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Abstract: In the friction stir welding (FSW) process, the final performance of weld joints is determined
by microstructures influenced mainly by the heat input and mechanical deformation. In this research,
the effects of FSW parameters, rotation speeds, and welding passes, on microstructure and mechanical
properties of AZ31 alloy were systematically and comparatively studied. It was found that the
microstructure at the joint center with multi-pass FSW could obtain a smaller average grain size
compared with the single pass. The differences of the grain size were reduced significantly when
the samples experienced the double-side FSW process. The mechanical performance results showed
that the optimum strength (315 MPa) was achieved through the double-side FSW process with a
rotation speed of 500 r/min and welding speed of 60 mm/min. The mechanism of the parameters
and double-sided process on mechanical properties of the joint samples was elaborated.

Keywords: AZ31 alloy; friction stir welding (FSW); mechanical properties; recrystallization

1. Introduction

The magnesium alloys have been widely used in the manufacture of aviation, auto-
mobile, and other fields, due to superior properties, such as high specific strength, good
damping capacity, and easy recycle [1–5]. However, magnesium alloys have poor workabil-
ity caused by the limited number of slip systems associated with a hexagonal, close-packed
crystal structure [6]. Therefore, the majority of magnesium alloy products are fabricated
through the casting technology because of the poor deformability [7]. Welding technology
is essential for the development of manufactured products. Currently, fusion welding and
hybrid welding are common methods used to join magnesium alloys [8]. However, the
defects, e.g., hot cracking, residual stress, partial melting zone, and porosity generated by
conventional fusion welding process [9], significantly deteriorate joints properties, which
hinders the wide range of applications of magnesium alloys. As an advanced welding
technology, friction stir welding (FSW) is conducted without fusion, solidification, and
oxidation due to the characters of solid phase connection [10]. The limitation of joining
magnesium alloys caused by the process of metallurgy and solidification in conventional
welding technology can, therefore, be solved through the FSW process [11]. In the past
decades, many scholars have carried out a lot of research focused on the effect of FSW
tool pin geometry, process parameters on the joint microstructure mechanical, and the
properties of aluminum alloys [12–16].

In FSW, the rotating tool is made to plunge and move transversely along the gap
between the two workpieces. The requisite heat for the joint development is produced by
the spin friction between the rotating tool and workpiece. The material abutting the joint
line is soft, and the joint is produced in a solid state. The character of the solid-state process
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enables FSW to weld dissimilar and difficult-to-weld materials [17–19]. Microstructures of
FSW joints are composed of a weld nugget zone (NZ), thermo-mechanical affected zone
(TMAZ), heat affect zone (HAZ), and base materials (BM), which are mainly dependent on
parameters such as friction stir tool parameters, tool rotation speed, traverse speed (feed
or welding speed), and tilt angle [20]. Plenty of researches have tried to grasp the system
impact parameters on the mechanical properties and formation of microstructures in FSW
joints. FSP can refine grain structures in the matrix of AZ31 magnesium alloy. Meanwhile,
defects induced by the process of metallurgy and solidification in the conventional welding
process can be eliminated [21]. Barmouz found that FSW can refine the second particle’s size
and enhance the dispersion distribution of the second particles for Cu/SiC composites [22].

Mohamed et al. [23] examined the effect of input parameters on tensile strength and
hardness in FSW of AA6061 alloy and AZ31 alloy. Sankar et al. researched the influence of
various operating parameters, namely tool rotation speed, feed, and tool diameter, on the
mechanical properties of the FSW joint on AA6061 alloy [24–26]. Bai et al. verified that joint
strength could be improved significantly by the application of ultrasonic vibration during
the FSW [27]. Jayaprakash et al. found that the triangular tool offered better tensile strength
and microhardness of the joint of AA5083 and AA7068 compared with the cylindrical taper
tool of the investigation [28]. Up to now, some researchers have concluded several mecha-
nisms for dynamic recrystallization (DRX) in FSW of aluminum alloys, which are included
in discontinuous dynamic recrystallization (DDRX), continuous dynamic recrystallization
(CDRX), and geometric dynamic recrystallization (GDRX) [29–34]. Additionally, it has
been reported that single-pass FSW requires a careful selection of welding parameters as
improper welding parameters give rise to the formation of defects (such as cavity, tunnel,
and kissing bond defects) [35,36]. Kavitha et al. studied the effect of FSW parameters on
the joint strength of AA7079 and AA8050 through a statistical technique of RSM, and found
the preferred process parameters [37]. Compared to the single-pass FSW, the application
of a second overlapping pass prolonged the DRX time and the DRX became sufficient,
resulting in further grain refinement [38,39]. Chen et al. found that reversing the welding
direction of the second overlapping pass enhanced the vertical flow, increasing the FSW
strain in the NZ [40].

