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Abstract: Directed energy deposition (DED), a type of additive manufacturing (AM) is a process that
enables high-speed deposition using laser technology. The application of DED extends not only to
3D printing, but also to the 2D surface modification by direct laser-deposition dissimilar materials
with a sub-millimeter thickness. One of the reasons why DED has not been widely applied in the
industry is the low velocity with a few m/min, but thin-DED has been developed to the extent that it
can be over 100 m/min in roller deposition. The remaining task is to improve quality by reducing
defects. Thus far, defect studies on AM, including DED, have focused mostly on preventing pores
and crack defects that reduce fatigue strength. However, evaporation products, fumes, and spatters,
were often neglected despite being one of the main causes of porosity and defects. In high-quality
metal deposition, the problems caused by evaporation products are difficult to solve, but they have
not yet caught the attention of metallurgists and physicists. This review examines the effect of the
laser, material, and process parameters on the evaporation products to help obtain a high-quality
metal film layer in thin-DED.

Keywords: cavitation bubble; keyhole; nanoparticles; fume; spatter

1. Introduction

Directed energy deposition (DED) is an additive manufacturing technology (AM)
used to manufacture 3D structures. The process can also be used to produce 2D deposition
with dissimilar material deposition technology that forms a sub-millimeter coated layer.
Thin-DED is particularly suitable to replace hexavalent chromium plating [1,2], which
is very harmful to the human body. Among the other alternative techniques, plasma
spray and high-velocity oxygen fuel (HVOF) spray have been strong candidates to replace
chromium plating for over twenty years, but they are still incomplete because of low
bonding strength. Besides, flame spraying with fusing or detonation-gun (D-gun) shows
the strength of metallurgical bonding, but they are difficult to replace in the industry due to
the expensive process cost and difficulty of uniform and thin deposition. On the other hand,
DED can achieve high bonding strength similar welding to fix delamination failure, which
is persistent in plated and thermal sprayed layers, and also has an important industrial
significance owing to the high degree of freedom in material selection and deposited
thickness.

Common defects in powder AM include porosity due to LOF (lack of fusion) or
gases and cracks caused by differences in thermal expansion during cooling [3–7]. On
the other hand, it is difficult to manufacture porosity-free or crack-free products in the
manufacturing stage using current technologies. Efforts to detect defects during the
process or after completion by non-destructive testing, such as XCT (X-ray computed
tomography) [3,5] and acoustic emission [4], are continuing. In the DED process, a metal
powder or wire is supplied while focusing the laser on the base metal surface to form a
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melt pool by a reaction with the laser light and laminate it to a height of several millimeters.
In that respect, it is similar to cladding [8,9].

To replace plating or thermal spray coating, it is necessary to deposit in a thin layer
while preserving the original shape of the base metal, which is difficult using the general
DED method. Figure 1 presents a schematic diagram comparing PBF (Powder Bed Fusion)
and DED, which are typical processes in metal AM, with thin-DED. Figure 1a is PBF, which
is formed by laser irradiation of a thin layer of metal powder and melting the desired area
layer by layer, and Figure 1b is DED, which produces a melt pool with a laser beam on
the base metal, followed by the supply of a metal wire or powder to the melt pool with
deposition in millimeter units. Figure 1c is a thin-DED that combines the advantages of
both processes. In thin-DED, while the incident laser beam supplies powder to a two-
dimensional surface of the workpiece, a thin layer of 50–300 micrometers is deposited per
scan. Unlike general DED, thin-DED has a unique characteristic that the base metal is
barely diluted. Only the powder is fused, so there is virtually no diluted bonding layer or
little penetration.
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In the general DED process, when the evaporated metal expands to form bubbles,
the internal vapor pressure of the bubbles increases, and the bubbles burst to release
evaporation products. The volatilized nanoparticles of evaporated metal are generally
called a fume [10]. The massive particles resulting from the agglomeration of evaporated
nanoparticles to a size of several hundred micrometers are called spatter [11–13]. Fumes
are small enough to float in the atmosphere or hinder the reaction between the material
and the laser and have very high reactivity with the human body or melt. Therefore, it
harms the health of workers [14] and degrades the quality of the deposited layer due to
a photochemical reaction with the laser, porosity, change in chemical composition, and
impurities. Spatter contaminates tracks on the workpiece, causing various defects, such
as increased roughness, porosity, contamination of the nozzle surface, decreased fatigue
strength, decreased thermal conductivity, and low fluidity. In the general DED or cladding
process, the solidification time is long, so there is some time for the dissolved gas absorbed
in the melt to release. Since the melt pool is deep and wide, any spatter attached to the
surface is also remelted, so there are few problems caused by evaporation products. In
thin-DED, however, the time to solidify the deposited layer is very short so that fumes can
become trapped in the melt and produce pores. Furthermore, pores can be formed in the
gaps as molten powders are again laminated on the massive spatter.

