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Abstract: The case of a frictionless contact between a spherical body and a flat metallic glass is studied
using a mesoscopic description of plasticity combined with a semi-analytical description of the
elastic deformation in a contact geometry (code ISAAC). Plasticity is described by irreversible strain
rearrangements in the maximum deviatoric strain direction, above some random strain threshold.
In the absence of adhesion or friction, the plastic deformation is initiated below the surface. To
represent the singularities due to adhesion, initial rearrangements are forced at the boundary of the
contact. Then, the structural disorder is introduced in two different levels: either in the local strain
thresholds for plasticity or in the residual plastic strains. It is shown that the spatial organization
of plastic rearrangements is not universal, but it is very dependent on the choice of disorder and
external loading conditions. Spatial curved shear bands may appear below the contact but only for a
very specific set of parameters, especially those characterizing the random thresholds compared to
externally induced strain gradients.

Keywords: metallic glasses; plasticity; contact mechanics; shear banding

1. Introduction

Bulk metallic glasses are made of a disordered assembly of metallic atoms. Thus, they
exhibit an atomic structure that is very close to the liquid one, but below the glass transition
temperature, they are trapped into a metastable mechanical equilibrium identified by
the absence of significant viscous flow at rest (viscosity larger than 1013 poise). This
similarity to the liquid structure and the absence of both long-range order and characteristic
length, despite the interatomic distance, is characteristic of amorphous materials. The
original microstructure of amorphous materials bestows them very specific properties,
such as a very smooth and moldable surface, low rigidity, but very high hardness, and
a strong capacity to withstand very high loads before failure [1]. Indeed, the atomistic
disorder precludes the formation of extended linear defects such as dislocations and thus
forces to maintain irreversible deformation restricted to point-like defects. This makes
them highly interesting for their ability to withstand heavy loads while maintaining their
elasticity [2]. However, these properties are very dependent on the temperature: they can
change drastically at the glass transition temperature, which is between 100 and 1000 K
depending on the composition [3]. At finite temperatures [4] or under high-frequency
acoustic waves [5], some metallic glasses can even exhibit superplasticity, with up to 160%
irreversible plastic flow strain without breaking, at centimeter scales. Moreover, at low
temperature or strain rate, irreversible (plastic) deformation is observed at small scale, and
it can organize along macroscopic shear bands, which break the apparent homogeneity of
the deformation and are the precursors of catastrophic failures [6–8]. Thus, it is important
to understand the origin of the plastic deformation (irreversible non-viscous deformation)
and its spatial organization.

The microscopic origin of plastic deformation in metallic glasses was initially related
to the emergence and diffusion of local voids described successfully within the framework
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of the free volume theory [9,10] and then to isochoric shear transformation zones analogous
to dislocation loops [11]. Recently, it was proved that the constitutive laws of plastic flow
results from the accumulation of plastic deformations described as Eshelby inclusions [12].
These Eshelby inclusions result from a loss of material stability [13–15]. Thus, they unfold
in the direction of instability. The latter depends on the glass composition. In metallic
glasses, it is mainly due to the local shear. It is generally given by the direction of the
maximum deviatoric strain [16].

The occurrence of shear bands may have two origins: either the unfolding of the initial
instability along a plane (elementary shear bands [17–19]), or the progressive accumulation
of damage encouraged by the self-sustainability of the shear bands [20–22]. The accumu-
lation of plasticity without self-sustainability can also give rise to the sparse distribution
of shear bands, allowing the occurrence of a yielding transition appearing as a universal
critical phenomenon [23,24] but without permanent shear banding. Finally, the nucleation
of the shear bands may be intrinsic (with a volumetric origin) or extrinsic (from surface
defects at the free surfaces, for example) [20], the later favoring permanent shear banding.
Thus, under the same loading conditions, the presence of interfaces and specific boundary
conditions may induce shear bands that would be absent elsewhere [25,26].

