined distribution of the heat in the material,
resulting in a concentrated weld bead. This has expanded the use of this process in a wide
range of applications, besides the low maintenance cost involved [24].

Some industrial processes require a combination of thin and complex components,
especially in microelectronics and engineering devices. This scenario demands the precision
and accuracy characteristics that the pulsed technology can provide. The high level of
repeatability and reproducibility permits, for example, welding vehicle parts as airbag
assemblies, ignition controls, batteries, and fuel injectors. Laser pulse welds are also found
in the medical sector, such as implants, surgical tools, and orthodontic appliances [51], and
in the mobile phones and solar cells electronic components. Other examples are found in
the fabrication of jewellery and watches, as well as thermocouples, micro-turbines, motors,
and gears [18,23].

1.4. Scientific Developments

The benefits of pulsed laser welding have been demonstrated in the research, exploring
its flexibility to replace the conventional methods and its applicability in the new designs
and material combinations. The field of material and its application are vast in response
to technological advancement. Regarding recognising the scientific studies direction that
have been developed in terms of materials, the present review aimed to perform data
analysis, gathering information on the basis of the articles published in Science Direct,
Springer, and MDPI online platforms in the last 10 years. This analysis was based on
investigations performed in the pulsed laser process applied to steels, followed by titanium,
aluminium, and superalloys. Other research involves welding with different materials,
such as magnesium, zirconium, and copper were also counted. The histogram compiled
in Figure 5 shows the percentage distribution of the 207 works published since 2010; 81%
of them had the approach in similar alloys, whereas 19% focused on dissimilar joints
(Figure 6).

1.5. Scope

The pulsed laser application as a welding process has been investigated in several
metallic alloys using different welding conditions, creating weld seams with distinguishing
characteristics. In this sense, this review aimed to be the earliest study to combine the
achievements related to metallurgical and mechanical properties of weldments made with
steel, titanium, aluminium, and superalloys. The outcomes are focused on microstructure
generated by the pulsed process, as well as hardness and strength performance in similar
and dissimilar joints. This compilation focused on Nd:YAG laser since it is the principal
source used for pulsed welding application. The readers will be able to visualise the
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microstructural modifications as well as the joints generated. A summary of the process
characteristics can also be seen according to each material evaluated.
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2. Materials

Since pulse laser welding imposes permanent changes in metallurgical and mechanical
properties, the chemical composition and its effect have to be carefully evaluated. Therefore,
the process presents different results in steel, titanium, aluminium, and superalloys studies.

2.1. Steels

Even with the wide knowledge available regarding the welding process of steels using
conventional fusion processes, some joints require a specific heat distribution to generate
sound welds. In this context, the studies of pulsed laser effects have demonstrated the
suitable characteristics to weld steels.

2.1.1. Low Alloy and Carbon Steels

Investigations developed with pulsed joints on low carbon steel have demonstrated
heterogeneous characteristics in the microstructure of the FZ. In the St37 steel, the mi-
crostructure of this zone was composed of coarse ferrite grains with few distributions of
martensite, while the HAZ contained recrystallised fine grains (Figure 7A–C) [52]. In the
St4 steel, as the heat input applied was diminishing, the structure of the FZ changed from
fine columnar to coarse dendrites as a consequence of the decreased cooling rates, and
for this reason the microstructure varied from grain boundary ferrite to Widmanstätten
ferrite, bainite, and martensite (Figure 7D,E) [53]. In AISI 1005 low-carbon steel, different
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sub-zones in the welded region were noted due to various thermal cycles generated by the
overlapped pulses (Figure 7F–H) [21]. The high temperature reached during the process
re-melted the upper zone (Z3), generating lath martensite. However, in the middle zone,
the under melting point temperature developed tempered martensite and ferrite (Z2).
Otherwise, lath martensite with columnar grains was noted in the bottom region (Z1),
corresponding to the single thermal cycle of the pulsed laser.
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When the process was applied to S700MC high-strength low-alloy steel (HSLA), the
weld region showed equiaxed grains at the centre surrounded by columnar grains near the
base metal. The difference in the cooling rates in each zone was associated with low rates
in the centre and high rates in the adjacent area (Figure 7I–K) [54]. The high undercooling
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rates developed by the process promoted the transformation to grain boundary ferrite,
acicular ferrite, Widmanstätten, bainite, and lath martensite. Moreover, the process was
not able to melt and dissolve the TiN particles observed in the FZ. A narrowed HAZ
with fine-grained was observed (less than 100 µm). Using twinning induced plasticity
(TWIP) steel, the process modified the microstructure from annealing twins and equiaxed
grains with a size of 3 µm to elongated grains with up to 45 µm in the centre of the FZ
(Figure 7L,M) [55]. The high heat input applied on the FZ produced evaporation of Mn
from 17 to 13%, enhancing the tensile load values and reaching 94% of strength efficiency
(Table 1). With ultra-high strength steel 22MnB5, the technique transformed the original
perlitic–ferritic microstructure into martensite in the FZ and mixture of ferrite, pearlite, and
bainite in the HAZ [19].

2.1.2. Dual Phase (DP)

The pulsed laser welding applied on a DP1000 dual phase high-strength steel changed
part of the parent ferritic–martensitic microstructure to bainite in the FZ (Figure 8A–C) [56].
With the DP590 steel (Figure 8D,E), the increase of the overlap factor (from -22.5 to 75.5%)
modified the microstructure from lath martensite to bainite in the FZ, conserving the
austenite in the grain boundary from the base material (BM) [11]. In terms of mechanical
properties, the optimisation of the welding parameters (laser power and pulse duration)
performed in DP600 steel generated true stress values in the weld very similar to the
BM (between 700 and 800 MPa), and the failures did not occur in the FZ [57]. Another
investigation with same steel indicated that increases in pulse frequency led to higher
tensile values [58]. In the single-sided configuration, the highest tensile strength achieved
81% of the base metal, and in the double-sided welds, the values reached up to 97%.

Metals 2021, 11, x FOR PEER REVIEW 9 of 38 
 

 

achieved 81% of the base metal, and in the double-sided welds, the values reached up to 

97%. 

  

 

(A) (B) (C) 

 

 

 

(D) (E)  

Figure 8. Pulsed laser weldments made of dual phase steels: DP1000 (A), and its HAZ (B) and FZ (C) [56]; DP 590 joint 

(D), and its FZ (E) [11]. 

2.1.3. Stainless Steel 

This category of steel displays a wide variety of alloys, such as austenitic, ferritic, 

martensitic, duplex, and precipitation hardening (PH). Each alloy is characterised by sin-

gular chemical composition and microstructure developed to achieve sound properties 

for many applications. The importance and high cost of these materials have encouraged 

several types of studies. 

Austenitic stainless steel alloy type 304, widely used for industrial and household 

applications, showed different sub-zones in the FZ containing columnar dendritic micro-

structure with dendrite core of vermicular and lathy δ ferrite delimited by interdendritic 

austenite (Figure 9A–C) [17]. In the 304L alloy, the pulsed laser provoked mutual trans-

formation of ferrite and austenite in the FZ (Figure 9D,E) [7]. When 301 austenitic stainless 

steel alloy was welded, the FZ delta ferrite (δ) changed in finer equiaxed grains and few 

lathy and skeletal ferrites around the fusion line (Figure 9F,G) [45]. Additionally, the weld 

interface toward the FZ centre underwent gradual modifications in the solidification 

structure. The planar mode near the FZ boundary changed to cellular dendritic in the weld 

centre, passing through the cellular mode. 