In this study, to manufacture a high-quality metal thin film by a thin-DED process,
the mechanism of forming evaporation products by a laser, the reaction with the laser
according to the properties of powder materials, and the influence of the process parameters
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were investigated in depth, shown in Table 1. By adjusting the laser density and process
parameters based on these findings, it will be possible to prevent evaporation products
and form a high-quality metal film layer in the thin-DED process.

Table 1. Preventive methods of fume and spatter in DED.

Relevant DED Defects Major Factors Sub-Factors Preventive Measures

Lower corrosion resistance,
decreased fatigue strength,
inner crack, surface crack,
surface dimple, porosity, high
roughness, uneven hardness,
decreased laser energy
efficiency, lower fluidity of
melt.

Material

Absorptivity, small powder
size (<15 µm), presence of low
melting point elements or low
vaporization temperature
elements (<2000 ◦C), presence
of carbon or boron, eutectic
reaction, low wettability,
characteristics of base metal.

Adjustment of laser power, irradiation
angle, surface condition of the powder
and base material.
Appropriate choice of suitable powder
size, addition of compound-forming
refractory components (Nb, Ta, W, Zr).
Replacement to very low carbon- and
boron-contained powder.

Source Laser

Laser type, laser power
density, beam divergence,
duration time, wavelength of
laser.

Adjustment of laser power, powder
feed rate.
Selection of CW laser, top-hat mode
beam, larger diameter beam,
rectangular beam, or defocusing.

Working Condition

Hatches distance, powder
feed rate, scanning velocity,
nozzle distance, cooling rate,
layer thickness, humidity,
vibration.

Redefining new conditions from single
track experiments.
Adjustment of hatches distance,
powder feed rate, scanning velocity,
nozzle distance, cooling rate, and layer
thickness.
Usage of air conditioner, and vibration
absorber.

Assist gas Gas pressure, kind of gas.

Appropriate pressure for complete air
shielding.
Replacement of nitrogen or mixed
argon-nitrogen gas to pure inert gas
(argon or mixed argon-helium).

Laser Focusing

Beam mode, beam shape,
nozzle design, focal length,
focused on the base material
surface.

Appropriate choice of top-hat mode
beam, larger diameter beam,
rectangular beam, defocusing, inclined
laser beam.

2. Generation of Evaporation Products
2.1. Evaporation by Laser

In the past, fumes were understood as the vaporization of solid metals by high
energy. In recent years, the basic mechanism of fume generation involves the evaporation
of elements and oxides by plasma from a superheated melt. The fume is comprised of
nanoparticles from the metallic vapor phase [15–17]. Metallic nanoparticle fumes are
generated by various physicochemical methods, such as laser, electron beam, ion beam,
plasma ionization, electromagnetic wave, arc discharge, combustion, spray pyrolysis,
physical or chemical vapor deposition, but an analysis of the process is not simple.

Since Anisimov analyzed metal vapor motion in a vacuum by hydrodynamics in
1968 [18] molecular dynamics (MD), hydrodynamics (HD), and direct simulation Monte
Carlo (DSMC) methods have been performed to understand the plasma formation and
the plume behavior, making significant progress in comprehending the stages of evap-
oration [19–47]. Recently, the stage of the plume generation has been observed directly
by shadowgraphy in laser confocal scanning microscopy (LCSM) [48,49] and high-speed
scanning small-angle X-ray scattering (SAXS) [50,51].