In this paper, we focus on the nucleation of shear bands under a nanoindenter. It
was shown that under such a loading condition, glasses with low free volume, such as
metallic glasses, and contrary to pure silica for example, have a tendency to develop shear
bands [7,8]. In Zr-based metallic glasses, Su and Anand [27] have shown a nice and regular
pattern of curved shear bands that was interpreted with the help of a specific constitutive
equation. This continuum constitutive law was supposed to relate the local shearing rate
to the local shear stresses, weighted by the local pressure, and also to give rise to a kinetic
increase of the free volume and consequently to post yield–strain softening [27]. The
crossing between the shear bands was characterized by an angle of 84◦. Budrikis et al. [28]
have observed similar features in a mesoscopic modeling of plasticity under a nanoindenter.
They related them to a universal critical phenomenon for shear bands nucleation at the
yield strain for macroscopic plastic flow. This critical phenomenon would be similar to what
happens under more simple loadings such as pure shear or hydrostatic compression [23,24].
However, Shi and Falk [29] have shown using molecular dynamics simulations that this
pattern depends indeed on the processing history of the glass (cooling rate) and also on
the strain rate. Moreover, Amon and Crassous [30] have observed in granular materials a
progressive transition from initially curved shear band patterns to straight bands across
the sample. Thus, it is not clear whether the shape of such a shear band is universal or
not, and how it is nucleated. To understand the necessary ingredients for curved shear
band nucleation, we have run a mesoscopic model of local plasticity based on microscopic
known processes and a realistic description of long-range elastic couplings.

In Section 2, we will describe the model used and the parameters involved. In
Section 3, we will discuss the results, more specifically the role of disorder in the plastic
transformation compared to the role of disorder in the local plastic threshold. Section 4 will
discuss the conditions for getting shear bands in a contact problem. Section 5 summarizes
the results.

2. Materials and Methods

The material studied is a typical bulk metallic glass. The material is not studied at the
atomic scale, nor at a continuous scale, but the numerical model (combining the software
ISAAC with local fortran programs, following the steps described in Figure 1 (right) used
in this article is inspired from a set of mesoscopic models proposed in the last twenty years
to model plasticity in disordered materials at intermediate length-scales (nm–µm) [31].
These models keep the necessary ingredients for local plasticity in solids, inspired from
continuum mechanics with local criteria for the nucleation of plastic rearrangements [32],
or more recently fed by molecular dynamics data concerning the details involved in the
local criteria when they exist [33]. These models can indeed be shown as a good description
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of the atomistic modeling, but at a slightly larger coarse-graining length scale [34]. In
these models, the effect of disorder is mainly located near the plastic rearrangements, and
the elastic couplings are described within the framework of continuous linear isotropic
and homogeneous elasticity. We will describe in this part the local plastic criteria and
plastic events, then the numerical tools used for long-range elasticity in a contact mechanics
problem, and finally the details of the contact conditions.

2.1. Local Plastic Criteria and Plastic Transformations

Plasticity is clearly related to an instability process [35], that is, a loss of mechanical
stability due to the crossing of an energy barrier, and revealed by the loss of positive defi-
niteness of the dynamical matrix of the full system (3N × 3N matrix of the second-order
derivatives of the potential energy with N the number of atoms). In amorphous materials,
such a loss of stability manifests itself by the nucleation of a high local strain concen-
tration [13] that becomes unstable, and whose unfolding gives rise to a single Eshelby
inclusion, or to a bidimensional alignment of Eshelby inclusions along elementary (embry-
onic) shear bands [12]. Although the instability process is a collective one (occurrence of a
negative eigenvalue in the dynamical matrix of the full system), in the presence of disor-
der, the unstable mode can be described as a set of Eshelby inclusions, only one of them
being the initiator of the mechanical instability. Thus, the mesoscopic models [31,32,36,37]
are based on the nucleation of local Eshelby inclusions, interacting through long-range
isotropic elasticity characteristic of the mechanical response of amorphous solids at large
scale [38]. The nucleation criteria are still debated [33], since the instability process is
indeed not local but global. However, a pragmatic analysis of the numerical data at the
atomic scale shows that the nucleation of the local Eshelby inclusion may be related to
large local strains, or low local elastic modulus. In the case of bulk metallic glasses, the
plastic rearrangement has mainly a shear component. Thus, the nucleation criterion is
related to the maximum local deviatoric strain, and naturally, the direction of the instability
unfolding is the eigendirection related to this maximum deviatoric strain in the deviatoric
part of the local strain tensor.

