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Abstract: The ball valve is an essential piece of equipment in an oil and gas pipeline. The sand
particles transported through the pipeline can cause erosion and wear to the ball valve, thus causing
it to fail, leading to serious safety hazards. In this paper, the self-designed erosion experiment method
was combined with computational fluid dynamics (CFD), while the Euler-Lagrange method was
also introduced to optimize the Oka erosion model and Ford particle-wall rebound model. The
erosion mechanism and characteristics of the ball valve sealing surface in gas-solid two-phase flow
were simulated, while the erosion condition of the specimen was analyzed and compared when
exposed to different factors, such as different particle velocities, impact angle, particle size, and
specimen materials. The experimental data conformed well to the CFD erosion simulation data,
verifying the accuracy of the CFD simulation analysis. The results indicated that the worn surface
was caused by various wear mechanisms, while a “stagnation zone” was identified at the center of
the specimen. The maximum erosion area, which was U-shaped, was also located at the center. The
erosion rate increased in conjunction with an increase in the particle velocity and size, both of which
failed to affect the erosion pattern. The erosion rate initially increased, after which it decreased with
the impact angle, reaching the maximum value at an impact angle of 30◦. This paper summarizes
the erosion failure mechanism and characteristics in gas–solid two-phase flow and provides both
technical support and a theoretical basis for the on-site maintenance of essential vulnerable parts in
the pipeline, such as ball valves.

Keywords: erosion; gas-sand two phase flow; jet impingement experiment; computational fluid
dynamics (CFD) simulation; erosion mechanism

1. Introduction

The ball valve is responsible for cutting off, distributing, and changing the medium in
oil and gas pipelines and is an essential regulating component presenting several advantages,
such as low fluid resistance, convenient and rapid switching, an extended service life, and
high reliability. However, during the operational process, there may be leakage or even
failure of the ball valve, causing serious safety hazards due to the erosion and wear of
the sealing surface of the ball valve by the sand and abrasive particles in the pipeline [1].
As a phenomenon of surface material loss caused by the repeated collision between the
wall surface and the sand particles carried by the fluid, erosion wear occurs extensively
in production, transmission, and processing equipment [2]. Therefore, erosion wear can
directly lead to the failure, damage, and scrapping of equipment and its parts. According to
a British scholar, Eyre [3], erosion wear accounts for 8% of the total wear and tear damage
during industrial production. Therefore, it is necessary to study the erosion characteristics
and mechanism of the sealing surface of the ball valve to reveal its specific erosion law,
while improving its service life and ensuring the safe operation of oil and gas pipelines.
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The erosion problem is exceptionally complicated and can be affected by a variety of
factors, such as particle velocity, particle diameter, particle material, impact angle, and the
material properties of the eroded parts [4]. Therefore, a substantial number of simulations
and experimental analyses have been performed to reveal the influence of these elements
on the erosion results, which include research regarding the role of particles in erosion
during the oil and gas production process, storage, and transportation. At present, the
most common erosion wear includes liquid-solid particle slurry erosion and gas–solid
erosion, while gas-liquid-solid three-phase erosion wear is relatively rare.

The most common experimental form used for examining liquid-solid erosion involves
the immersed plate specimen impact test. Some results show the presence of a “W” shaped
erosion pattern in the cross-section of the eroded surface [5,6]. In additional studies
involving liquid sand erosion, Liu et al. [7] revealed the migration path of the severe
corrosion area of a hydraulic slide valve, as well as the mechanism of local corrosion.
Nguyen et al. [8] found that the corrosion rate became higher in conjunction with an
increase in impact velocity, while the surface roughness increased when the test time
or impact velocity was increased. Sun et al. [9] proposed two corrosion mechanisms in
different flow fields based on the observation of the corrosion morphology of samples
cut from abrasive tools and the analysis of flow characteristics using scanning electron
microscopy (SEM) and computational fluid dynamics (CFD). Liu et al. [10] indicated that
the mass flow rate, wall shear stress, turbulence intensity, and particle erosion displayed a
decline in conjunction with a decrease in the valve opening.