Metals 2021, 11, 353 4 of 18

The released fumes interrupt the laser energy transfer to the additive powder and
base metal and often enter the deposited layer as impurities. Furthermore, agglomerated
massive particles are released as spatter, contaminating the nozzle and the base metal
surface.

2.2. Evaporation Mechanism on Thin-DED Process

In the thin-DED process, when high-speed photons hit the base metal surface as
increased light intensity, free electrons of metal atoms absorb the energy to generate the
laser-induced plasma [52]. At the focus of the laser beam, the base metal is heated rapidly
to form a melt pool and releases nanoparticles to the atmosphere during bubble collapse
through the bubble expansion and plasma plume stages [50]. When a keyhole forms in the
melt pool, robust hydrodynamic melt flow rises vertically due to the recoil pressure and the
Marangoni effect [45,53,54]. This results in the release of nanoparticles and several hundred
micrometers sized spatter particles. All reactions from plasma formation to nanoparticle
release occurred within only a few tens to hundreds of microseconds [55]. This occurs
more frequently in pulsed-wave laser than continuous-wave laser because of the high peak
power [56].

3. Influence of Laser Characteristics

The high energy laser is difficult to control in the DED process because it reacts with
the deposition material and base metal within tens to hundreds of microseconds. Moreover,
the loss of the delivery system, cooling system, optical lens, and conversion system vary
greatly depending on the source laser. Furthermore, the efficiency varies greatly depending
on the deposition material and the surface condition of the base metal. The shape of the
deposition material is an important parameter. The drop size of the molten powder is
finer than that of a molten wire drop, allowing uniform and thin deposition. General DED
is melted by the photochemical reaction of a laser, base metal, and deposition material.
Thin-DED involves a reaction mainly between the laser and the powder, minimizing melt
pool formation on the base metal, resulting in a thin and uniform deposited layer. The
thickness of the deposited layer obtained by thin-DED is 50–300 micrometers, which is
quite thin, and there are little bonding zones caused by dilution. For this, cavitation bubbles
and keyhole phenomena must be suppressed. Precise control of the powder feed rate from
the nozzle, laser power adjustment, scanning velocity, and the location where the powder
and laser meet are key parameters in the process.

3.1. Laser-Induced Cavitation Bubble

Cavitation is a phenomenon in which vapor bubbles are generated in a liquid when the
saturated vapor pressure decreases with increasing temperature or velocity. In thin-DED,
cavitation bubbles can be formed by the laser plasma when the fluid pressure or the fluid
velocity of the melt increases rapidly [50].

Figure 2 presents a conceptual diagram showing how cavitation bubbles are generated
and grown by laser irradiation, nanoparticles are released as fumes, and aggregated
massive particles are released as spatter. Initially, a cavitation bubble, which is in the form
of a nano-scale hemisphere (I), expands to a millimeter size [50]. The jet flow velocity
of nanoparticles along the plasma plume rises perpendicularly to the surface of the base
metal and passes through a conical shape (II) to a pointed top. It becomes form (III). Stauss
et al. explained (Figure 3) the step-by-step process of emitting nanoparticles after the
expansion of cavitation bubbles during laser ablation. Since the cavitation bubble interface
is not a material film, it is formed only by the difference in pressure and density. Some
nanoparticles may escape from the cavitation bubble into the surrounding fluid [46].
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Figure 3. Rapid heating by a laser beam and subsequent plasma formation leads to the formation of
cavitation bubbles, then vaporization by nanoparticle (NP) nucleation and growth in a pulsed laser,
at t ~ 10−6–10−4 s. (Modified from Stauss’ nanomaterial nucleation diagram [46]).