The implementation of the model is the following. The first two materials of Hertzian
geometry are put in contact with a vertical load Fz giving rise to a spherical contact area
with a radius a (see Section 2.3). Starting from this initial configuration, a threshold εd

thresh
is chosen as detailed later. If the maximum local deviatoric strain becomes larger than
εd

thresh, then an Eshelby inclusion is nucleated at this place. εd
thresh is random with

εd
thresh(i) = ε0

thresh + Q.r(i) (1)

where ε0
thresh is a homogeneous strain threshold, and r(i) is a Gaussian random number with

zero average and variance unity, which is characteristic of the site i before rearrangement
occurs. Q is a parameter: it is the amplitude of the random contribution to the local strain
threshold. In the paper, we varied Q between 0 and 10−1 (the maximum value is one order
of magnitude larger than the maximum deviatoric strain induced by the Hertzian contact
for the chosen load Fz). ε0

thresh is chosen in order to allow for a progressive nucleation
of plastic events, with only a limited number of sites. It is adjusted to the external load
in order to get a given number of sites (5, 10, or 100) with a deviatoric strain larger than
εd

thresh, that is to nucleate a fixed number of plastic events (5, 10, or 100 respectively) at
each step. This allows imposing an average constant plastic strain rate. In practice, the
sample is discretized into sites with lateral size r0 corresponding to the size of the local
rearrangements. r0 is chosen to be equal to 10−3 times the radius of curvature R at the
contact (that is 1 nm for R = 1 µm). At each deformation step, the deviatoric strain will be
computed on every site in the sample. The random value (—Q.r (i)) will be added at each
site i to quantify the departure from the local plastic threshold. A fixed number of sites
(5, 10, or 100) with the largest value of (εd

i − Q.r(i)) is identified, and these sites undergo a
plastic rearrangement. After a plastic rearrangement occurred, a new value of r(i) is chosen
at this site.
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The unfolding of the plastic rearrangements thus nucleated gives rise to a spherical
Eshelby inclusion with radius r0. After the nucleation sites have been identified, an
eigenstrain ε*(i) is attributed to each site i. The strain fields are computed again, taking
into account the presence of the (5, 10, or 100) newly nucleated Eshelby inclusions, and the
procedure is repeated with the calculation of the largest deviatoric strains—Q.r (i) in the
new configuration. The method is summarized in Figure 1 (right).

The residual plastic strain inside the inclusion is the eigenstrain ε*. In the absence of
disorder, the residual plastic strain is proportional to (εd

i − εd
thresh) (see Figure 1 (left)) with

εd
i the deviatoric strain measured at site i. In the presence of disorder, the eigenstrain ε* is

chosen as
ε ∗ (i) = S.max(εd

i − εd
thresh, 0) + Q ∗ .r ∗ (i) (2)

with r*(i) another gaussian random number with zero average and variance unity, and S
and Q* are two parameters of the model. S quantifies the exceeding of the local threshold.
It is chosen in the absence of disorder in order to get similar values in the maximum
deviatoric strain after the first nucleations of plastic rearrangements (too small values will
stop the plastic deformation in the absence of disorder, and too large values will drive
too much plastic rearrangement in the next step). For example, in the case of the contact
problem described in Section 2.3, the values of the maximum deviatoric strain obtained
after a given number nsites of plastic events have been nucleated simultaneously in the first
step, as summarized in Table 1.

Table 1. Values of the maximum local deviatoric strain εd
1 in a contact problem without disorder

after the first step, compared to the initial value of the maximum deviatoric strain εd
0. The contact

problem is described in Section 2.3, here for different values of the parameter S and different numbers
nsites of simultaneously nucleated sites.

nsites S = 0.01 S = 0.10 S = 1.00

5 ~0.015 εd
0 ~0.99 εd

0 ~1.5 εd
0

10 ~0.015 εd
0 ~0.99 εd

0 ~1.5 εd
0

100 ~0.015 εd
0 ~0.98 εd

0 ~1.5 εd
0

It appears in Table 1 that the value S = 0.10 allows staying at the same values of
deviatoric strains as in usual mesoscopic models [28] and will thus be kept in the following.
Thus, Q and Q* are the only remaining parameters of the model. They will allow discussing
the role of disorder in the organization of plastic events in our system.
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2.2. A Semi-Analytical Method for Long-Range Elasticity