Several impact experiments were performed on flat plate specimens in a dry envi-
ronment to examine gas-solid erosion. Divakar et al. [11] showed that the erosion rate
increased with higher particle impact velocity, while the higher the hardness of the target
material, the lower the erosion rate. Using 316 stainless steel as the impact target material,
Vieira et al. [12] illustrated that a higher particle impact velocity increases the erosion rate,
thereby eliminating more mass loss of the target material regardless of the changes in the
impact angle. Furthermore, the erosion rate reaches the maximum value when the impact
angle is 30◦. A study by Vieira et al. [12], Mazdak et al. [13], and Siaw KhurWee et al. [14]
indicated the presence of a “retention area” and an almost circular erosion area on the
target when exposed to different velocities. The velocity and erosion nephograms of the
target surface subjected to different velocities and target angles were analyzed using CFD.
Evstifeev et al. [15] studied mass loss and surface degradation while evaluating the approx-
imate threshold velocity of particles. By conducting a dry erosion test using a sandblasting
machine, Okonkwo et al. [16] found that the plowing mechanism is dominant at a higher
speed and extended test duration. Okonkwo et al. [17] found that at a 90◦ impact angle, a
ploughing mechanism occurs on the tested specimens, while material removal through
low-angle cutting is the dominant mechanism at lower impact angles.

Current research involving the erosion failure mechanism of vulnerable parts during
the gathering and transportation of natural gas focuses on the pipeline elbow. However,
no studies are available regarding the erosion failure mechanisms of all-welded ball valves
in natural gas pipelines. Although the degree of damage to the sealing surface of the ball
valve in a natural gas pipeline is readily visible, the damage quantification mechanism and
corrosion resistance characteristics have not been revealed until now. Very few studies have
developed a complete set of abrasive wear test devices to assess the welded ball valves in
natural gas pipelines, while no systematic analysis or comparison of erosion wear charac-
teristics are available regarding the exposure of welded ball valves to various influencing
factors, such as different openings, different angles, and different erosion mediums.

Many scholars have performed unilateral in-depth research on erosion theory, simula-
tions, and experiments. Finnie [18] proposed the earliest micro-cutting wear theory in 1958,
Bitter [19,20] presented deformation wear theory in 1963, Mansouri et al. [5,21] improved
the theoretical erosion model involving liquid–solid erosion, Oka et al. [22,23] carried out
extensive experiments and proposed a more applicable erosion prediction model, while
Zhang et al. [24] verified the accuracy of Oka et al.’s erosion prediction model through
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experiments. However, not many researchers have provided a comprehensive compar-
ative analysis involving theory, simulations, and experiments. Therefore, it is necessary
to study the erosion mechanism of the ball valve core and the sealing surface in natural
gas pipelines via simulations and experimental comparisons. Since a natural gas pipeline
contains no liquid, this paper focuses on gas–solid erosion, while completely disregarding
liquid-solid erosion.

This paper is mainly designed to analyze the erosion mechanism of the ball valve seal-
ing surface and reveal its erosion characteristics. The scope of this work is to characterize
the erosive behavior of the materials of the ball valve sealing through the well-established
method of the direct impact test at the laboratory scale, as a preliminary step toward
the analysis of a real ball valve geometry. The numerical erosion model is selected as a
theoretical basis to simulate the cross-section of the ball valve in a natural gas pipeline
using a plane specimen. The change in the erosion rate, the erosion characteristics, and
the erosion mechanism when exposed to different conditions are clarified by assessing
the impact of the sand-carrying gas on the specimen. The commonly used CFD software
package (ANSYS Fluent 18.0) is employed to simulate and predict the erosion mode and
study the flow field. The experimental data were highly consistent with the CFD simula-
tion results and theoretical model, verifying the erosion failure process of the ball valve
cross-section, presenting the erosion law, and providing theoretical guidance regarding the
failure mechanism of the ball valve in natural gas pipelines.

2. Experimental Details
2.1. Experimental Principle

Figures 1 and 2 show that the experimental erosion device based on gas–solid two-
phase flow in a dry environment consisted of an air compressor (OUTSTANDING 750W-30L,
Taizhou, China), a gas mass flowmeter (MF5712-N-200 with a flow range of 0–200 L/min,
and maximum working pressure of 0.8 MPa), a quantitative sand-conveying device, a pres-
sure gauge (WIKA, 233.50.100, Frankfurt, Germany), a nozzle (Lockheed, RM82W/NW14,
Tianjing, China), an experimental observation platform, a cyclone filtration device, a bag
filtration device, and an induced draft fan.
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Figure 2. Schematic diagram of the experimental device for the gas-solid two-phase flow erosion specimen.