Muneoka et al. described the following six stages in more detail: plasma formation
(phase I), cavitation bubble expansion (phase II), bilayer cavitation bubble expansion
(phase III), contraction (phase IV), stagnation (phase V), and cavitation bubble collapse
with nanoparticle release (phase VI) [51]. Ibrahimkutty et al. observed the moments at
320 microseconds (phase VI) in which the bubble collapse after the rise of the plasma
plume inside the cavitation bubble, as shown in Figure 4 by X-ray [50]. At that moment,
the evaporation products are released into the atmosphere.
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3.2. Prevention of Cavitation Bubble

The temperature at the center of the high-power laser beam is 2200–3000 K [57,58], some-
times above 4000 K [45,55,59,60], and plasma is formed at the beam focus [50]. Occasionally,
a low absorptivity material melts slightly even in an intense laser beam at first. Still, the
melt is suddenly superheated as the absorptivity rises rapidly in a locally melted area. For
example, the absorptivity of an aluminum alloy is only 5–15%, but that of steel exceeds
40% in an Nd:YAG laser with a one-micrometer wavelength [61]. Therefore, it is important
to work rapidly with a high energy density for aluminum alloys [62].

The absorptivity of laser energy is related to the material composition, the incident
laser angle, and the laser wavelength [61]. The angle is the relative range between the laser
nozzle and the base metal. The energy wave (P wave) of a laser is absorbed only 25% at an
incident angle of 70◦ to a ferrous material between the laser nozzle and the base metal. On
the other hand, the absorptivity increases significantly to 70–82% at 87◦ or higher, and a
one-micrometer wavelength Yb-doped fiber laser has high absorptivity in the 70–85◦ range.
The ten-micrometer wavelength CO2 laser has the highest absorptivity at 85–88.5◦ [61].

Therefore, the energy density can be adjusted by changing the incident laser angle [63].
In this adjusted area, the laser absorptivity changes due to the anisotropic absorptivity of
the base metal surface [64], and cavitation is suppressed. Another way is to adjust the laser
beam scanning velocity [65] or focus position [66–68], and a pulsed laser is desirable to
change as a top-hat mode or a continuous wave laser (CW laser).

3.3. Prevention of Keyhole

A keyhole often forms at high scanning velocities and high ambient pressures [69]
when the focus is deep with high power or a Gaussian beam. When the laser energy density
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is higher than the thermal conductivity, keyholes are formed by an interaction between the
absorbed laser energy and the free electrons of the metal. At this time, the electrons of the
valence band transfer to the conduction band, and the migrating electrons interact with
the metallic bonds, lattice strain, defect, imperfection, and potential perturbation [70]. A
CW laser with a top-hat profile [71] or rectangular beam [72] laser is better for preventing
keyhole formation.

Katayama’s illustration and Kaplan’s diagram are useful for understanding keyhole
formation. Katayama reported that a keyhole is formed by recoil pressure due to evap-
oration [70], and Kaplan described in detail the keyhole in seven phases: (a) Melt flow
redirected to pass around the keyhole, (b) Marangoni flow driven by surface tension gra-
dients, (c) redirected flow that can cause spatter, (d) humping caused by accumulating
downstream flow, (e) stagnation point for accelerated flow, (f) inner eddy, and (g) key-
hole front melt film flow downwards by boiling recoil pressure, which is illustrated in
Figure 5 [73].
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(2017), Springer Nature)).

According to Khairallah et al., even in the shallow deposition of a PBF simulation,
recoil pressure occurs similar to a keyhole because of the high temperature, and strong
Marangoni convection occurs due to the surface tension during cooling [59]. Gunenthiram
et al. examined spatter generation with a high-speed camera to understand better the
spatter generation process according to the power change [62]. Unlike the laser welding
process, the thin-DED process needs to reduce keyhole and spatter formation by avoiding
a pulsed wave or Gaussian beam that makes deep and narrow melt pools.

3.4. Position of the Laser Beam Focus

The focus of the laser beam is influential because it is the highest energy area. When
the defocus distance increases by moving the beam’s focus slightly up or down on the base
metal surface, the energy density of the melt pool decreases because the laser irradiation
area widens [67]. Moreover, powder melt temperature decreases, which suppresses the
generation of evaporation products.