We face to solve here the calculation of elastic strain in a contact problem and in the
presence of Eshelby inclusions. The contact problem is first considered as a purely elastic
contact between two linear elastic bodies with neither friction nor adhesion. One surface is
flat, while the other has a radius of curvature R: it is a Hertz contact [39]. The calculation
of the strain field beneath the contact can be performed with the help of superposition
theorem and green functions for any given or computed pressure applied at the surface
(similar to a Hertzian pressure) [40]. The Eshelby inclusions [41,42] can be computed
thanks to the use of images symmetric to the interface, in order to still fulfill the limit
boundary conditions [43].

The method was implemented in the software ISAAC (Version 2020, LaMCoS, Villeur-
banne, France) [44] developed by D. Nélias et al. and adapted by T. Chaise, among others,
for the calculation of residual plastic strain [45]. The semi-analytical method proposed
to solve the contact problem is based on Eshelby’s formalism but uses 3D Fast Fourier
Transforms to speed up the computation. Thus, the time and memory necessary are greatly
reduced in comparison with the classical finite element method. It allows a realistic com-
putation of the stress and strain fields, taking into account the exact boundary conditions.
Here, only an elastic contact is studied, but the same method can be extended to frictional
contacts [46] and to adhesive contacts [47]. The only approximation used is that the only
interface that matters is the contact surface: the bodies are considered as semi-infinite
and treated within the framework of linear elasticity. The Eshelby inclusions and the
corresponding heterogeneous solution are described using enrichment fields that are super-
imposed to the homogeneous problem [43]. To perform the simulations, a standard Young
modulus E = 115 GPa and Poisson’s ratio ν = 0.3 is used for both materials. These values
correspond to the elastic moduli of Ti-based and Fe-based metallic glasses, the range of
Young moduli spanning generally from 40 (La-based glasses) to 150 GPa approximately [1],
and the Poisson’s ratio being between 0.3 and 0.4 in bulk metallic glasses. The discretization
of space is made through N = 65,559 nodes, which are separated by a distance dx = dy = 2r0
horizontally and dz = r0 vertically. Note that our goal here is not to describe precisely a
given material but to highlight the disorder-induced mechanisms of localization of plastic
deformation in a contact geometry.

2.3. Contact Problem

The initial contact problem is represented in Figure 2. It is made of a flat surface with
Young modulus E and Poisson ration ν in contact with a spherical surface having a radius
of curvature R and the same elastic properties. The bodies are pressed together using a
normal force Fz. Only the strain field inside the flat surface is studied here. The scaling
relations in the Hertz contact are the following [39]:

The radius of the spherical contact surface is

a =
3

√
3RFz(1 − ν2)

2E
. (3)

The vertical displacement in the center is

Uz =
a2

R
. (4)

The maximum shear stress appears below the surface, at a distance zmax ≈ 0.48 a for
ν = 0.3, and its value is

τmax ≈ 0.31
aE

πR(1 − ν2)
. (5)

corresponding to a maximum deviatoric strain

εd
max ≈ 0.31

a
πR(1 − ν)

. (6)
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(b): but with a friction coefficient µ = 0.3 at the interface between the two bodies and with a tangential load Tx = 0.24 Fz.

In our case, the initial force is imposed, thus fixing the initial contact radius a, and
then the deformation is induced by the succession of plastic rearrangements.

In the case of a purely elastic contact, the initiation of plasticity cannot appear at the
surface, because the maximum shear stress τmax is below the surface. In the absence of
structural heterogeneities, the nucleation of shear bands is necessarily homogeneous in
this case and located close to the depth zmax. However, as soon as some adhesion or a
sufficiently high static friction coefficient (µ ≥ 0.3) is present, then the shear stress becomes
maximum at the surface [39,48]. Thus, the nucleation of plasticity and of shear banding is
heterogeneous (i.e., from the surface) in these cases.

In order to allow heterogeneous nucleation or to modelize the effect of structural
disorder, we have compared two cases: the case of isotropic and homogeneous linear
elastic solids, and the case where two Eshelby inclusions are already located, close to the
boundary of the contact, that is at a distance a from the center of the contact zone. In this
latter case, in order to get a real competition between the nucleation in the center and
nucleation at the surface, the Eshelby inclusions have a shear eigenstrain slightly larger
than εd

max.