The air compressor provided airflow, while the airspeed was regulated by a valve
between the compressor and the nozzle. The sand slowly flowed into the nozzle via the
sand conveyor, impacting the specimen from the nozzle outlet to generate material loss
when reaching a certain airspeed. The cylindrically shaped specimen, ϕ30 mm × 4 mm in
size, was installed on the base. The initial angle between the specimen and the centerline
of the nozzle was 90◦ and could be adjusted by bending it. When changing the inclination
angle of the specimen, the distance from its center point to the nozzle outlet was not
adjusted but kept at a fixed value.

2.2. Experimental Materials

The materials used in this study included Q235 carbon steel, A304 stainless steel, and
6061 aluminum alloy materials, which are commonly used in the ball valve section of an
oil and gas pipeline. The characteristics of these materials are shown in Table 1.

Table 1. Characteristic parameters of the specimen materials.

Material Q235 Carbon Steel A304 Stainless Steel 6061 Aluminum Alloy

Thickness (kg/m2s) 7850 7930 2700

Hardness (GPa) 1.4 2 0.95

Considering the influence of particle size on erosion, quartz sand with different particle
sizes was selected to facilitate the experimental erosion process. The SEM equipment
(FEI Quanta 200F, Waltham, MA, USA) was used to observe the surface morphology of
three sand particle sizes. The mirror image is shown in Figure 3.
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Figure 3. The scanning electron microscopy (SEM) images of different particle sizes. (a) Quartz sand with a particle diameter
of 100 µm. (b) Quartz sand with a particle diameter of 300 µm. (c) Quartz sand with a particle diameter of 500 µm.

2.3. Experimental Procedures

Before the experiments, all parts of the equipment were checked to ensure that the
experimental conditions were met. At the same time, the specimen surface was polished
before each experiment to avoid the surface roughness influencing the erosion results. Be-
fore and after the erosion process, the mass loss of the specimen was recorded several times
using an electronic microgram analytical balance, and the average value was calculated.
During each group of experiments, the comparative tests were carried out repeatedly by
the particle sizes, specimen materials, inlet velocities, impact angles, and various other
parameters. The three groups of comparative tests were performed as follows:

(1) The Q235 carbon steel specimen and sand with a particle size of 300 µm were selected
to be used at nozzle inlet velocities of 45 m/s, 55 m/s, and 60 m/s during the erosion
process, while the angle between the nozzle and the specimen was changed to 20◦,
30◦, 45◦, 60◦, 75◦, and 90◦, respectively.

(2) A constant angle of 90◦ between the specimen and the nozzle, an air inlet velocity
of 60 m/s, and average sand particle sizes of 100 µm, 200 µm, 300 µm, 400 µm, and
500 µm, respectively, were selected for the erosion process.

(3) Test pieces, including Q235 carbon steel, A304 stainless steel, and 6061 aluminum
alloy, as well as sand with a particle size of 300 µm, were selected to be used at a
nozzle inlet velocity of 60 m/s for the erosion process, while the angle between nozzle
and the specimen was changed to 20◦, 30◦, 45◦, 60◦, 75◦, and 90◦ respectively.

2.4. SEM Image Results

SEM was used to analyze the micro image of the sample surfaces after erosion to study
the erosion mechanism further. Figure 4 shows the SEM images the erosion of the A304
stainless steel specimen using sand particles of 300 µm in size at a speed of 55 m/s, and
three respective impact angles of 30◦, 75◦, and 90◦.

Figure 4 shows that when the impact angle was 30◦, the erosion characteristics in-
cluded pits, wear debris, and scratches, while the erosion mechanism involved micro-
cutting. As the impact time increased, the debris was transferred to the pit boundary,
leaving the specimen surface as the subsequent particles made contact. When the impact
angle was 75◦, the erosion characteristics included pits, scratches, and wear debris. The
erosion mechanism involved both micro-cutting and impact extrusion deformation. When
the angle was 90◦, the erosion characteristics presented mainly pits. The erosion mechanism
involved impact extrusion deformation since the particles made vertical contact with the
center of the specimen center that caused the formation of pits, while the repeated impact
led to the presence of deformation debris on the specimen surface.
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Figure 5 shows the SEM images of the erosion involving sand particles of 300 µm and
500 µm in size at a speed of 45 m/s and an impact angle of 90◦. The sizes of pits on the
specimen surface increased in conjunction with an increase in the particle sizes, indicating
that the larger the particle size, the higher the erosion rate.
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3. CFD Simulation and Analysis

To fully verify the reliability of the test data, CFD was used to simulate similar erosion
behavior and comparatively analyze the test results. The CFD simulation method assesses
the flow field distribution law by introducing the basic conservation equation, as well
as the initial and boundary conditions. In this paper, the ANSYS Fluent [25] software
(Version 18.0, Ansys, Pittsburgh, PA, USA) was used to simulate the erosion behavior of
the gas–solid two-phase flow impact specimen.