As discussed above, the effects and operational mechanism of FSW process on the alu-
minum alloys are researched systematically. The conventional FSW technologies, however,
struggle to eliminate the microstructure difference between the bottom and top zone of the
weld caused by the difference of the plastic deformation. Studies showed that the cracks
were favored at the bottom surface of the stir zone, resulting in the reduction of mechanical
properties of the joint [41]. The maturity of adopting FSW to joint magnesium alloys is still
at an early stage in industrial application. Thus, it can be inferred that a higher mechanical
property may be obtained through double-sided FSW processed carried out on both sides
of the sample. In this study, double-sided FSW processes with different parameters were
employed to finished the welding of the rolled AZ31 magnesium alloy. The effects of
different welding parameters and manners on microstructure evolution and mechanical
properties were studied. This work verified that the double-sided FSW improved the ho-
mogeneity of the welding joint microstructure and the mechanical properties. It contributes
to promoting the application of the double-sided FSW on the weld assembly manufacture
of the magnesium alloy sheet, such as the door frame, aircraft panel, and so on.

2. Materials and Methods

The rolled plate of AZ31 magnesium alloy having a thickness of 6 mm was chosen in
this study, whose chemical composition is listed in Table 1. The rectangular workpieces
with dimensions 100 mm × 100 mm were cut from the sheets. The contaminations adhering
to the workpieces surface were removed by acetone cleaning before the welding process.
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Table 1. Chemical composition of AZ31 rectangular workpieces (wt. %).

Heading Zn Mg Cu Fe Si Mn Ni Other Total Mg

Nominal 0.6–1.4 2.5–3.5 0.05 <0.05 <0.1 0.1–0.2 <0.05 0.3 bal.
In this study 1.2 3.3 0.04 <0.05 <0.1 0.14 <0.05 0.27 bal.

As shown in Figure 1, the tool was manufactured using high-speed steel (HSS-H13)
materials through the conventional lathe machine. The tool had a shoulder diameter of
15 mm, probe diameter of 8 mm, and length of 6 mm. The friction stir welding was conducted
by the vertical milling machine (HT-JM8x23/2, Aerospace Engineering Equipment Co., Ltd.,
Suzhou, China). The FSW processes are shown in Table 2. Firstly, the workpiece is fixed on
the worktable, and the tool is fixed in the spindle. Subsequently, the welding processes are
carried out according to the parameters shown in Table 2.
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Figure 1. Photo of the friction stir tool.

Table 2. FSW process of AZ31 alloy.

Sample Rotation
Speed/r/min

Welding
Speed/mm/min Welding Passes

BM - - -
A 500 60 1
B 1000 60 1
C 1500 60 1
D 500 60 2, double side
E 500 60 2, Reciprocation
F 1000 60 2, double side
G 1000 60 2, Reciprocation

After these FSW, observations under optical microscopy (OM, Leica DMLM, Buffalo
Grove, IL, USA), scanning electron microscopy (SEM, JSM-6010, JOEL, Akishima, Japan),
and electron backscattered diffraction (EBSD, Hikari XP, EDAX, San Diego, CA, USA) were
carried out to analyze the microstructure of the joint center zones. The characterization of
the microstructure was carried out at the cross-section of the joint. The samples for OM and
SEM were ground with abrasive paper and then successively polished. The samples were
etched using saturated picric acid reagent (4.2 g picric acid, 10 mL glacial acetic acid, 10 mL
H2O, and 70 mL of 95% ethanol) before observation. EBSD observations were performed
on selected samples. The samples for EBSD were firstly mechanically polished through the
similar process for optical observation. Then, the samples were electronically polished in
the solution containing 10 mL perchloric acid and 90 mL ethanol for 20 s at −30 ◦C and
15 V. A Vickers hardness tester (FM-800, FUTURE-TECH, Tokyo, Japan) was employed to
obtain the micro-hardness of different samples, operated with a load of 100 gf and holding
time of 15 s. The samples prepared for micro-hardness were ground with abrasive paper
and polished with 1.5 µm diamond compound. The tensile specimens were taken along
the rolling direction and prepared according to Figure 2. The tensile tests were performed
at room temperature using an MTS Landmark testing machine with a loading speed of
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2 mm/min. There were three parallel testing samples of mechanical properties for every
relevant FSW process.
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3. Results and Discussion
3.1. Effect of FSW Parameter on the Microstructure
3.1.1. The Effect of Rotate Speed on the Microstructure