3. Results

We will now compare the shape in the organization of the successive plastic events
taking place in the flat solid for the different parameters studied.

3.1. Homogeneous vs. Heterogeneous Nucleation

The deviatoric stress induced by the presence of pre-existing inclusions competes
with the deviatoric stress due to the Hertz contact. Figure 3 gives an idea of the spatial
distribution of deviatoric strain (that is, the proximity to the local plastic yield strain
assumed constant here as a first step) for different strengths of the two pre-existing defects.
From left to right, the role of the two defects on the strain field increases. In the last case,
where the deviatoric strain field at the defects is 10 times stronger than εd

max, the plastic
deformation should localize on the defects, but in the two first cases with lower strain field,
a connection is expected between the pre-existing defects at the surface and the subsurface
zone of high shear strain due to the strain gradients induced by the Hertz contact.
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Figure 4 shows the position of the first plastic events in three cases: without defects,
with defects comparable to the Hertz fields, with defects far stronger (10.1 times) than
the Hertz fields. In the first two cases, the initial plastic events tend to localize all near
zmax ≈ 0.48 a, and there is no reason for the occurrence of shear bands. However, in the
case of very strong defects, the simultaneous accumulation of plastic events near the defects
and at zmax suggests a future connection between them, for example along plastic bands.
Clearly, from Figure 4, it appears that when the defects are not sufficiently strong, the
plastic activity remains grouped below the surface at zmax, while the presence of strong
defects favors shear banding between zmax and the surface. Thus, in the following, we will
always keep the pre-existing defects at their highest value (with εxy = 10.1 εd

max).
Here, we have not taken into account the effect of disorder neither in the local yield

strain nor on the eigenstrain characterizing the core of the unfolded inclusion. We will now
discuss the effect of disorder on the strain fields and consequently on the nucleation of
plastic events in the metallic glasses.
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(nsites = 10) with pre-existing defects with the shear eigenstrain εxy = 1.01 εd

max (left) and εxy = 10.1 εd
max (right).



Metals 2021, 11, 257 8 of 16

3.2. Role of Disorder in the Residual Plastic Eigenstrain

Figure 5 shows the effect of the two parameters S and Q* on the position of plastic
events after 250 plastic rearrangements took place (25 steps with 10 rearrangements at each
step). In these figures, there is no disorder in the yield strain (Q = 0), and the pre-existing
defects are 10 times stronger than the Hertz field, as detailed in the previous part. It appears
clearly from this figure that the parameter S, which is used to counterbalance the lack of
precision on the determination of the local yield strain and allow for a better definition
of plastic flow, induces spatial correlations in the location of plastic events: the deviatoric
strain is higher close to the Eshelby inclusions, thus giving rise to higher eigenstrains
that will contribute to self-sustain the process. The location of the plastic events shows a
better alignment close to the pre-existing defects, and it looks more sparse close to zmax.
As discussed in Section 2.1 for the disorder-free case, the value of S = 0.1 will be kept in
the following.

Let’s look now at the effect of the disorder through the parameter Q*. In Figure 6,
the distribution of deviatoric strains in the sample is shown for different values of Q*.
Increasing Q* not only contributes to enlarging the distribution of deviatoric strains as
compared to the disorder-free Hertz case, but it can even give rise to very large cumulated
deviatoric strains, up to 10% strain for Q* = 0.01 at the 25th step (Figure 6 bottom). Let
us remind that Q* = 0.01 corresponds to a Gaussian distribution of eigenstrains with
variance Q* = 1%, owing in our case at the 25th step extreme eigenstrains of about 3.5%
only (Figure 6 top). In Figure 5, increasing Q* up to the 1% strain clearly contributes to
counterbalance the role of the Hertz fields and of their spatial gradients. The plastic
rearrangements localize close to the pre-existing defects. The resulting shear aligns along
large shear bands, propagating straightly from the surface defects. While the role of defects
is clearly enhanced in this case, it does not gives rise to curved shear bands, but only to
straight bands initiated from the surface, even after a large number of events.
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3.3. Role of Disorder in the Local Plastic Thresholds

Let us now look at the effect of disorder in the yield strains. Figure 7 summarizes
the effect of the disorder induced by the increase in the parameter Q in the random part
of the local nucleation threshold of Eshelby inclusions. The colored map shows the local
deviatoric strain —Q.r (i). Thus, the plastic events always take place at the brightest colors
(maximum values) in this map. While for low values of Q, the gradients of the Hertz field
are visible, they progressively disappear for large disorder values. The previous values of
S = 0.10 and Q* = 0.01 are kept in this case.