In researching another significant austenitic alloy extensively applied to industrial 

sectors, 316 stainless steel, one study found that the pulsed laser promoted coarse grains 

in the FZ versus fine grains in the HAZ [2]. Another study [38] indicated three different 

sub-zones generated in the FZ, with epitaxial columnar dendritic growth from the fusion 

boundary towards the weld centre and elongated intercellular δ-ferrite surrounded by 

primary austenite. The other sub-zones displayed a refined grain structure with a variety 

of grain sizes. Using the low-carbon stainless steel 316L in overlap configuration (Figure 

9H,I), the FZ demonstrated a fine-grained microstructure with a cellular-dendritic struc-

ture [38]. Moreover, columnar grain structure (epitaxial growth) was developed perpen-

dicular to the fusion boundary. On the other side, the HAZ showed coarse grains. In 904L 

Figure 8. Pulsed laser weldments made of dual phase steels: DP1000 (A), and its HAZ (B) and FZ (C) [56]; DP 590 joint (D),
and its FZ (E) [11].

2.1.3. Stainless Steel

This category of steel displays a wide variety of alloys, such as austenitic, ferritic,
martensitic, duplex, and precipitation hardening (PH). Each alloy is characterised by
singular chemical composition and microstructure developed to achieve sound properties
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for many applications. The importance and high cost of these materials have encouraged
several types of studies.

Austenitic stainless steel alloy type 304, widely used for industrial and household
applications, showed different sub-zones in the FZ containing columnar dendritic mi-
crostructure with dendrite core of vermicular and lathy δ ferrite delimited by interdendritic
austenite (Figure 9A–C) [17]. In the 304L alloy, the pulsed laser provoked mutual transfor-
mation of ferrite and austenite in the FZ (Figure 9D,E) [7]. When 301 austenitic stainless
steel alloy was welded, the FZ delta ferrite (δ) changed in finer equiaxed grains and few
lathy and skeletal ferrites around the fusion line (Figure 9F,G) [45]. Additionally, the
weld interface toward the FZ centre underwent gradual modifications in the solidification
structure. The planar mode near the FZ boundary changed to cellular dendritic in the weld
centre, passing through the cellular mode.

In researching another significant austenitic alloy extensively applied to industrial
sectors, 316 stainless steel, one study found that the pulsed laser promoted coarse grains
in the FZ versus fine grains in the HAZ [2]. Another study [38] indicated three different
sub-zones generated in the FZ, with epitaxial columnar dendritic growth from the fusion
boundary towards the weld centre and elongated intercellular δ-ferrite surrounded by
primary austenite. The other sub-zones displayed a refined grain structure with a variety of
grain sizes. Using the low-carbon stainless steel 316L in overlap configuration (Figure 9H,I),
the FZ demonstrated a fine-grained microstructure with a cellular-dendritic structure [38].
Moreover, columnar grain structure (epitaxial growth) was developed perpendicular to the
fusion boundary. On the other side, the HAZ showed coarse grains. In 904L superaustenitic
stainless steels, the pulsed process modified the primary austenitic microstructure to fully
dendritic in the FZ (Figure 9K,L) [7].

Martensitic stainless steels have excellent mechanical properties and moderate cor-
rosion resistance; however, they have low weldability due to the characteristics of high
hardenability and susceptibility to hydrogen induced cold cracking [59]. In this sense,
the pulsed process was used for joining cylinders of 420 alloy and the BM microstruc-
ture changed from ferrite matrix with precipitation of M23C6 carbides to fine martensite,
δ-ferrite, and some retained austenite in the FZ (Figure 9M,O) [60]. The HAZ had about
25 µm of width with coarse M23C6 carbides, and the different post-welding heat treatment
(PWHT) conditions were applied to decrease the hardness of this region (760 HV). As
a result, the homogeneous hardness profile displayed a significant reduction due to the
tempered martensite in the FZ and the dissolution of the carbides in the HAZ.

Super duplex is a stainless steel category composed of a controlled austenite and
ferrite phase balance, delivering high corrosion resistance. This property encourages its
use in the oil and gas, paper, and pulp, as well as in petrochemical industries. Employing
the pulsed laser in UNS S32750 alloy created an epitaxial microstructure without any
detrimental secondary phases, with a maximum of 80% of ferrite concentration in the FZ
(Figure 9P,Q) [61]. In order to restore the equal microstructural balance and guarantee
corrosion resistance, the researchers applied the PWHT, and the ferrite was reduced to 64%
in this zone [62]. The exposition of 1050 ◦C for 2 h transformed the excess of columnar
ferrite grains into Widmanstätten austenite (Figure 9R).

The precipitation hardening stainless steels are a family of corrosion-resistant alloys
in which the addition of copper increases the strength by heat treatment, achieving tensile
and yield strengths about 3 or 4 times over 304 and 316 alloys [63]. The most used alloy is
AISI 630 (17-4 PH), with about 3% of copper. It has remarkable properties such as ease of
manufacture, high strength, toughness, and good corrosion resistance [64]. Investigation in
bead on plate (BOP) configuration indicated excessive spatter and gas pores in some joints,
although all welds were free of hot or cold cracks (Figure 9S,T) [64]. Due to the high cooling
rates, the pulsed process hardly modifies the martensite microstructures in the FZ. However,
the δ-ferrite had interdendritic and lathy morphologies. Four sub-zones in the HAZ with
diverse microstructures and microhardness owing to different thermal cycles were detected.
In the butt configuration, the spattering and underfill remained, and the PWHT changed
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the microstructure of the FZ. The martensite matrix with δ-ferrite also showed copper and
carbide precipitates, which enhanced the FZ hardness and homogenised the HAZ values
due to the tempered martensite with Cu-rich precipitates uniformly dispersed.

As a characteristic of the pulsed technique, these investigations carried out with
similar joining using different types of steels also demonstrated that the process hardly
affected the strength. As described in Table 1, the performance strength resulted in at least
88% efficiency. The values of hardness observed in the regions are summarised in this table.

Table 1. Selected results of pulsed laser welding apply to steels (approximated values).

Alloy
Hardness (HV) Strength Performance

Ref.
FZ HAZ BM Efficiency Fracture

St37 193 168 115 312.0–96.3% - [52]

St14 280 - - - - [53]

AISI 1005 390 250 120 287 MPa–93.7% BM [21]

S700MC 394 335 281 770 MPa–100.0% BM [54]

TRIP 275 - 315 795 MPa–94.0% - [55]

22MnB5 535 200–460 200 501 MPa–99.0% BM [19]

DP1000 449 316 382 - - [56]

DP600 - - - 611 MPa–91.0% - [58]

DP590 370 - 170 635 MPa–100.0% BM [11]

301 253 - 235 833 MPa–99.0% - [45]

304 180–250 - 160 708 MPa–112.0% - [17]

304L 210 - 180–210 600 MPa–88.0% - [7]

301 254 - 234 980 MPa–98.0% - [45]

316 195 215 165 477 MPa - [2]

316 110–270 - 177 605 MPa–98.0% - [17]

316L - - - 609 MPa–96.0% - [42]

316L 220 225 - 541 MPa–95.0% - [38]

904L 218 - 190 600 MPa–90.0% - [7]

420 450–630 760 241 - - [60]

420 PWHT 210–475 300–450 220 - - [60]

32750 180 - 120 785 MPa–105.0% BM [61]

32750 375 - 330 - - [62]

17-4 PH 440 450 400 995 MPa BM [64]

17-4 PH PWHT 520 480 420 1000 MPa BM [64]

2.1.4. Dissimilar Joints

In some industrial fields, the combined materials have been an alternative to reduce
costs associated with the increment of component work life. Nevertheless, joining dis-
similar materials has been a challenge from a metallurgical point of view. In this sense,
pulsed laser welding has shown significant results. The FZ of joints made with AISI 321
austenitic and AISI 630 precipitation hardening stainless steels (17-4 PH) showed refined
martensite developed near the AISI 630 and delta ferrite microstructure in the centre
(Figure 10A–C) [63]. Otherwise, near the AISI 321, the amount of martensite significantly
diminished, which was replaced by ferrite and austenite contends dendrite and cellular
structures. Due to high heat input, the solidification cracks nucleated at the AISI 321 side
originated from the weld centre towards the BM. The hardness measurements displayed
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peak value in the AISI 630 fusion boundary (600 HV) due to the martensite microstructure,
followed by a reduction towards the AISI 321 parent metal (about 250 HV).
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interface (G) [66].