This study regarded gas as the continuous phase and solid particles as the discrete
phase using the Euler-Lagrange method [26]. In the Euler coordinate system, considering
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a shear stress transfer (SST) k-ω turbulence model, the motion of the continuous phase
is obtained [27]. In the Lagrange coordinate system, the discrete phase motion is tracked
using the discrete particle model (DPM) and Newton’s second law. Without considering the
influence of particle motion on fluid motion, the unidirectional coupling method was used
in this paper to obtain the flow field, velocity, and angle of particles impacting the specimen
plane via CFD and particle tracking. Then, the Oka erosion model and Forder et al. [28]
particle–wall rebound model were used to predict the erosion wear of the specimen [29].

3.1. Numerical Model and Boundary Condition Settings

The numerical CFD simulation model corresponding to the follow-up experiments was
established (Figure 6) with the following parameters: the nozzle diameter was D = 7 mm
with a pipe wall thickness of 2 mm and a length of Ln. The distance from the nozzle to
the specimen center line was H = 12.7 mm, with a specimen diameter of DS = 30 mm,
and thickness of ds = 4 mm. The shape of the external computational fluid domain was
cylindrical, in which the diameter of the external flow field was Dt = 100 mm, and the
length was dt = 60 mm. The specimen center was in the positive center of the external flow
field, while the angle between the specimen plane and the nozzle centerline was about 30◦

to 90◦, and H did not change in conjunction with θ.
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The detailed geometry features, numerical schemes, and boundary conditions in the
CFD simulation are listed in Table 2. To avoid the influence of the number of particles
on the final erosion result, this paper refines the nozzle entrance grid size to increase the
number of particles incident from the nozzle, and sets the entrance grid size to 0.06 mm,
making the number of entrance grids reach 12,520.

3.2. Grid Independence Test

To ensure that the fluid formed a steady flow at the nozzle outlet and did not affect
the analysis results under the boundary outlet conditions while reaching the maximum
calculation accuracy, it was necessary to determine the optimal nozzle length.

At an inlet fluid velocity of 60 m/s, a particle velocity of 19 m/s, a particle mass flow
rate of 5e × 10−5 kg/s, and a particle size of 300 µm, the velocity distribution of the flow
field at the H/3 position of the XOY plane in different working conditions was compared at
nozzle lengths of 14 D, 18 D, and 22 D, and grid densities of 1 mm and 2 mm, respectively.

From Figure 7, it is evident that the maximum velocity occurred within 5 mm around
the center of the specimen. In addition, the maximum velocity was located at a point
1.5 times that of the nozzle radius from the specimen center. Furthermore, the velocity at
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the point directly opposite to the specimen center was relatively small, mainly because
a high-pressure zone in this location led to the maximum velocity at a certain distance
away from itself. Therefore, the overall velocity curve at H/3 on the specimen surface
presented a W shape. Based on the result, the average variation of the velocity achieved
by the 1 mm and 2 mm grid was about 4.9 pct. For the 0.5 mm and 1 mm gird, their axial
velocity variation was about 0.6 pct. Therefore, the simulation model was not sensitive to
the gird number, using the 0.5 mm and 1 mm grid. The computational time required by the
0.5 grid was 2.3 times than by the 1 mm grid. Furthermore, computational time required
by the nozzle lengths of 22 D was 1.13 times than that of 14 D. This paper analyzed the
1 mm grid size and the 14 D nozzle length.

Table 2. Geometry features, numerical schemes, and boundary conditions in computational fluid
dynamics (CFD).