Figure 6 shows the defocus in laser drilling, which explains the effect of the beam
focus due to a focus shift and angle in Figure 6a–i [53,74]. For examples of Figure 6h,i, the
influence appears similar to the defocus when the laser irradiation angle is changed. Li
et al. reported that spatter was suppressed in the keyhole of laser welding when the focus
position moved downward from the base metal surface [69].
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In thin-DED, if the focus is on the surface of the base metal, the depth of the melt
pool may become too deep due to the high laser power density, which may damage the
original shape. On the other hand, it may leave an incomplete deposition layer and pores
when the laser power is decreased to avoid overheat. The deep melt pool problem can be
solved in two ways. First, it decreases the depth of the melt pool shallower by applying
a defocus while maintaining power. Second, when the powder is supplied to the upper
point of focus, the temperature of the laser beam focus decreases, which lowers the melt
pool temperature of the base metal.

4. Influence of Powder Characteristics

Powder characteristics such as the size, chemical composition, and surface condition
of the powder particles have a great influence on moisture absorption from the atmosphere
and reaction with the laser beam, so it is important to select a suitable particle for the DED
process to prevent evaporation products.

4.1. Powder Size and Chemical Composition

The powder size and chemical composition are important factors. The small powder
has high surface energy and a short time for melting, which can be superheated easily.
Porous sintered powder or fine powder has a large specific surface area to volume ratio.
Thus, the amount of atmospheric moisture adsorbed and the laser absorptivity is relatively
high. Fine particles under five micrometers in the powder cannot settle on the melt pool
and are blown away by the gas flow or often meet the laser beam to become a fume.
Therefore, a particle size of 30–45 µm is suitable for the high-power thin-DED process. The
powder should have a similar thermal expansion coefficient to the mixed phases and a
small difference in particle size distribution.
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Because a laser is an electromagnetic wave, the lattice [70,75] condition and electron
orbitals [76,77] vary according to the composition and absorptivity of the powder. Powders
containing metal elements with a low evaporation point below 2000 ◦C or containing
carbon or boron generate evaporation products easily and hinder the absorption of a laser
on the base metal. When the chemical composition changes due to fume generation, it
alters the melt fluidity, and thermal conductivity may cause the formation of pores or cracks
in the coating layer. The compound-forming refractory components, niobium, tantalum,
tungsten, and zirconium, are useful for improvement because they have vaporization
points of 3000 ◦C or higher.

Evaporation is not determined merely by the melting point and vaporization point
of the component. It depends on the eutectic reaction among atoms in the alloy or the
formation of an intermetallic compound and the vapor pressure of the evaporated com-
ponent. As an example, Figure 7 presents a comparison graph for evaporation of 304
stainless steel [78], where Figure 7a is the respective evaporation curves of iron, manganese,
chromium, nickel, and Figure 7b is the evaporation curves of the four elements in the alloy.
Among the four elements, the vapor pressure of manganese is the highest, but the vapor
pressure of manganese in the alloy is the lowest. According to Henry’s law, the partial
pressures determine the vaporization rate because the manganese content is less than 2%
in 304 stainless steel. Iron and chromium are present in 70% and 18%, respectively. On the
other hand, neither carbon nor boron is presumed to follow Henry’s law.
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It is better to refer to the phase diagram rather than the Ellingham diagram to pre-
dict the presence of evaporation products. For example, regarding the Gibbs Energy of
chromium carbides, many studies have reported that Cr23C6 is more stable than Cr7C3
or Cr3C2 in the Ellingham diagrams. On the other hand, these are different from the
molten state because they present a solid-state range of 700–1300 ◦C. In the Cr-C phase
diagram, however, the stability is Cr23C6 < Cr3C2 ≤ Cr7C3 [79,80]. Berdnikov and Gudim
and Vlasova et al. reported the evaporation point of chromium carbides in the order of
Cr23C6 < Cr7C3 < Cr3C2 [81,82]. The powder containing chromium carbide has increased
the vapor pressure of carbide when dissolved in 1527–1811 ◦C according to the C-Cr binary
eutectic reaction [83] and Fe-Cr-C ternary eutectic reaction [84]. This presents the fume
as oxidation [82] in the atmosphere. Despite this, there are few cases where refractory
carbides, NbC, TaC, and ZrC, evaporate below 3000 ◦C [85].

