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Abstract: The effects of boro-austempering treatment on growth kinetics of borided layers, mi-
crostructure, and properties in a medium-carbon bainitic steel were investigated. The microstructure,
distribution in coatings, corrosion, and wear properties of boro-austempered steels were character-
ized by a microscope, field-emission electron probe micro analyzer, scanning vibrating electrode
technique system and wear resistance machine. The results show that the corrosion resistance of
steels in different corrosive mediums was significantly enhanced by boro-austempering treatment. In
addition, the wear performance of borided layers was improved by more than two times compared to
bainitic substrates, proving a better wear property of samples treated through the boro-austempering
route. The solubility of carbon and silicon in borides is very little. In addition, the dual-phase coating
of FeB and Fe2B was observed, and the internal stress induced during the growth of Fe2B and FeB
was almost eliminated. The preferential crystallographic growth directions of Fe2B and FeB are [001]
and [010], respectively, which belongs to the (100) plane. Finally, the kinetics equation d2 = 0.125·t of
the borided layers at 1223 K was established.

Keywords: boro-austempering; bainitic transformation; boriding; corrosion resistance; wear property

1. Introduction

Bainitic steels are widely used as structural materials of bridges, engineering machin-
ery, industrial equipment, oil, and gas pipelines, etc. High strength bainitic steels with
adequate corrosion resistance and wear property are largely in demand. Many efforts have
been made to meet the requirements by composition design and optimization of processing
routes [1–4]. For example, Wang et al. [5] successfully fabricated a novel 35MnSiCrNiAlMo
bainitic steel with yield strength, tensile strength, and elongation of 1400 MPa, 1530 MPa
and 14%, respectively, by slowly cooling from the temperature slightly higher than marten-
site start temperature (Ms) to the temperature that was 20 ◦C lower than Ms. A small
amount of Ni was added in high carbon bainitic steels to achieve excellent properties with
a 2000 MPa grade ultrahigh strength [6]. However, it took 30 h to finish the bainitic reaction.
The ultimate tensile strength of ~1755 MPa and elongation of ~18.1% in a medium-carbon
bainitic steel was obtained through ausforming with a strain of 0.2 at 573 K [7]. Moreover,
multi-step austempering treatments for bainitic transformation were proposed to refine
bainite laths and improve properties [8,9].

Summarizing the existing literatures, it can be seen that the excellent properties of
bainitic steels are achieved mainly through the following three methods. The first method
is adding alloying elements to refine the microstructure and thus enhance the proper-
ties [10,11]. The second method is to use the complicated multi-step processing route
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or long austempering time [12,13]. The third method is to utilize deformation process-
ing [14,15]. However, there are few studies attempting to enhance the surface properties of
bainitic steels [16–18], which provides another effective way to tailor the properties and
expand the application range of high-strength bainitic steels. Fabijanic et al. [16] produced
the nitrocarburised layer on high-carbon bainitic steels by nitrocarburising treatment after
finishing the bainitic reaction. The fatigue properties and hardness were improved by
shot peening on bainitic steels [17]. It should be pointed out that bainite transformation
and surface modification process are performed separately in works of literature [16,17].
Oliveira et al. [18] claimed that the boro-austempering treatment (the integrated boriding
and austempering process) was a promising alternative to increase the wear resistance
of advanced high-strength bainitic steels. previous study [19] indicated that the borided
layers and bainite transformation in the center matrix were not significantly affected
by each other during the boro-austempering treatment. From a commercial viewpoint,
boro-austempering treatment has some advantages.

Since the boro-austempering treatment is successfully applied in cast irons [20,21],
it has attracted much attention. However, very limited studies have been performed to
fabricate high-strength bainitic steels by boro-austempering [18,19]. Though the hardness,
compound phase and corrosion resistance in 0.5% NaCl of boro-austempered steels were
investigated in the author’s previous study [19], several related key issues remain unsolved.
For example, the corrosion resistance of boro-austempered steels in different corrosive
mediums and the surface wear resistance have not been fully clarified. The kinetics of
the as-prepared borided layers needs to be further investigated. The alloying element
distributions from the coating to the substrate are also not clear. Therefore, the effects of
boro-austempering treatment on microstructure, corrosion, and wear behaviors of medium-
carbon steel were investigated in the present study. The results provide the theoretical
guidance for producing bainitic steels with higher surface corrosion resistance and excellent
wear property by boro-austempering.