Project Description

Geometry parameters

D (mm) 7

Ln (mm) 120

H (mm) 12.7

Ds (mm) 30

ds (mm) 4

θs (◦) 20, 30, 45, 60, 75, 90

Numerical schemes

Pressure–velocity coupling SIMPLE algorithm

Momentum discretization Second-order upwind

Turbulence discretization First-order upwind

Boundary conditions

Nozzle inlet Velocity inlet

Nozzle wall No-slip wall

Tank Pressure outlet

Specimen No-slip wall
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3.3. CFD Simulation Results

Figure 8 shows the impact simulation results obtained using CFD at a 60 m/s gas
velocity at the nozzle inlet, as well as a particle velocity of 19 m/s, and a particle size of
300 µm, while illustrating the velocity nephogram, the particle trajectory map, the pressure
nephogram, and the erosion nephogram.
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Figure 8a indicates that the maximum velocity in the flow field was located at the
centerline of the nozzle. When the gas–solid mixture reached the specimen center (i.e., the
stagnation zone), the velocity decreased to 0 m/s, and the diameter of the stagnation zone
was approximately the same as that of the nozzle. Additionally, Figure 8b shows that the
particles ejected from the nozzle rebounded after directly impacting the specimen surface.
The gas–solid two-phase flow exhibited a larger Stokes number, and the momentum transfer
between the gas and sand particles was lower. Moreover, the particles continued to move
according to the original trajectory when exposed to the action of inertial force until they
impacted the specimen surface, forming a circular erosion zone. The particles that collide
with the specimen surface might be involved in a secondary collision at a higher speed,
rebounding into the outer fluid domain. Figure 8c shows the formation of a static pressure
zone at the specimen center, while the gas velocity near the center of the specimen decreased
continuously. The maximum velocity region on the surface of the specimen was located at a
nozzle radius of 2–2.5 times from the specimen center and decreased in a radial direction.
According to Figure 8d, the diameter of the erosion area was basically the same as that of
the nozzle, while the maximum erosion position was located in the center of the specimen
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center, indicating that the erosion rate became lower further away from the specimen center.
Furthermore, it was evident that the interface was U-shaped due to erosion.

3.4. Comparative Analysis of the Different Parameters

In an experiment, Vieira [12] measured the particle velocity using particle image
velocimetry (PIV) and found the presence of a slip velocity between the particles and the
gas at the nozzle outlet. The particle velocity was 0.317 times lower than the gas velocity.
When the gas velocity was 45 m/s, 55 m/s, and 60 m/s, the particle velocity was 14 m/s,
17 m/s, and 19 m/s.

3.4.1. Simulation Analysis at Different Impact Angles

A Q235 carbon steel specimen and sand particles of 300 µm in size were selected for
the experiment. The air velocity at the nozzle inlet was altered to 45 m/s, 55 m/s, and
60 m/s, while the impact angle between nozzle and specimen was adjusted to 20◦, 30◦, 45◦,
60◦, 75◦, and 90◦, respectively. Considering a nozzle inlet velocity of 60 m/s as an example,
the velocity nephogram of the XOY plane at different angles is shown in Figure 9, the
particle trajectory is shown in Figure 10, and the erosion nephogram is shown in Figure 11.
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Figure 9. A comparison of the velocity nephogram results at different impact angles (vg = 60 m/s, vp = 19 m/s, and
dp = 300 µm). (a) 20◦ impact velocity nephogram. (b) 30◦ impact velocity nephogram. (c) 45◦ impact velocity nephogram.
(d) 60◦ impact velocity nephogram. (e) 75◦ impact velocity nephogram. (f) 90◦ impact velocity nephogram.
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Figure 10. A comparison of particle trajectory at different impact angles (vg = 60 m/s, vp = 19 m/s, and dp = 300 µm). (a)
Particle trajectories after 20◦ collision. (b) Particle trajectories after 30◦ collision. (c) Particle trajectories after 45◦ collision.
(d) Particle trajectories after 60◦ collision. (e) Particle trajectories after 75◦ collision. (f) Particle trajectories after 90◦ collision.

According to Figure 9, when the impact angle is below 90◦, the fluid flows from the
nozzle and to the side at a larger angle. Furthermore, “retention zones” are evident on the
specimen surface at different angles. However, when the angle between the specimen and
the nozzle decreases, the location of the retention zone gradually moves from the center of
the specimen to its upper side.

As shown in Figure 10, when the angle between the specimen and the nozzle is lower than
90◦, the particles collide with the specimen surface and rebound to the side at a larger angle
between the specimen and the nozzle, while the air does not affect the particle movement.