For low disorder Q = 10−3, large shear bands are initiated from the surface defects, as
discussed before in Section 3.2. When Q increases, the nucleation of plastic events is less
focused on the surface defects, and some of them become sensitive to the Hertz fields and
nucleate preferentially close to zmax. When the disorder is very strong and far larger than
the maximum deviatoric strain εd

max induced by the Hertz contact, the events are sparse
and can occur everywhere. However, the Hertz fields will introduce a bias that will favor a
nucleation close to zmax. In this latter case, the plastic events do not organize clearly along
shear bands, and more importantly, they do not show any sensitivity to the surface that
appears completely ignored in this organization.

Interestingly, between these two extreme cases, for a contribution of the disorder to
the local yield strain that is comparable to εd

max, a connection is made between events
nucleated at the surface, and events deeper below the surface. For Q ≈ 2εd

max ≈ 10−2, the
characteristic shape of curved shear bands initiated from the strongest defects at the surface
is recognizable.
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max due to Hertz contact in the absence of disorder is equal to
0.65 × 10−2 here.

4. Discussion

We have studied here with the help of a mesoscopic model the spatial organization of
plastic events inside a disordered material in a contact geometry. The results obtained in this
context underline the fact that the sliding conditions at the surface play an important role on
the plasticity pattern when the structural disorder is sufficiently low. The role of adhesion
or friction at the interface is modeled with the help of pre-existing inclusions located near
the free surface of the solid and at the boundary of the contact zone. Indeed, adhesion or
friction with small tangential load induces very strong deviatoric strains at the boundary
of the contact [39]. It has been shown (Figure 4) that the presence of initial defects—or
equivalently non sliding conditions—is crucial to force the emergence of shear bands at the
surface, as observed experimentally in many cases [27–29,49]. These pre-existing defects
are also representative of the possible role played by a very inhomogeneous structural
disorder or by surface defects. This is in agreement with the possibility to generate extrinsic
nucleation of shear bands [20], and this enhanced surface sensitivity can be used for specific
materials design [26], for example to prevent subsurface damage. We have discussed in the
present paper the role of the eigenstrains included in these pre-existing defects, and we
focused mainly on the case of defects whose eigenstrain is about 10 times larger than the
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maximum deviatoric strain induced by the Hertz contact beneath the surface. Indeed, this
high value appears necessary to avoid a concentration of plasticity only below the surface.
Moreover, we have shown (Figure 5) that when the same amount of disorder appears as
well in the local strain rearrangements (value of Q* in the eigenstrains), then plasticity
localizes along straight lines initiated from the initial defects. However, this type of disorder
is not sufficient to induce curved shear bands, as sometimes observed [27–29,49,50].

The occurrence of curved shear bands is shown here to result only from a specific
set of parameters in the random local strain thresholds for plasticity. To get well marked
permanent shear bands (Figure 7), it is necessary to have an amount of disorder in the
local strain threshold that is comparable to the maximum deviatoric strain due to the Hertz
contact between curved surfaces. However, this one depends not only on the contact
geometry (radius of curvature R) but also on the external load (Equation (6)). Thus, the
occurrence of curved shear bands is not universal as initially affirmed [28] but depends on
the comparison between intrinsic heterogeneities (local strain thresholds for plasticity) and
extrinsic parameters (geometry, external load). It is very important here to note that the
structural disorder in itself is not sufficient to predict the shape of shear bands but must be
put in perspective of the loading conditions: size of the contact area, radius of curvature,
and external load, as detailed in Equation (6). The respective role of the disorder in the
eigenstrains of the unfolded defects and in the strain thresholds may also explain why the
curved shape of initial shear bands is not maintained for higher loads in easily rearranging
materials [30]. The disorder in the eigenstrain or some kind of self-sustainability [20–22]
may finally dominate and move away from the initial range of parameters. This may
also explain the variety of the plasticity patterns observed in metallic glasses under a
nanoindentor [29].