Pursuing the knowledge of another combination of low carbon with stainless steel,
Torkamany et al. [65] explored the joining of AISI 304L and DIN 11010 steel, usually welded
by resistance spot welding. The pulsed welding was performed in the overlapped materials
configuration with a circular welding path of 6 mm diameter, as shown in Figure 10D,E.
The microstructure of AISI 304L in the FZ revealed fine columnar dendrites with equiaxed
grains at the fusion boundary. Moreover, some grain growing and recrystallisation were
noted in both HAZs, wherein the SS side displayed 20 µm and 80 µm on the low-carbon
side. The hardness profiles performed in each material exposed higher values in the FZ
than the BMs. Regarding DIN 11010, the peak (about 436 HV) reached more than double
the BM (about 160 HV). Moreover, in the AISI 304L, the values were 1.5 times more than
the BM (450 and 250 HV, respectively). The tensile–shear tests revealed a maximum of
6.04 kN due to the large volume of the carbon steel in the FZ.

Stainless steel was also joined to copper by Nguyen et al. [66] using AISI 304 and pure
copper. Cracks were noted in the AISI 304 side of the weld bead (Figure 10F,G), and the FZ
displayed vermicular dendrite and dendritic layers of austenite with columnar dendritic
structure growing from the boundaries towards the centre of the FZ. On the opposite side
of the joint, both HAZ towards the FZ and the narrow FZ interface area of the melted
copper experienced gradual grain growth. The microhardness values from the stainless
steel were between 230 and 250 HV. The profile exposed a decline of up to 60 HV in the
joint, following a 70−90 HV increase toward the copper.

These investigations informed that the pulsed laser process could join several steels
in similar or dissimilar materials configuration achieving good properties. The complete
information about the details of experiments related to the studies is found in Table 2.
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Table 2. Details of pulsed laser welding conditions applied to steel 1.

Alloy Category Thickness (mm) Joint
Configuration

Pulsed
Configuration

Equipment
Power (W)

Pulse
Energy (J)

Heat Input
(J/mm)

Peak
Power (kW) Ref.

AISI 1005 Low carbon 1.70 Butt Overlap 80 - - - [21]

AISI 1070 High carbon 1.30 BOP 2 Spot 20 4.80–5.20 15.0–32.6 - [67]

St14 Low carbon 0.70 Butt Overlap 400 - 19.0–29.0 1.10–2.75 [53]

TWIP Twinning-induced plasticity high-Mn 1.00 Butt Overlap 70 - - 2.00–3.00 [55]

22Mnb5 Ultra-high-strength steels 1.60 Butt Overlap 200 4.00–7.20 - 1.00–1.80 [19]

DP1000 Dual-phase high-strength steels 1.00 BOP 2/butt Spot, overlap 300 - - 2.40–10.32 [56]

DP600 Dual phase 0.80 Butt Overlap 300 38.40 - - [57]

DP600 Dual phase 1.00 Butt Overlap 300 26.40 - - [58]

DP 590 Dual phase 1.00 Butt Overlap 300 8.80 5.5–30.0 1.60 [11]

301 Austenitic stainless steel 1.60 Butt Overlap 600 - - 0.35–0.55 [45]

304 Austenitic stainless steel 1.50 Butt Overlap - - - 0.40–0.49 [17]

304L Austenitic stainless steel 1.40 Butt Overlap - 17.00 - - [7]

316 Austenitic stainless steel 0.45 Butt Overlap 250 - - - [2]

316 Austenitic stainless steel 1.50 Butt Overlap - - - 0.40–0.49 [17]

316L Austenitic stainless steel 0.80 Butt Overlap 70 - - 1.65–1.85 [42]

316L Austenitic stainless steel 0.10 Lap Overlap - 1.00–2.25 - - [38]

420 Martensitic stainless steel 2.00 Butt Overlap 100 - - - [60]

904L Superaustenitic stainless steel 1.40 Butt Overlap - 17.00 - - [7]

UNS S32750 Super duplex stainless steel 1.30 Butt Overlap 600 29.00 - 0.50 [62]

UNS S32750 Super duplex stainless steel 2.00 Butt Overlap 550 - 120.0–330.0 0.50–0.55 [61]

17-4 PH Precipitation hardening 3.00 BOP 2, butt Spot, overlap 300 - 60.0–129.0 - [64]

321/630 Stainless steel/precipitating hardness 0.60 Butt Overlap 80 - - - [63]

DIN 11010/304L Low-carbon/austenitic stainless steel 0.80 Lap Overlap 400 - 12.9–19.3 1.50–2.20 [65]

304/Cu Austenitic stainless steel/Cu 1.50 Butt Overlap 750 - - - [66]
1—Argon shielding gas applied in all studies. 2—BOP (bead on plate).
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2.2. Titanium

Titanium alloys are widely known for their high strength, low density, high operating
temperatures, and good corrosion resistance, related to the stable oxide development on the
surface [22,68]. Therefore, an increase in the application of titanium alloys has been noticed
in numerous sectors of the industry due to these properties, especially in the aerospace,
medical, automotive, and energy supply sectors [36,69,70]. Other remarkable properties
such as low coefficients of thermal expansion and thermal conductivity, which together
diminish heat dissipation and thermal stress, make these alloys suitable for the welding
process [71]. However, the elevated melting point (about 1670 ◦C) requires high heat input
to achieve this thermal stage. Among the welding processes, laser welding draws special
attention on favourable laser absorption and small affected area, as well as having less
energy involved in comparison with other methods [71].

The magnitude of these properties varies according to the alloying composition and
the condition of the material. From the metallurgical perspective, the titanium alloys
have a crucial behaviour related to their crystal structure. The transformation between α

(hexagonally close-packed) and β (body-centred cubic—BBC) microstructures supports
the possibility of modification of the properties, especially the strength performance [69].
Among the titanium alloys, the most used in several industrial applications is the Ti6Al4V
because of its high strength characteristic [70,72]. In this sense, several investigations have
reported on the impact on the metallurgical and mechanical properties developed during
pulsed laser welding operations. As the FZ is the region subjected to the higher heat
input, the microstructure created is a cooling cycle result developed during solidification
of the weld pool beyond β-transus temperature (about 995 ◦C). All investigations detected
a martensitic α′ in this region, differing only in its shape (Figure 11) [69,72–74]. In the
study by [74], the α′ had acicular morphology containing thin needles α′ with average size
between 0.8 and 1.5 µm; in the study of [73], there was an average length of 11.5 µm and a
thickness of 415 nm. On the other hand, the same convergence of microstructure was not
noted in the HAZs. This region was characterised differently in some studies, as a mixture
of martensitic α′, acicular α, and primary α in [69]; α, α′, and β in [74]; and acicular α′ and
blocky α phases in [72].