Figure 3 shows the AZ31 alloy after an experienced FSW process with different
parameters. It can be seen that the welding zones are well-formed with no defects in them.
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(b) 1000 r/min; (c) 1500 r/min; (d) 500 r/min double-sided; (e) 1000 r/min double-sided.

Figure 4 shows the microstructure of the center welding joint after experienced FSW
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under different rotation speeds and base materials (BM) without the welding process.
The base material presents the typical hot-rolling microstructure composed of minority
fine equiaxed crystal and strip grain, as shown in Figure 4a. After experiencing the
FSW, the microstructure at the center of the weld joint was mainly composed of the fine
equiaxed grains (Figure 4b–d). According to Figure 4b, the weld joint with rotation speed
of 500 r/min obtained a smaller grain size of 11.1 µm than BM sample (12.6 µm). When
the rotation speed was increased to 1000 r/min, there was a slighter coarsening of the
average grain size (11.6 µm). With the rotation increasing to 1500 r/min, the grain size
grew to 12.1 µm.
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of the grain sizes.

As the typical low level fault energy materials (60–78 JM/m2), it is easiy to generate
recrystallization for the magnesium alloy during the thermal deformation process [42]. In
the FSW, the materials adjoining the weld tool underwent heating and severe deformation
caused by the tool rotation, which induced the recrystallization and led to the appearance
of fine equiaxed grains. Therefore, the microstructure was refined after experiencing the
FSW. Heat input enlarged with the rotation speed increasing the weld tool, resulting in
the deformation temperature increasing the joint materials. According to the work of
Watanabe et al. [43], the grain size (d) of the magnesium alloy in FSW can be computed by
Equations (1) and (2):

ln Z =
.
εexp(Q/RT) (1)

ln d = 9.0 − 0.27 ln Z (2)

where Z is Zener Holfomon parameter, Q is the thermal activation energy of the alloy, R is
the gas constant, and T is the deformation temperature. From the above equations, it can
be found that the grain size increase significantly with the increase of rotation speed of the
weld tool.

3.1.2. The Effect of Welding Pass on the Microstructure

Figure 5 presents the microstructures of the samples after experiencing FSW with dif-
ferent parameters. It can be seen that the microstructure of the base material is composed of
equiaxed grains and elongated shape grains. In the weld joints, after experiencing different
FSW processes, there were three main zones namely stir zone (SZ), thermo-mechanical
affected zone (TMAZ), and heat-affected zone (HAZ). The SZ is composed of fine and
equiaxed grains formed through the complete dynamic recrystallization. Comparing with
Figure 5a,c,e,g, the welding joint with a rotation speed of 500 r/min obtained a smaller
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grain size than the sample welded with the rotation speed of 1000 r/min. Meanwhile, FSW
carried out on double sides can obtain a better grain refinement than the FSW conducted
by reciprocation. The minimum grain size is obtained in the sample with the FSW of D
process. The SZ is completely affected by the heat input and mechanical deformation.
The smaller grains in SZ showed that fierce straining took place in this zone. The heat
input of the FSW (1000 r/min) is obviously larger than the FSW with the rotation speed of
500 r/min. Therefore, the grain growth of the weld joint with FSW (1000 r/min) obtained a
bigger driving force, resulting in grain coarsening. From Figure 5b,d,f,i, the microstructure
of HAZ showed relatively larger grains than SZ. The microstructure of the HAZ formed
without any mechanical deformation was influenced only by the heat input of the tool.
Consequently, the larger grains of the FSW (1000 r/min) were caused by the higher rotation
speed than the sample of FSW (500 r/min). In the FSW, the deformation difference of the
materials between the upper surface and the lower surface was ineluctable. In addition, the
material flow in the FSW process can be divided into a horizontal flow and vertical flow.
The double-sided FSW obviously can promote the vertical flow, enhancing the material
strain at the joint. Hence, a more uniform and drastic deformation can obtain double-sided
FSW more than the conventional multi-pass FSW conducted at the same surface, leading
to a smaller grain size in double-sided FSW samples.