These effects were not discussed in [28], aiming at proving the universal character of
plastic yield in amorphous solids for any kind of load. However, indeed, many assumptions
were made in [28] concerning the relative values of disorder. First, the yield strains and the
eigenstrains are not chosen independently, but the eigenstrain is assumed to be proportional
to the yield strain. Moreover, non-sliding contact, meaning very strong solid friction, has
been assumed that favors nucleation at the surface and finite size effects, as discussed in
our article.

The disorder in the strain thresholds is usually related to the structural disorder
characteristic of amorphous materials [33,51,52]. Experimentally, the amount of disorder
depends on the preparation protocol, such as the quenching rate or the annealing for
example [53,54], the free volume [9,55], or even defects induced by neutron irradiation [56].
The amount of disorder is known to affect the elastic and the plastic properties of the
glass [57]. In all cases, increasing the effective temperature of the glass, or the amount of
soft—equivalently less relaxed—zones [58] will make the glass more ductile, less fragile,
and contribute to homogenize the deformation. In case of very strong disorder, the role
of surface defects becomes negligible (Figure 7). Thus, the extreme values of strains are
sensitive again to the Hertzian field. Consequently, the deformation, while irregular,
concentrates below the surface, at the maximum deviatoric strain due to the Hertz contact.
Such a kind of deformation without shear bands was already observed experimentally
with in situ X-ray diffraction in Zr-based metallic glass samples [59]. However, the disorder
was unfortunately not characterized in these samples. Thus, the absence of shear bands
may also be simply due to perfectly sliding conditions at the surface.

In general, very different kinds of plasticity patterns have been observed below an
indentor. Perepezko et al. [60] have identified experimentally on the same sample at least
two kinds of events: at the surface and below the surface. Luo et al. [6] have observed
different plasticity patterns depending on the amount of free volume induced by chemical
strengthening in silicate glasses. The decrease in the free volume always favors localization
along shear banding; this may result from a lower quenching rate [29] or the increase in the
relaxation induced by longtime annealing, for example [51,53]. This effect also appears in
our analysis of the role of the amplitude of disorder in the local strain thresholds: a strong
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disorder will make every site equivalent, thus masking the role of surface or isolated defects
and preventing the nucleation of shear bands. Then, the average mechanical response
becomes that of a homogeneous sample.

Note that the size of the samples is shown in experiments to play a role on the ductile
behavior of bulk metallic glass samples [61,62]. In general, diminishing the size of the
sample, as in films or in micropillars, will induce a more homogeneous repartition of plastic
deformation. In this case, the increased role of surface defects (due to the large surface
over volume ratio of the samples) may be counterbalanced by the lack of disorder or low
effective temperature of the sample, due to its small size. However, on the contrary, the
enhanced ductile behavior could also be due to an increase in the effective temperature
due to the pressure increase and the confinement. As suggested in this paper, contact force
experiments with different friction coefficients, or with different radius of curvature, could
help disentangle these explanations by looking at the shear band patterns.

In our mesoscopic model, the formation of shear bands results only from the succes-
sion of discrete Eshelby events. Instantaneous shear bands (also called elementary shear
bands [17] or embryonic shear bands [20]) are not properly described here, as it is the case
in all mesoscopic models [31]. Elementary shear bands result indeed from a specific out-
of-equilibrium unfolding process with a collective kinetic alignment of events. However,
mesoscopic models are able to reproduce some characteristics of these bands: the resulting
spatial organization of plastic deformation is finally not very far from quasi-static atomistic
simulations [51]. This may be due to the fact that the driving force in the unfolding of
the instability is the elastic force, as in the mesoscopic models. However, kinetic effects
may play a role. For example, inertial effects could affect the results, as already discussed
in [58]. The goal of the present paper is to focus on the primary role of disorder. To compare
different shear rates, we have imposed a different number of simultaneous plastic events
at each step in the model before redistributing the elastic energy. This does not induce
any significant difference in the results, at least in the low disorder case. Thus, we have
chosen to keep, in the majority of the simulations presented here, an intermediate number
of simultaneous plastic events corresponding to a low shear rate. However, the role of the
shear rate should be deepened, since it is known to induce different spatial organizations of
events [63]. The role of inertia and of shear rates should deserve further studies if needed.