Aside from the Ti6Al4V, other titanium alloys were pulsed laser welded, and inde-
pendently of the chemical composition, the low heat input and a relatively higher cooling
rate developed α′ martensite in the welded region. Moreover, Ti-5Al-2.5Sn joints showed
a considerable fined aspect of this phase (Figure 12A,B) [75]. In the case of Ti-2Al-1.5Mn
alloy (Figure 12C–E), the HAZ displayed 2 distinguished sub-zones: partially or fully
transformed microstructures [76]. The partial zone showed, besides the original α and
β phases, α and martensite α′ phases. However, the full transformation was composed
of equiaxed prior β-grains and acicular α′ phase within the equiaxed grain. Concerning
Ti49.4Ni50.6 TiNi shape memory alloy, both coarse and heterogeneous grains of the BM
were transformed to fine equiaxed crystals in the centre of the FZ, surrounded by columnar
crystals in the HAZ (Figure 12F–H) [77].

Since the pulsed joint of Ti3Al-Nb alloy displayed pores associated with the Al evapo-
ration in the FZ, Nb was applied as a filler material and avoided the formation of these
defects (Figure 12I,J) [78]. A non-uniform weld zone was created with a white region (NbTi
solid solution) and a grey region with columnar crystal and dendrite structure.

Table 3 summarises the hardness values measured in the welding seam of titanium
similar joints, as well as the strength properties.

Apart from similar joints, some engineering conditions have demanded strategic
characteristics of different alloys, requiring dissimilar welding configurations. In this case,
contrast on the microstructure and mechanical properties can be significant, depending on
the materials’ physical and thermal properties. In this regard, a microstructure modification
was noted in the joining of Ti-22Al-25Nb and TA15 alloys (Figure 13A–C) [79]. The TA15
parent material with β precipitated in α matrix generated three HAZ sub-zones defined
as recrystallised, fine-grained, and coarse-grained. Towards the FZ, the HAZ presented
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a β phase reduction, developing coarse α and α´ martensitic phases. Similar behaviour
was observed in the Ti-22Al-25Nb side, from the BM microstructures (equiaxed α2 and
lath O phase dispersed in the B2 matrix) to HAZ, creating three sub-zones containing
B2 single-phase zone, α2 + B2 two-phase zone, and an α2 + O + B2 three-phase zone.
Lastly, the FZ exhibited a dendritic structure with grains growing perpendicular in the
extremities, and equiaxed grains in the centre, as well as a minor amount of dispersed
acicular martensitic α´. In the solidification stage, the joints of Ti6Al4V and NiTiNb shape
memory created the Ti2Ni, NbNi3, and AlNbTi2 brittle intermetallic phases associated with
cracking formation (Figure 13D) [80]. Meanwhile, the same intermetallic compounds (IMC)
from welding Fe and Ti achieved positive outcomes. A pure titanium and 304 stainless steel
crack-free weld were achieved in an overlapped configuration with a small amount of these
IMC and strengthening of the joint (Figure 13E) [37]. The overlapped joints developed
dendritic microstructure in the middle of the FZ (zone 5), Fe2Ti brittle phase near the weld
interface, and FeTi phases in the upper part of welds. In lap joins with Ti6Al4V and AA6060,
the pulsed process generated almost a full penetration with cracks in the weld interface
(Figure 13F–H), as well as brittle phases TiAl, TiAl2, and TiAl3 [81]. Zones characterised
as Al-rich and Ti-rich were also noted near the interface. These intermetallics negatively
influenced the tensile shear strength, where the peak value was 43.43 MPa.
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Figure 12. Pulsed laser weldments made of titanium: Ti-5Al-2.5Sn FZ (A) and HAZ (B) [75]; Ti-2Al-1.5Mn (C), its FZ
(D) and HAZ (E) [76]; Ti49.4Ni50.6 TiNi (F), its FZ (G) and HAZ (H) [77]; Ti3Al-Nb (I) and Ti3Al-Nb with pure Nb filler
metal (J) [78].

Table 3. Selected results of pulsed laser welding apply to similar titanium joints (approximated values).

Alloy
Hardness (HV) Strength Performance

Ref.
FZ HAZ BM Efficiency Fracture

Ti6Al4V 500–520 360–425 325 507.8 MPa–47.0% - [69]

Ti6Al4V 360–370 340–350 324 1134 MPa–93.0% BM [72]

Ti6Al4V - - - 1138 MPa–102.0% BM [73]

Ti6Al4V 375–390 350–400 320 1191 MPa–108.0% - [74]

Ti-2Al-1.5Mn 235–280 235–275 215 - - [76]

Ti-5Al-2.5Sn 385–405 354–390 343 806 MPa–95.2% BM [75]

Ti49.4Ni50.6 - - - 683 MPa–95.0% - [77]

Ti3Al-Nb 385–395 375–380 365 330 MPa–37.2% FZ [78]

Ti3Al-Nb
Nb Filler 355–375 375–380 365 724 MPa–81.7% FZ/HAZ [78]
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As an alternative to avoid the formation of these brittle compounds, some studies
evaluated the use of third materials as an interlay barrier. The use of Nb was proposed
since it has no intermetallic compounds with Ti and, as a result, full penetrated joints were
obtained (Figure 13I,J) [82,83]. Regions richer in Ti or Nb with more melting in the Ti side
were observed due to its lower melting point. Additionally, all tensile samples broke in
the Nb BM, far from the joint, indicating the absence of brittle phases [82]. Vanadium
was also used to weld Ti6Al4V and AISI 301L stainless steel with the pulsed laser beam
placed on the V interlayer at 0.25 mm from the Ti6Al4V interface in order to prevent the
mixture of Ti and SS (Figure 13K,L) [84]. Therefore, three zones were formed: melted at the
Ti–V joint, un-melted V, and the weld at the V–SS interface. The first zone showed cellular
microstructure of continuous solid solution with (βTi, V) compounds rich in V. On the other
hand, the weld at the V–SS interface was composed of continuous solid solutions of (Fe, V)
containing V and γ-Fe. Moreover, copper was applied to join the same alloys with the beam
on the AISI 301L side at 0.2 mm from the copper interface (Figure 13M,O) [85]. As a result,
the large weld zone of Cu–SS was created with a cellular dendritic structure and γ-Fe
phase without Ti–Fe intermetallics, although micro-cracks were presented. Alongside this
region, un-melted copper zone with an interface exhibiting columnar grains was observed.
Additionally, the higher thermal conductivity of Cu facilitated the heat flow and changed
the microstructure of the Ti/Cu interface, creating a thin layer of 40 µm composed of thick
lamellar structure with Cu2Ti and Cu4Ti phases. In this sense, the Cu barrier reduced the
formation of Ti–Fe intermetallics. Nevertheless, Ti–Cu compounds negatively influenced
the strength, as shown in Table 4.

Table 4. Selected results of pulsed laser welding apply to dissimilar titanium alloys (approximated values).

Joint Hardness (HV) Strength Performance
Ref.