4.2. Surface Condition of Powder

The composition and surface condition of powder is closely related to the laser ab-
sorption rate. The powder is produced mainly by four processes, crushing, atomizing,
agglomeration, and sintering after agglomeration; the surface condition of the powder is
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very influential in the thin-DED process. A hard and brittle powder could be obtained by
crushing a bulk material. That is not used in the additive manufacturing process because
of its polygonal and sharp edges. The alloy powder is manufactured mainly by atomizing,
involving a molten metal spray with 10–50 MPa high-pressure gas or water. High melting
point refractory carbide powders are usually produced by agglomeration with fine metal
powders as binders and sintered to increase the density. Figure 8 shows the difference in
surface morphology between the atomizing powder and agglomerated-sintering powder.
The point to consider in powder selection is porosity in agglomerated powders. Another is
a brittle phase by carbide dissolution in the binder metal [86]. Recently, plasma-atomized
tungsten carbide powder [87–90] was used to prevent embrittlement of the cladding layer.
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(c,d) Cross-section; (a,c) Metal alloy powder as gas atomized; (b,d) Regular carbide powder as
agglomerated and sintered) [91]. (Reused from ref. [91], copyright (2018), Oerlikon Metco).

The wettability between the pair of base metal and deposition powder also has an
influence. Insufficient wettability causes non-uniform deposition because of the different
absorptivity between the deposited melt and the uncoated area. If the main compositions
between the base metal and the deposition material are similar, the wettability by the
similarity in physical properties is sufficient. When selecting a deposition material with a
different main component from the base metal, a material with a similar thermal expansion
coefficient is chosen.

The last factor is moisture adsorbed on the surface. Agglomerated and sintered
powders or fine powders have high surface energy so that moisture can be adsorbed
on the particle surface. Strongly adsorbed moisture is difficult to remove by heating or
vacuum [92], and the surface generally tends to lower the surface energy by forming an
oxide layer with moisture [93]. Most moisture adsorption is physical adsorption caused
by weak van der Waals forces. Water molecules are difficult to remove by heating when
chemical adsorption occurs by covalent bonding or ionic bonding with the reactive gases
in porous powders or on the rough base metal surface [94,95].

As shown in Figure 9, chemical adsorption occurs because of the “image force”, in
which electrons on the oxygen atom side of the water molecule repel some electrons on the
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powder surface and attract positive charges [96,97]. The adsorbed moisture reacts rapidly
during powder melting and produces a fume containing oxides [15,98] and nitrogen
oxides [99–103] that are harmful to the human body. Before use, powders should be dried
in a heated oven for eight hours above the boiling point of water (100 ◦C), cooled, and
immediately charged into the hopper to avoid contact with the atmosphere.
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5. Process Parameters
5.1. Powder Feed Rate

Determining the suitable powder feed rate requires experiments. If the powder feed
rate is too low, the melt pool is superheated and generates keyholes and cavitation bubbles.
In contrast, if the powder feed rate is too high, the base metal is not heated uniformly, so
the melt pool is not uniform and does not deposit appropriately.

For the experimental sequence, a specific range of the powder feed rates to the volume
ratio was set, and the other parameters (power, scanning velocity, and hatch distance) were
adjusted. Finally, the powder feed rate was fine-tuned to the desirable level.

5.2. Scanning Velocity

When increasing the scanning velocity on the base metal, the lack of powder should
be considered. An increase in scanning velocity under the same powder feed rate means
much more laser energy is supplied to the powders and base metal. Thus, base metal and
powders can be superheated.

To maintain the powder feed rate while increasing the scanning velocity, the laser
power must be reduced to achieve a constant energy density per powder unit weight.
Indeed, when the scanning velocity increases, the deposited layer is better with an increase
in the powder feed rate or a decrease in power density [104] because cavitation bubbles
can form when the maximum temperature of melt increases. A uniform and thin deposited
layer can be obtained under properly controlled process parameters, even high-speed
thin-DED.

5.3. Powder Supplying Position

Unlike the usual DED of supplying powder to a focus, in thin-DED, the powder reacts
with the laser beam first by supplying powder slightly above the focus or by a defocus.
The remaining laser energy then reaches the base metal surface [105,106]. Thus, the laser
energy to the melt pool is reduced, resulting in a thinner bonding zone, improved powder
recovery, and faster deposition velocity.