5. Conclusions

The choice of the approximate mesoscopic model used in this study allows keeping
the main ingredients for the nucleation and succession of plastic events in an amorphous
material: amorphous materials are linear elastic at large scale, with homogeneous and
isotropic elasticity [38], and plastic rearrangements are described as Eshelby inclusions in
agreement with recent molecular dynamics simulations [12].

In this work, two important effects were evidenced that have never been discussed
in previous studies: the first one is the role of initial defects, and the second one is the
relative role of disorder vs. Hertz mechanical inhomogeneities. Concerning the role of
initial defects, it is clear that if these defects are absent, then the plastic deformation will
be self-sustained below the contact at the maximum deviatoric strain location due to the
Hertzian contact, as in homogeneous solids. When the deviatoric strain supported by the
pre-existing defects becomes comparable or larger to the maximum Hertzian deviatoric
strain, then the extrinsic nucleation of shear bands occurs, and new processes take place.
We saw in Section 3.2 that the role of initial defects is reinforced when the residual plastic
strain (eigenstrain of the nucleated Eshelby inclusions) has a random component. However,
this type of disorder is not sufficient to induce well-defined curved shear bands inside
the sample. It only contributes to enlarging the plastic zone around an initial one. We
saw also in the simple model used here that the sensitivity of the residual plastic strain
on the amount of deviatoric strain at the nucleation of the plastic event induces a small
memory effect, tending to localize the plastic activity around its initial place. Concerning
the role of disorder, we compared different sources of disorder in the amorphous sample.
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Interestingly, we saw that the spatial organization of the plastic activity and the connection
between different places inside the sample (that would correspond to extended shear
bands) depend mainly on the amount of disorder in the local yield strain only.

This can be understood by the fact that the high strain disorder due to structural
origins should counterbalance the strain inhomogeneities induced by the external load.
For very high disorder, the differences in extreme values responsible for the nucleation
of plastic events will be reinforced by Hertzian inhomogeneities and become certainly
insensitive to surface effects. Two simple cases have been easily identified: the case of low
disorder where pre-existing defects will control the nucleation of shear bands (initiated at
the surface when these defects represent adhesive or frictional contact). In this case, the
shear band extends straight inside the sample. The second limit case is the case of very
high disorder where plasticity is sparse and insensitive to surface defects. At intermediate
values of disorder, more precisely when the contribution of disorder in the yield strain
becomes comparable to the maximum Hertzian deviatoric strain, well-defined curved
shear bands connecting the surface and the subsurface are shown. This latter case occurs
for different amounts of disorder, depending on the geometry and on the external load:
as shown in Equation (3), increasing the load or decreasing the radius of curvature at
the contact increase the deviatoric strain to which the amount of disorder in the strain
threshold must be compared. However, the disorder that is needed to nucleate shear bands
and inhomogeneous deformation has less influence on strain when the contact radius of
curvature is smaller. Note that in the absence of surface defects, the plastic activity also
remains located at the place of maximum Hertzian deviatoric strain without extended
shear banding.

These different cases were all observed in experiments: less relaxed, fast quenched, or
irradiated samples giving rise to more homogeneous plastic deformation, as observed here
in the strong disorder case. However, it is difficult to have a more quantitative estimation
of the degree of structural disorder needed. Indeed, in bulk metallic glasses, species
are mixed, and it is quite difficult in general to characterize the disorder [53], unless in
very specific cases [64]. In sodo-silicate glasses, at least the nanoporous silicon skeleton
and channels of mobile ions give some keys of spatial characterization of the mattering
structural disorder [65–67].

To conclude, boundary conditions, and also the relative amount of intrinsic strain
disorder (to some extend in the residual plastic strain, but more importantly in the local
yield strain), compared to the maximum Hertzian deviatoric subsurface strain, have a sig-
nificant impact on the spatial organization of plasticity in amorphous materials in a contact
geometry. The boundary conditions as well as the Hertzian strain depend on the external
load, making the mechanical behavior of glasses non-universal in a contact geometry.
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