Alloys FZ BM Efficiency Fracture

Ti-22Al-
25Nb/TA15 271–290 Ti-22Al-25Nb: 350

TA15: 320

1019 MPa
92.0% TA15

86.0% Ti-22Al-25Nb
FZ [79]

Ti6Al4V/Nb 175–300 Ti6Al4V: 320
Nb: 80

269 MPa
29.2% Ti6Al4V

100.0% Nb
Nb/BM [82]

Ti6Al4V/AA6060 - - 43.3 MPa - [81]

CP Ti/304 550–750 Ti: 150
304SS: 325

200 MPa
70.0% Ti - [37]

Ti6Al4V/301L
with V interlayer

Ti6Al4V: 470
301L: 300

V: 160

Ti6Al4V: 345
301L: 320 587 MPa Ti–V interface [84]

Ti6Al4V/301L
with Cu interlayer

FZ: 315
Cu: 150

Ti6Al4V: 345
301L: 320

320 MPa
35.7% Ti6Al4V

58.2% 301L
Ti/Cu layer [85]

These investigations prove that the pulsed laser process is capable of joining different
titanium alloys producing satisfactory properties. Joints performed with Ti6Al4V indicated
similar microstructure evolution developed by the heat provided by the process. The use of
alternative filling material was also applied to suppress the crack formation, being a viable
option to avoid this kind of defect. Other studies indicated the possibility to join in overlap
configuration, amplifying the field of these materials’ application. In dissimilar welds,
even with a significant contrast between the properties and the formation of intermetallic
phases, free crack weld seams were made. Further experimental details applied in those
investigations are summarised in Table 5.



Metals 2021, 11, 640 18 of 34
Metals 2021, 11, x FOR PEER REVIEW 20 of 38 
 

 

 

Figure 13. Pulsed laser weldments made of dissimilar titanium: Ti-22Al-25Nb and TA15 (A), its FZ (B) and HAZ (C) [79]; 

Ti6Al4V and NiTiNb (D) [80]; pure Ti and 304 stainless steel (E) [37]; Ti6Al4V and AA6060 lap joint (F), its interface (G) 

and crack (H) [81]; Ti6Al4V and pure Nb (I) [83]; Ti6Al4V and pure Nb (J) [82]; Ti6Al4V and 301L stainless with V inter-

layer (K) and its FZ (L) [84]; Ti6Al4V and 301L stainless steel with copper interlayer (M) and its weld interface (N,O) [85]. 

  

Figure 13. Pulsed laser weldments made of dissimilar titanium: Ti-22Al-25Nb and TA15 (A), its FZ (B) and HAZ (C) [79];
Ti6Al4V and NiTiNb (D) [80]; pure Ti and 304 stainless steel (E) [37]; Ti6Al4V and AA6060 lap joint (F), its interface (G) and
crack (H) [81]; Ti6Al4V and pure Nb (I) [83]; Ti6Al4V and pure Nb (J) [82]; Ti6Al4V and 301L stainless with V interlayer
(K) and its FZ (L) [84]; Ti6Al4V and 301L stainless steel with copper interlayer (M) and its weld interface (N,O) [85].



Metals 2021, 11, 640 19 of 34

Table 5. Details of welding conditions applied to titanium pulsed laser 1.

Alloy Thickness
(mm)

Joint
Configuration

Pulsed
Configuration

Equipment
Power (KW)

Pulse
Energy (J)

Heat Input
(J/mm) Peak Power (kW) Ref.

Ti6Al4V 0.80 Butt Overlap - 6.0–13.0 - - [73]

Ti6Al4V 0.80 Butt Overlap - - - - [72]

Ti6Al4V 1.50 Butt Overlap - - - 2.6–5.2 [86]

Ti6Al4V 3.00 BOP 2 Overlap 0.75 - - - [70]

Ti6Al4V 3.00 Butt Overlap 0.60 5.6–13.4 - - [69]

Ti-2Al-1.5Mn 0.80 Butt Overlap - - - - [76]

Ti-5Al-2.5Sn 1.60 Butt Overlap - - - - [75]

Ti49.4Ni50.6 0.20 Butt Overlap 0.08 - - - [77]

Ti-24Al-15Nb 1.00 Butt Overlap - - - - [78]

NiTiNb/Ti6Al4V Ni 0.3/0.2 Ti Butt Overlap 0.08 - - - [80]

Ti22Al25/TA15 1.00 Butt Overlap 4.00 - - 1.3 [79]

Ti6Al4V/Nb Nb 1.00/0.85 Ti Butt Overlap 0.40 9.0–18.0 27.0 1.5 [82]

Ti6Al4V/Nb Nb 1.00/0.85 Ti Butt Overlap 0.40 9.0 27.0 1.5 [83]

Ti6Al4V/Nb Nb 1.00/0.85 Ti Butt Overlap 3.00 15.0 37.5 1.5 [83]

Ti6Al4V/AA6060 Ti6Al4V 0.80/1.50 A6060 Butt Overlap 0.30 - - 12.0 [81]

CP Ti/304 SS 0.25 Butt Overlap - - - 4.5 [37]

Ti6Al4V/301L 0.80 Butt Overlap 1.05 - - - [84]

Ti6Al4V/301L 0.80 Butt Overlap 1.05 - - - [85]
1—Argon shielding gas. 2—BOP (bead on plate).
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2.3. Aluminium

Aluminium and its alloys are the most widely non-ferrous metals used due to their
outstanding characteristics such as excellent corrosion resistance, high strength to weight
ratio, and high electrical and thermal conductivities, as well as having a relatively low
cost [9,10,16]. This combination of favourable properties enables the application of en-
gineering components in an extensive range of industrial sectors, including automobile,
aerospace, pressure vessel, and shipbuilding [9,26,87]. Nevertheless, joining aluminium
alloys involves several challenges. Regarding the physical characteristics, aluminium has
high reflectivity, absorbing at a lower wavelength laser energy [88]. Therefore, the laser
based on the Nd:YAG source (λ = 1.06 µm) is more appropriate for welding aluminium
than the CO2 (λ = 10.06 µm) [9]. Besides this, the high thermal conductivity leads to a
fast heat transfer in the weld bead, restricting the concentration of energy, and, in thin
sheets, the low viscosity can limit the growth of the weld pool before solidification [9,89–91].
An important issue is the tendency to crack formation during the solidification stage (a
phenomena known as solidification cracking) [9,26,92], mainly due to the rapid cooling
promoted by laser welding [89]. In this regard, the studies indicate that specific welding
parameters can develop crack-free joints.

Vast aluminium alloys have been used to replace conventional materials, bringing
their abovementioned properties to produce new devices and components. Like other
metal alloys, aluminium alloys are classified by chemical composition and physical prop-
erties. In the case of the 5000 series, the alloys are composed of Mg as the main element,
offering good corrosion resistance in marine environments and good weldability. For
this reason, researchers have evaluated its application in pulsed laser welding. AA5052
alloy in an overlap joint configuration showed that the energy input variation significantly
influenced the precipitates distribution and the crack presence (Figure 14A,B) [89]. Since a
higher cooling rate generates fine and equiaxed structure, the homogenous distribution of
fine precipitates and the absence of precipitate formation near the FZ interface promotes
crack-free welds. On the other hand, a lower cooling rate induces cellular or dendritic
structure in welds, leading to joints with cracks exhibiting a network of fine spherical
precipitates (0.07 to 0.51 µm). Another study with the AA5052-H3 alloy demonstrated the
possibility of producing butt sound welds without cracks varying the welding conditions
(Figure 14C,D) [9]. The FZ microstructure was a fine cellular dendritic grain structure with
the intermetallic phase (Al0.5Fe3Si0.5) and columnar structure at the HAZ interface. A
study of AA5456 alloy pulsed laser joint revealed that despite the modification of welding
parameters, all the welds exhibited cracks (Figure 14E–H) and columnar grain structure in
the FZ, known as very susceptible morphology to hot tearing [26]. Nevertheless, the 150 ◦C
preheating reduced the hot crack susceptibility (solidification and liquation cracking),
generating free-crack joints with fine equiaxed grains.