According to Figure 11, the maximum erosion positions at different impact angles
are located in the central area of the specimen. When the angle is 20◦ and 30◦, the erosion
area is elliptical. Increasing the angle between the specimen and the nozzle causes the
erosion area to gradually change from elliptical to circular. The length of the cloud image
in the direction perpendicular to the screen is basically the same, while the length along the
surface direction of the specimen on the XOY section increases and a decrease in the erosion
position occurs at the center of the specimen at different angles. When the inclination angles
of the specimens are 20◦, 30◦, 45 ◦, 60◦, 75◦, and 90◦, the lengths of the angle decrease.
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Figure 11. A comparison of the erosion nephogram results at different impact angles (vg = 60 m/s, vp = 19 m/s, and
dp = 300 µm). (a) 20◦ impact erosion nephogram. (b) 20◦ impact erosion nephogram. (c) 20◦ impact erosion nephogram.
(d) 20◦ impact erosion nephogram. (e) 20◦ impact erosion nephogram. (f) 20◦ impact erosion nephogram.

In engineering practices, the failure of equipment is mainly related to erosion depth.
The greater the erosion depth, the higher the failure risk. Figure 12 shows the variations in
erosion depth on the intersecting line formed by the XOY plane and the right surface of
the specimen. The abscissa denotes the distance from the upper point to the lower point
of the intersecting line formed by the XOY plane and the inner surface of the specimen,
while the ordinate is the erosion depth. Therefore, the maximum erosion areas are 17 mm,
15 mm, 12.5 mm, 10 mm, 8.5 mm, and 8 mm, respectively, while the maximum erosion area
is located in the center of the specimen at different impact angles.
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Figure 12. The erosion depth distribution on the specimen surface at different impact angles (vg = 60 m/s, vp = 19 m/s, and
dp = 300 µm).

3.4.2. Comparative Analysis of the Erosion Simulation at Different Velocities and Particle Sizes

Figure 13a,b compares the effect of gas velocity and particle size on erosion depth
at the intersecting line between the XOY plane and the specimen surface. The erosion
area was within 4 mm from the specimen center, while the maximum erosion area was
located in the center of the specimen surface. When the Q235 carbon steel specimen
with a particle size of 300 µm was selected with a consistently maintained 90◦ angle
between the specimen and the nozzle, and respective gas velocities set at 45 m/s, 55 m/s,
and 60 m/s, the corresponding erosion depths were 102.9 µm, 175.5 µm, and 264.5 µm,
respectively. When the angle between the specimen and the nozzle was kept at 90◦, with
an air velocity of 60 m/s, and particle sizes of 100 µm, 200 µm, 300 µm, 400 µm, and
500 µm, the corresponding erosion depths were 204.2 µm, 231.4 µm, 263.5 µm, 368.1 µm,
and 418.4 µm, respectively. Therefore, it is evident that the erosion depth increases with an
increase in the gas velocity and particle size. These results indicated that the gas velocity
and particle size might be related to higher kinetic energy, leading to an increase in the
material removal rate. In addition, the change in gas velocity and particle size did not
affect the erosion mode.
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Figure 13. A comparison of the erosion depth at different velocities and particle sizes (θ = 90◦). (a) Depth erosion at different
air velocities (dp= 300 µm). (b) Erosion depth at different particle diameters (vg = 60m/s).
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4. Results and Discussion
4.1. A Comparative Analysis of the Simulation Results and Erosion Models
4.1.1. Analysis of the Erosion Law at Different Velocities and Specimen Angles

At a particle size of 300 µm, as well as adjusted impact angles (20◦, 30◦, 45◦, 60◦,
75◦, and 90◦) and gas velocities (45 m/s, 55 m/s, and 60 m/s), the comparison diagrams
denoting the CFD simulation results and erosion model results of the different specimen
materials (Q235 carbon steel, A304 stainless steel, and 6061 aluminum alloy) are shown in
Figures 14–16:
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Figure 14. A comparison between the simulation and erosion models of the Q235 carbon steel
specimen (vg = ~45–60 m/s, vp = ~14–19 m/s, dp = 300 µm, and θ = ~20◦–90◦).
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Figure 15. A comparison between the simulation and erosion models of the A304 stainless steel
specimen (vg = ~45–60 m/s, vp = ~14–19 m/s, dp = 300 µm, and θ = ~20◦–90◦).
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Figure 16. A comparison between the simulation and erosion models of the 6061 aluminum alloy
specimen (vg = ~45–60 m/s, vp = ~14–19 m/s, dp = 300 µm, and θ = ~20◦–90◦).
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According to these images, the simulation results of the different materials at different
angles, gas velocities, and particle velocities were close to the theoretical predictions. Due to
the difference in hardness between the three specimens, the erosion rate of the Q235 carbon
steel was slightly higher than that of the A304 stainless steel, while the erosion rates of
both these materials were about 2.5 times that of the 6061 aluminum alloy. In addition, the
erosion rate could be used to characterize the mass-loss rate. Given that the material density
of the 6061 aluminum alloy was approximately one third of Q235 carbon steel and A304
stainless steel, it can be stated that the volume loss of these three materials was similar.