5.4. Shape of the Laser Beam

The latest technology modulates a rectangular laser beam through a cylindrical lens
array [107] or crossed Powell lenses [72]; combining it increases the productivity of the
laser deposition process. A wide rectangular beam can allow uniform heating [108–111]
compared to a Gaussian beam. Thus, the structure of the deposited layer has a uniform
composition and dispersion strengthening by fine precipitates.

5.5. Environmental Parameters

Generally, the generation of evaporation products is accelerated if the thin-DED
process is performed in an air environment. If the process atmosphere contains reactive
gases, such as oxygen [112], nitrogen [99], sulfur [98,100], halogen group elements [113,114],
or moisture [115–117], it accelerates the generation of evaporation products. In particular,
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nitrogen gas sometimes promotes the oxidation of carbide [116,118] and the formation of
nitrogen oxides [101] and nitrides [102]. The nitrogen radicals decomposed by the high
energy of the laser beam become nitrogen oxides (NOx) [99,100], and the nitrogen oxides
in contact with the laser beam again decompose to become reactive oxygen species and
nitrogen oxide ions [103]. These reactive oxygen species oxidize the carbide of the powder.
Therefore, when fumes are generated continuously, a shielding gas should be changed to
an inert gas, argon, or helium without nitrogen. Due to an excessive shielding gas flow
forming turbulence, the amount of laminar flow gas is appropriate for covering the laser
and melt pool [119].

6. Experimental Sequence of Thin-DED

Thin-DED experiments can be performed in the sequence of a single-track and a
multi-track. In the single-track experiment [120], the possibility of bonding between the
base metal and the deposited powder could be investigated first, except for the effects of
overlap, preheating, and post-annealing. The suitability of powder selection or process
conditions can be determined by examining whether defects are generated according to
the reaction between the powder and the laser beam.

When evaporation products form, the cause of the defect can be analyzed using the
Ishikawa diagram. Figure 10 is a remake to prevent evaporation products in the thin-DED
process by modifying the diagram reported by Yeo et al. [74]. Evaporation products can be
avoided by choosing suitable material, further finely optimizing the parameters working
condition, source laser, assist gas, and laser focusing.
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thin-DED (modified from Yeo’s Ishikawa diagram) [74].

Figure 11 shows two experimental examples of single-track thin-DED. In Figure 11a,
the laser power was low, and the base metal surface was not heated sufficiently. The
wettability of the powder was also insufficient. Hence, the material did not deposit
completely, and spatter was present at the beam boundary. Figure 11b gives an example
of good results on a single-track. Therefore, an experiment to control the hatch distance
in a multi-track experiment can produce a better-deposited layer than a single-track [97].
Figure 12 shows a thin-DED multi-track experiment on rolls.
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7. Summary

In thin-DED processes, nanoparticle fumes and massive agglomerated-spatter can be
released when the base metal is heated at the focus to form a melt pool, which is collec-
tively called evaporation products. Evaporation products can be prevented by selecting
suitable powder and source laser, further finely optimizing process parameters. To prevent
evaporation products in thin-DED, especially the following factors were investigated:

(1) To reduce the evaporation products, it is first necessary to suppress the concentra-
tion of the needle-like laser energy. Particularly a continuous wave laser, top-hat mode,
and rectangular beam are more desirable than a pulsed laser or Gaussian beam.

(2) The defocus shifts the laser beam focus, widening the laser irradiation area and
lowering the energy density.

(3) Fine particles with a size of less than five micrometers can form fumes easily.
Powders with an average size of 30–45 micrometers are suitable in thin-DED.

(4) It is necessary to minimize carbon or boron and low evaporation point components.
A sintered powder with a porous surface generates evaporation products because of high
moisture adsorption and laser absorption in the air. Therefore, atomized powders and
plasma atomized carbide powders with smooth surfaces are preferred for thin-DED.

(5) The bonding zone can be thinner by feeding the powder slightly above the focus
to lower the laser energy density delivered to the melt pool. Powder recovery and nozzle
scanning velocity can also be increased.
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