Besides the study of the microstructure and the heat influence on the pulsed joint
properties, the effect of element evaporation is concerned in the defect formation, since
larger solidification temperature range is often caused by the presence of alloying elements
such as Si and Mg [9]. AA5754-O pulsed butt welding demonstrated that the porosities
decreased with lower heat input due to the lower amount of evaporated and trapped
Mg [93]. In this case, the porosity ratio decreased from 15 to 13% with the reduction of
Mg evaporation in about 0.1%. This aspect is aligned with the microstructural refinement,
which conducted to a 90% efficiency in joint strength performance.

Other commercial aluminium alloys with both Si and Mg are the 6000 series. They are
known for their possibility of improving strength by heat treatment. As welding processes
generate different thermal cycles, scientific studies have been developed to comprehend
the material affected. Differently from the 5000 alloys, the variation in the heat input did
not significantly affect the porosity formation in the AA6022 T4E29 joint since the Mg
content was reduced in the BM and the extension of Mg evaporation was condensed [93].
Furthermore, joints even with up to 8% of pores reached 64% of strength efficiency.
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Hot cracking is another significant issue due to its high susceptibility to form this
defect during the solidification. The tendency is governed by weld pool composition, the
parameters and welding process, and the joint restraint to thermal contraction [94–97]. As
the process provides the option of pulse shape configuration, other laser beam profiles
can be used instead of the usual rectangular shape. In this sense, the study performed
by Zhang et al. [94] in AA6061 T6 indicated that a specific range of ramp-down could
mitigate the crack formation. A similar strategy was applied in both AA6082 T6 [95] and
AA5083 [98], which eliminate the hot cracks due to the moderate solidification rates created
(Figure 14I,J). Another approach used to avoid this defect is to apply compressive stress by
the peening procedure before welding. Longitudinal cracks were eliminated in AA6061 O;
however, the effect was conditioned with the dimensions of the crack (small) or weld pool
(higher depth-to-width ratio) [99]. In addition, this method increased the hardness of the
HAZ (Table 6).
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Figure 14. Pulsed laser weldments made of aluminium: AA5052 (A) and its FZ (B) [89]; AA5052-H32 (C) and its FZ (D) [9];
AA5456 (E) and its weld interface (F); AA5456 after PWHT (G) and its FZ (H) [26]; and AA5083 spot (I) and its cross-section
(J) [98].
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Table 6. Selected results of pulsed laser welding applied to similar aluminium alloys (approximated values).

Aluminium
Alloy

Hardness (HV) Strength Performance
Ref.

FZ HAZ BM Efficiency Fracture

AA5052 58.6–65.6 - 60.1–70.5 140 N - [89]

AA5052 H3 105.0–120.0 85–105 80.0 168 MPa–73% - [9]

AA5456 95.0–100.0 - 115.0 - - [26]

AA5456 PH 75.0–85.0 – 95.0–100.0 - - [26]

AA5754-O - - 180 MPa–90% FZ [93]

AA6061 O 76.0
74.0 *

49
61 * 45.0 - - [99]

AA6022 T4E29 - - - 149 MPa–64% FZ [93]

*—With pre-weld peening.

In dissimilar joints between aluminium and steel, the mutual solubility is also an
important additional factor. The solubility of Fe in Al is almost zero, and the solid-state
solubility of Al into Fe is low [100]. As a result, the mixture of these materials causes the
diffusion of Al and Fe atoms at the interface, forming Fe–Al intermetallic compounds
(IMC) such as Fe-rich phases (FeAl and Fe3Al) and Al-rich phases (FeAl2, Fe2Al5, and
FeAl3) [20,101,102]. These compounds are known as brittle and hard phases, with Fe-rich
compound hardness reaching ranges between 250 and 520 HV, and Al-rich phases from
820 to 1100 HV [101]. This characteristic can deteriorate the weld, and mitigating these
intermetallics could enhance quality and strength. The pulse laser process can deliver some
advantages to overcome this particularity due to the low heat input involved, as well as
the minimised volume of HAZ and the thermal stress [20].

Owing to achieving a sound joint, Indhu et al. [20] studied the joint of AA6061
and galvanised DP600 steel in an overlap configuration (Figure 15A,B). The FZ showed
small micro-cracks along with Fe2Al5 phases. Moreover, the aluminium interface dis-
played layers of Fe2Al5 with FeAl3 precipitated as acicular and long needle-shaped com-
pounds. As these compounds have a hard characteristic, the peak of hardness was 510 HV
(Table 7), and through the pulse duration balance, the thickness of IMC was controlled in
the range of 1–7 µm. Moreover, the aluminium interface presented porosities associated
with the zinc vapour from the galvanised steel entrapment. These intermetallic phases were
also observed in AA5754 and St14 low-carbon steel in an overlapped joint configuration
(Figure 15C,D) [101]. Nevertheless, a satisfactory bonding without any macroscopic defects
was reached. The intermediate travel speeds provided adequate heat and cooling rate
to produce a high tensile strength (Table 7), even with a relatively continuous interface
layer with Fe2Al5, FeAl3, and FeAl2 compounds. When 316L stainless steel and AA1060
pure aluminium were welded in overlap configuration, the FZ displayed a wavy interface
surrounded by needle-like structures of FeAl and FeAl2 phases (Figure 15E,F) [87]. Besides
the Al-rich phases, the FZ centre presented other intermetallics composed of Fe, Ni, Cr, and
Al. As observed, the welding defects (spatter, crack, cavity, and loss of molten material)
significantly increased with penetration depth higher than 108 µm. Regarding the strength
performance, a study developed by Pereira et al. [103] indicated that lap joints with AA1050
and DP1000 steel displayed positive values, reaching 88% of the aluminium base metal
(Figure 15G,H).
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Figure 15. Pulsed laser weldments made of dissimilar aluminium alloys: DP 600 steel and AA6061 (A) and its FZ (B) [20],
AA5754 and St14 steel (C) and its weld interface (D) [101], 316L and AA1060 (E) and its weld interface (F) [87], and AA1050
and DP1000 steel (G) and its weld interface (H) [103].

Table 7. Selected results of pulsed laser welding apply to dissimilar aluminium alloys (approximated values).

Alloys
Hardness (HV) Strength Performance

Ref.
FZ Interface BM Efficiency Fracture

AA6061
DP 600

AA6061: 231
DP 600: 267

AA6061: 501
DP 600: 419

AA6061: 253
DP 600: 66 - - [20]

AA5754
St14

AA5754: 1150
St14: 200 1200 AA5754: 100

St14: 150 180–300 MPa - [101]

AA1060
316L 316L: 440 700 AA1060: 35

316L: 180 46 MPa Interface [87]

The abovementioned investigations demonstrated the crack formation could be
avoided, providing sound weld, independently of the alloys involved, even in the dissimi-
lar joints between steel and aluminium. Table 7 displays the mechanical properties of the
similar and dissimilar aluminium joints, while Table 8 contains pulsed laser information
performed on the study cited for further details.



Metals 2021, 11, 640 24 of 34

Table 8. Details of welding conditions applied to similar and dissimilar aluminium pulsed laser 1.

Alloy Thickness
(mm)

Joint
Configuration

Pulsed
Configuration

Equipment
Power (W)

Pulse
Energy (J)

Heat Input
(J/mm) Peak Power (kW) Ref.