In order to further study the effect of the welding manner on the microstructure of
the joint, distribution of the grain sizes and grain misorientation are statistically analyzed
through the EBSD, as shown in Figure 6. It can be confirmed that the microstructure of the
joint is affected significantly by the welding pass and the welding side (single or double
side). A proportion of the fine grain was increasing with the application of a two-welding
pass. The maximum ratio of fine grains was obtained in the sample, which experienced
FSW carried out on double sides, respectively. As shown in Figure 6e, the ratio of grain
misorientation (>10◦) presents a similar variation tendency of the fine grains. Therefore,
it can be concluded that grain refinement is mainly driven by the grain recrystallization
mechanism of the magnesium alloy.

In the FSW, the deformation difference of the materials between the upper surface
and the lower surface is ineluctable, which results in a wide distribution range of the grain
size. The coarse grains could be broken firstly with the application of the next welding
pass. Through controlling the time span between the welding times, the recrystallization
temperature was suppressed effectively due to the good thermal conductivity of magne-
sium alloy. Therefore, the average grain size reduced with the increase of the welding
pass. In addition, a better refinement efficiency was found in the welding process of the
double-side due to the more uniform and serious deformation.

3.2. Effects of FSW Parameter on the Mechanical Properties

Figure 7 shows the microhardness distribution of the cross section of the samples
along the width direction with different FSW. From Figure 7, it can be found that the
microhardness presents a significant fluctuating character. The microhardness value of the
cross section with D process is obviously higher than that of the sample with E process.
Meanwhile, the microhardness curves of the cross section experienced the D process, which
presents a lower fluctuation extent than the sample with the E process, which does agree
with the microstructure character.

In order to study the effect of different parameters of FSW on mechanical properties,
the tensile testing was performed after the samples experienced the welding, and the results
are shown in Figure 8. Comparing with the BM (360 MPa), the mechanical properties of
the samples present various degrees of reduction after experienced welding. Excluding
the BM, meanwhile, the tendency of strength variation presents the same tend with the
microstructure evolution. The welding joint experienced the FSW of the D process, which
obtained the optimal strength (315 MPa).
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According to the Hall–Petch equation, [34–47], the increment (∆σ) of the yield strength
caused by grain refinement can be computed by Equation (3):

σy = σi + kd−2/1 (3)

where σy is the yield strength, σi is the strength of pure aluminum, d is the average
grain size, and k is a constant. The yield strength can increase significantly with the
decline of grain size, resulting in the increase of micro-hardness. Comparing with the
base materials, the mechanical properties were weakened by the generation of the heat-
affected zone and enhanced by the refinement of the microstructure of the joint center.
Therefore, the distribution of the microhardness presents the typical W type. In addition, a
lower fluctuation range of microhardness and optimum mechanical properties in sample D
were induced mainly by the uniform microstructure compared with other samples that
experienced other welding processes.

However, when there is a sample with thick sections, there will be some difficult to
eliminate the difference of the mechanical deformation between the bottom and top zone
of the sample. Meanwhile, the difference of the mechanical deformation will be very slight
when the sample thickness is lower than 3 mm in the FSW process. The double-sided FSW
will be invalid.

4. Conclusions

(1) The grain refinement of the stirring zone can be induced by the FSW. In the single-pass
FSW, the beneficial effect of FSW could be weakened by the increase of the rotation
speed. The weld joint with a rotation speed of 500 r/min obtained the smallest grain
size of 11.1 µm, which was smaller than the base materials (12.6 µm) and the joint of
1000 r/min (11.5 µm).

(2) The application of multi-pass welding in FSW induces a better refinement efficiency
of the microstructure compared with the single pass. The microstructure refinement
was carried out through the recrystallization mechanism.

(3) Compared with the reciprocation welding process, the multi-pass weld process con-
ducted on double sides of the sample can induce a more uniform deformation, result-
ing in better grain refinement and a lower fluctuation of grain size. The maximum
grain size (6.7 µm) was achieved on double-sided FSW of 500 r/min.

(4) The optimum mechanical properties (315 MPa) of the AZ31 alloy weld joints can be
obtained through the multi-pass weld process conducted on double-sided FSW of
500 r/min.
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