4.1.2. A Comparison of the Erosion Results at Different Angles and Particle Sizes

When the same material (Q235 carbon steel) specimen was selected, with adjusted
impact angles of 20◦, 30◦, 45◦, 60◦, 75◦, and 90◦, and particle sizes of 100 µm, 300 µm, and
500 µm, respectively, the contrast diagram denoting the CFD erosion simulation results
and erosion model is represented by Figure 17.
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Figure 17. A comparison diagram of the erosion rate at different impact angles and particle sizes
(using Q235 carbon steel and a gas velocity of vg = 60 m/s).

According to the image, the simulation results were generally similar to the theoretical
prediction. The erosion rate increased in conjunction with an increase in the particle size,
but the erosion effect caused by the particle velocity exceeded that of the particle diameter.

4.2. Analysis of the Simulation Results and Experimental Data
4.2.1. A Comparative Analysis of the Different Gas Velocities and Impact Angles

Figure 18 shows the comparison diagram denoting the erosion rates of the simulation
and experimental data of the Q235 carbon steel specimen at different gas velocities and
impact angles, indicating that the erosion rate of the simulation and test increases at a
higher velocity. In addition, the maximum error between the simulation data and the
experimental data was about 15.6%, which can be ascribed to two reasons. First, the
particle size cannot be accurate and uniform during the experimental process, and some
particles form a circle, resulting in more severe erosion. Second, the interaction between
the particles and the rebound particles is ignored during the CFD simulation process.

4.2.2. The Comparative Analysis of Different Materials at Different Impact Angles

Figure 19 shows the comparison diagram denoting the erosion rates of the simulation
and experimental data of three different materials (Q235 carbon steel, A304 stainless steel,
and 6061 aluminum alloy) at different impact angles.
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Figure 18. The comparison diagram denoting the erosion rates of the CFD simulation and experi-
mental data at different particle velocities (Q235 carbon steel and particle size dp = 300 µm).
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Figure 19. The comparison diagram denoting the erosion rates of the CFD simulation and experi-
mental data of different materials (gas velocity vg = 60 m/s and particle size dp = 300 µm).

The maximum error between the simulation data and experimental data was about 21.7%,
which is within a reasonable error range. In addition, the erosion rate of the Q235 carbon steel
was slightly higher than that of the A304 stainless steel, both of which exceeded that of the
6061 aluminum alloy, verifying the accuracy of the CFD simulation and erosion models.

5. Conclusions

This paper employs experimental and CFD simulation methods to simulate the sealing
surface of the ball valve in natural gas pipelines using a specimen. Based on the steady-state
model [30], the erosion wear law of the specimens exposed to various influencing factors is
studied, and the erosion wear mechanism is verified. The study results are as follows:

1. A set of jet erosion experimental devices is developed based on gas–solid two-phase
flow. In the same conditions as those of the simulation, the erosion experiment
verification study is completed by changing the influencing factors, such as gas
velocity, particle size, impact angle, and specimen material. By observing the surface
morphology mechanism of the specimen with SEM, the erosion mechanism and
characteristics at different impact angles and different particle sizes are proposed,
including micro-cutting, impact extrusion deformation and pits, craters, scratches,
and wear debris.

2. The simulation results show that the erosion rate increases with an increase in particle
size and erosion velocity. Furthermore, it is concluded that the maximum erosion area
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is located in the center of the specimen surface and presents a U shape under different
conditions. At the same time, the surface pits of the eroded specimen increase with
an increase in the particle size and velocity, while the service life of the specimen is
reduced. In addition, when the impact angle is 30◦, the erosion rate reaches the peak
value, exhibiting a prominent “stagnation area” at different impact angles.

3. The difference between the CFD simulation and erosion model and the experimental
data are compared, and the accuracy of the Euler–Lagrange method is verified. Fur-
thermore, the applicability and accuracy of the SST k–ω turbulence model and Oka
erosion prediction model are verified and found to be in good agreement with the
experimental data.
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