AA5052-H32 0.600 Butt Overlap 200 16.70–25.00 - 2.40–4.20 [9]

AA5083 3.000 BOP 2 Spot/overlap - - - 2.30 [98]

AA5083-H321 2.000 BOP 2 Overlap 400 5.00–13.30 - 1.25–1.90 [92]

AA5052 0.250 BOP 2 Overlap - 7.41–8.64 - 3.00–3.25 [89]

AA5456 5.000 BOP 2 Overlap 700 5.00–19.00 48.00–76.00 1.70–3.20 [26]

AA5754-O, AA6022-T4E29 1.000 Butt Overlap 2500 - - 1.70–2.00 [93]

AA2024-T4 2.000 BOP 2 Overlap/spot 400 3.00–5.00 - 1.20–2.00 [104]

AA2024 2.000 BOP 2 Spot 400 6.00–10.00 - 1.20–2.00 [96]

AA6061 T6 3.175 BOP 2 Overlap 350 - - 1.26–2.21 [94]

AA6061 T6 0.500 BOP 2 Overlap - - - 1.50–1.90 [95]

AA6061 O 0.800 BOP 2 Overlap 7200 4.80–5.90 - - [99]

AA1100 1.000 BOP 2 Spot 220 - - 2.84–5.80 [90]

A6061/DP 660 2.500/3.000 Overlap Overlap 6000 - - 4.00 [20]

AA1050/DP 1000 1.000 Overlap Overlap 300 - - 6.00–8.40 [103]

AA5457/St14 2.000/0.800 Overlap Overlap 400 10.00 - 1.00–2.70 [101]

AA1060/316L 0.800 Overlap Overlap 300 - - - [87]

AA1050/Cu1020 0.450/0.300 Overlap Overlap 200 8.00–23.00 - 6.00 [6]

AA2024-T851, AA6061-T4,
AA5454-O, AA5083-H321 2.000 BOP 2 Overlap 400 5.00–13.30 0.81–1.23 1.25–1.90 [105]

1—Argon shielding gas. 2—BOP (bead on plate).
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2.4. Superalloys

A superalloy is a denomination used for a group of alloys that contains the main
elements: nickel, iron–nickel, or cobalt. These alloys have excellent resistance to high
temperature deformation and corrosion [56], where pulsed laser welding can be applied.
In the case of Co-based alloys, the pulsed laser was employed on L-605 alloy (UNS R30605)
(Figure 16A,B) and the FZ had large austenitic columnar grains with (W, Cr)7C3 phase
original from the BM in the interdendritic regions [106]. The interface revealed large
columnar grains with 170–280 µm length, resulting from epitaxial growth, and the HAZ
displayed small grains and some amount of the secondary phase. The electron back-scatter
diffraction (EBSD) analysis indicated an increase of grains with high angle boundaries
(misorientation > 15◦) with peaks distributed around 80% in the HAZ, 70% in the FZ,
and 50% in the BM. These microstructural modifications developed a sound joint, with a
1023 MPa tensile strength, which corresponded to 101% of the BM (Table 9).

Another superalloy from the Fe–Ni–Co system is the Kovar that has significantly low
thermal expansion coefficient, being similar to glass. It can be applied as an intermediate
material for joining steels with glass [107]. Regarding the application of pulsed laser, some
investigations have been developed. Combining Kovar and 304L stainless steel, researchers
found that no sound joints were obtained (Figure 16C) [107]. The incomplete mixture of the
materials associated with the high solidification rate displayed cracks in the centre of FZ.
This region exhibited equiaxed dendrites and columnar dendrites structure of austenitic
phase in the fusion interface. A different investigation with Kovar and 420 stainless steel
was performed using cylindrical specimens (Figure 16D), and only the welding conditions
with low energy involved did not generate cracks in the FZ [108]. The weld metal exhibited
austenite microstructure with fine cellular or dendritic morphologies. The joint interface
at the Kovar side displayed an epitaxial growth, and in the HAZ no microstructural
modification was noted, resulting in austenitic equiaxed grains and some twins. On the
AISI 420 side, the FZ presented two different structures: columnar and equiaxed grains.
The HAZ revealed precipitation and coarsening carbides in the ferrite grain boundary.

The Hastelloy is a Ni–Mo–Cr alloy widely used in the chemical, aerospace, and
nuclear industries. Pulsed laser applied to Hastelloy C-276 generated sound joints with
finer microstructures in the FZ divided into three subzones: centre fusion zone (CFZ),
transition fusion zone (TFZ), and edge fusion zone (EFZ) (Figure 16E,F) [109]. The CFZ
showed mostly fine subgrains due to the rapid solidification. A mixture of the subgrains
and columnar dendrite with some fringes was detected in the TFZ, whereas the EFZ had
planar and cellular formation. In addition, in the FZ was noticed a tendency of brittle phase
transformation. The microhardness indicated the lowest values in the centre of the joint,
with an increase of around 40 HV towards the BM. The tensile strength decreased by 10%
compared with that in the BM. The 2D X-ray diffraction analysis performed on the fracture
surfaces indicated that there was no brittle phase enrichment. Similar finer microstructures
were observed in [110] and [111] (Figure 16G,H); however, brittle precipitates rich in Mo
(p and µ phases) and micro-segregation were also found at grain boundary [111]. In
Hastelloy X, the mitigation of cracks was not achieved, even with a reduction of the cooling
rate (Figure 16I) [112].
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In terms of dissimilar welding, the pulsed weld effect on a combination of Hastelloy
C-276 and Monel 400 Ni–Co alloys (typically used for nuclear applications) developed a
complete penetration joint (Figure 16J) [113]. The FZ was composed of columnar dendritic
grains near the Hastelloy interface and fine dendritic grains in the Monel interface, with
austenitic phase γ, chromium-rich carbide (Cr23C6), and nickel-rich oxide (NiCuO3 and
NiFe3O4) precipitates. Besides, low Mo segregation and fine microstructure was observed.
These characteristics enhanced the joint mechanical strength, resulting in 719 MPa tensile
strength (Table 9). When Hastelloy C-276 is combined with 304 stainless steel (304) using
a ERNiCrMo-4 welding wire, the dilution level of 304 increased with the laser beam
movement towards this material (Figure 16K,L) [114]. At levels from 24.0 to 35.2%, the
volume fraction of precipitated Mo-rich phases (p and µ) was found to be the largest.
Nevertheless, values between 73.0 and 85.1% produced welds insensitive to intergranular
corrosion. The same materials were welded with water cooling positioned on the side
of C-276, increasing the cooling rate and the temperature gradient (Figure 16M,N) [115].
As a consequence, both the penetration depth and width contracted. However, the high
cooling achieved with the water refined the FZ equiaxed grains and diminished the brittle
precipitates rich in Mo (p and µ phases), as well as the unmixed zone between the FZ and
304. Another effect was the increase of microhardness in 10% (287.4 to 317.5 HV).

In another application of the technology, the pulsed laser was investigated as a repair
welding process in Inconel 617 (Ni–Cr–Co) alloy (Figure 16O) [116]. This process achieved
sound bead on plate welds with a cellular structure in the weld meta and no liquation
cracks. An increase of up to 40 HV in the FZ microhardness was also observed (Table 9).

Among the studies made with superalloys, some of them demonstrated sound weld-
ments without defects. Positive outcomes were achieved in Inconel using the bead on plate
configuration without any cracks. Nevertheless, more investigation may be carried out
to ensure the migration of this defect to other welding configurations. The mechanical
properties of these joints are shown in Table 9, and additional experimental information
can be seen in Table 10.

Table 9. Selected results of pulsed laser welding apply to superalloys (approximated values).

Alloys
Hardness (HV) Strength

Performance Ref.
FZ HAZ BM

UNS R30605 325 312 300 1021 MPa—101%
Fracture: BM [106]

Kovar/
304L

Kovar: 200
304L: 250 - Kovar: 150

304L: 160 - [107]

Kovar/
420

Kovar: 250
420: 260

Kovar: 150
420: 375

Kovar: 150
420: 230 - [108]

Hastelloy X 275 255 250 - [112]

Hastelloy C-276 260–300 - 240–280 759 MPa—90% [109]

Hastelloy C-276/
Monel 400 - - - 719 MPa [113]

Inconel 617 290 - 240 - [116]
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Figure 16. Pulsed laser weldments made of superalloys: L-605 Co-based (A) and its EBSD map (B) [106], Kovar and 304L
(C) [107], Kovar and AISI 420 (D) [108], Hastelloy C-276 (E) and its FZ (F) [109], Hastelloy C-276 (G) and its FZ (H) [110,111],
Hastelloy X (I) [112], Hastelloy C-276 and Monel 400 (J) [113], Hastelloy C-276 and 304 (K) and its FZ (L) [114], Hastelloy
C-276 and 304 welded with water cooling (M) and its FZ (N) [115], and Inconel 617 (O) [116].
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Table 10. Details of welding conditions applied to superalloy pulsed laser 1.

Alloy Category Thickness
(mm)

Joint
Configuration

Pulsed
Configuration

Equipment
Power (W)

Pulse EW
Energy (J)

Heat Input
(J/mm)

Peak Power
(kW) Ref.

Kovar/304L Fe–Ni–Co/stainless steel 1.0 Butt Overlap 90 4.8–5.2 15.0–20.0 - [107]

Kovar/420 Fe–Ni–Co/stainless steel 2.0 Butt Overlap 100 - - - [108]

Hastelloy X Ni–Mo–Cr 0.5 Butt Overlap 550 5.0–17.5 18.7–65.6 2.00–2.50 [112]

Hastelloy C-276 Ni–Mo–Cr 0.5 Butt Overlap - - - - [109]

Hastelloy C-276/
Monel 400 Ni–Mo–Cr/Ni–Co 0.5 Butt Overlap 600 8.0–12.0 - - [113]

Inconel 617 Ni–Mo–Cr 12.0 BOP 2 Spot 100 - 15.7–22.3 - [116]

L-605 Co–Cr–W–Ni 1.4 Butt Overlap 400 12.0–14.0 36.0–93.3 2.00–2.33 [106]
1—Argon shielding gas applied in all studies. 2—BOP (bead on plate).
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3. Outlook and Remarks

Pulsed laser technology characteristics and their effects on the macro- and microstruc-
ture, hardness, and strength performance were studied in the present review. From the
outcomes obtained in scientific investigations, one can point out specific characteristics in
comparison with other joining processes.

As with any welding technique, the process parameters affect the temperature rates
providing modification in metallurgical characteristics and mechanical properties. In
pulsed laser welding, the high energy distributed on sharply focused areas achieves high
energy density, affecting a small volume of material. Besides the high temperature delivered
in few milliseconds, the elevated cooling rate is beneficial for producing narrow HAZ.
These features make this process different from conventional fusion welding, in which the
high input heat depends on the contact between materials and creates joints with larger
HAZ and FZ [72]. Furthermore, even though the pulsed laser is an autogenous process,
adding filler and layer materials is an alternative to creating high-resistance transition areas
between the base materials. This is important in dissimilar joints when the employment of
a third material with a high melting point is needed. In other processes, such as brazing
welding, the heat sources deliver gradual input energy in a large volume of material,
first affecting materials with low melting point [117]. The fact that the laser beam has
high-energy density without contact is another relevant feature. This characteristic is an
appealing aspect compared to the friction stir welding process, which requires a non-
consumable tool with specific properties due to the significant levels of wear and heat
involved [118–120].

Besides advantages over the established processes, the pulsed laser process has
specifics benefits compared to the continuous laser method. The intermittent pulsed
laser achieves heating and cooling cycles in every single pulse, making it suitable to
apply in superalloys, where the rapid cooling behaviour avoids microsegregation and,
consequently, brittle phase transformations [111]. Furthermore, the pulsed profile can be
delivered by varying the power over time (pulse shape), controlling the temperature flux
and mitigating hot cracking formation in aluminium alloys [94,95,98]. As the bead weld
is a sum of multiples pulses overlapped, it thermally affects the previous pulse and can
reduce hardness, residual stress, and cooling rate. In high-strength steel alloys, the heat of
subsequent pulses modifies the microstructure, refining and tempering the coarse-grained
zone in the HAZ, similar to the temper bead welding [121,122]. Furthermore, due to the
pulse frequency regime and consequent low average power involved, the high-energy
density can be applied using small and relatively low-cost apparatus.

From another perspective, the sequence of laser beams produces weld beads with
lower scan velocity than other welding processes. Moreover, the high energy density
cycles can evaporate chemical elements with a low melting point, and the cooling rates
can generate dispersed micro and nano precipitates in the welding pool. As an accurate
method to evaluate phases and precipitates, transmission electron microscopy analysis
can support this effectiveness over microstructural and microhardness results. Corrosion
assessment also can improve the knowledge associate with the influence of the phases and
precipitates in the joint integrity.

All the evaluated studies showed that the pulsed laser welding had been employed
in thin plates (up to 3.175 mm) because of low penetration depth. Besides this restriction,
mechanical tests, such as hardness and tensile and shear strength testing, were used to
determine the joint quality. However, the shallow joints limit the application of conven-
tional method impact toughness. Even with the complexity, further investigations of failure
mechanism in terms of crack fracture and fatigue should be developed.

4. Summary

Significant investigations of pulsed laser welding technology have been increasing in
the last 10 years. Outcomes involving a diversity of materials (steel, titanium, aluminium,
or superalloys) have shown the versatility of this technique. The present review shows
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that welding process parameters have a remarkable effect on metallurgical and mechanical
properties, revealing sound joints made from several alloys in similar and dissimilar
configurations. As exhibited, the pulsed laser beam provokes intense material alterations,
creating FZ and HAZ with different aspects according to each material and welding
conditions. Moreover, the FZ showed a significant microstructural modification associated
with a variety of parameters and cooling behaviour. With the same aspect, the HAZ
displayed size with un-melting microstructures developed by the rapidly and sharply
focused heat input.

Studies on different types of steels indicated that the pulsed process significantly alters
the microstructure and mechanical properties. Due to the high cooling, the microstructure
underwent intense modifications and, generally, the martensite phase was observed in the
FZ. Even though, sound weldments were developed in carbon, stainless, or dual-phase
steels. In some cases, the use of post-welding heat treatments was an essential tool to
enhance the properties of the stainless steel alloys. Regarding the titanium, the research
indicated that the pulsed laser delivers satisfactory properties to the joints made with the
most used and investigated Ti6Al4V alloy. Other titanium alloys also demonstrated good
weld quality, even with all microstructure modification. In dissimilar combinations, a third
material, such as niobium, vanadium, or copper, was employed to reduce the mixture
between the materials and avoid intermetallic phases. Concerning aluminium welding,
the challenge prevented intrinsic physical effects related to the cracking tendency due
to the rapid cooling rates promoted by high thermal conductivity and fast weld process.
Nevertheless, some investigations performed with 5000 and 6000 alloys indicated the possi-
bility of applying this welding method to generate sound welds, mitigating the generation
of defects through the variation of the welding conditions or application of preheating.
When steel and aluminium alloys are combined, brittle intermetallic compounds could be
developed; however, the energy variation could re-strain these phases. Moreover, pulsed
laser joints of superalloys displayed positive results in some alloys such as Inconel, L-605,
Kovar, and Hastelloy.

Overall, these investigations evidence the potential of this technology for industrial
applications. Complex and thin materials, ranging from 0.1 to 5 mm, in similar or dissimilar
configurations, showed the pulsed laser welding capacity to produce joints with the
reduced area affected by the heat input. As highlighted, the majority of the results were
positives, displaying joints with high quality.
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