2. Materials and Methods

The chemical composition of the investigated steel is Fe-0.4C-2.0Si-2.8Mn-0.5Al (wt.%),
which was refined in a 50 kg vacuum induction furnace and then cast into an ingot.
Afterwards, the ingot was hot-rolled to a 12 mm plate. Figure 1 displays the schematic of
experimental procedures. Rectangle samples with dimensions of 50 × 30 × 20 mm3 were
immersed in a salt bath at 1223 K for austenization and boriding, as indicated in Figure 1a.
The salt bath was composed of ~95 Na2B4O7 and ~5% aluminum as the reducing agent for
generating active boron atoms. The isothermal holding time at 1223 K was designed to be
0.5, 1, 2, 6, and 8 h. After that, samples were immediately put into another salt bath (50%
KNO3 + 50% NaNO2) of 623 K for bainitic precipitation, followed by oil-cooling to the
ambient temperature. To compare the difference of microstructure and properties between
boro-austempered samples and merely austempered samples, another set of samples were
selected and subjected to a similar heat process (without boriding, Figure 1b). Samples
subjected to different treatments are represented by symbols in Table 1.

Before microstructural characterization and performance examination, all samples
were ultrasonically cleaned in water and organic solvent. A Zeiss optical microscope (OM,
Oberkochen, Germany), VHX-5000 ultra-depth three-dimensional microscope (KEYENCE,
Osaka, Japan), and Nova 400 Nano field-emission scanning electron microscope (SEM, FEI
Company, Hillsboro, OR, USA) equipped with an electron backscatter diffraction (EBSD)
technique were utilized for microstructural characterization. The alloying element distri-
butions were detected by an EPMA-8050G electron probe micro analyzer (SHIMADZU,
Kyoto, Japan). The corrosion resistance of produced layers and substrate in different
corrosive mediums were evaluated via potentiodynamic polarization measurement (PPM)
and an in situ scanning vibrating electrode technique (SVET) system. The potentiometric
polarization curves were measured by a Zahner-Zennium electrochemical workstation
(Zennium, Germany) with an electrochemical cell composed of three electrodes: a tested
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sample acting as a working electrode, a saturated Hg/HgCl electrode working as the refer-
ence electrode, and a platinum foil serving as the counter electrode. For boro-austempering
samples (Figure 1a) and the comparable sample (Figure 1b), the exposed areas were the
as-prepared layer and the main bainite constituent, respectively. The open-circuit po-
tentials of the boro-austempered sample and comparable sample in the same corrosive
medium were almost equal, i.e., −0.77 V(SCE), −0.21 V(SCE), and −0.41 V(SCE) in alkaline,
acidic, and neutral environments, respectively. The specimen preparation and detailed
measuring method of the SVET system were stated in the references [22,23]. The friction
coefficient was assessed by a BMT-I multifunctional surface performance comprehensive
tester (Jingcheng Testing Technology Co., Ltd., Jinan, China). A SiC ball with a diameter of
5 mm was selected with the following parameters: A load of 50 N, sliding speed of 50 times
per minute, and reciprocating slip length of 5 mm. The wear performance was evaluated by
an ML-100 wear resistance machine (Jingcheng Testing Technology Co., Ltd., Jinan, China).
The sliding speed was designed as 0.2 m/s, and the applied load was 88 N. The remaining
weight of the samples were measured every 20 min, and the total sliding time was 80 min.
The adhesion strength between the fabricated layer and bainitic substrate of steels was
determined according to the VDI 3198 standard, and the hardness was measured by an
HV-1000A Vickers hardness tester.
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Table 1. The represented symbols of samples with different treatments.

Treatments 1223 K + 2 h Boriding
1223 K + 0.5 h

Boriding
1223 K + 1 h

Boriding
1223 K + 2 h

Boriding
1223 K + 6 h

Boriding
1223 K + 8 h

Samples NA-2 BA-0.5 BA-1 BA-2 BA-6 BA-8

3. Results and Discussion
3.1. Microstructure Characterization and Kinetics Analysis

Figure 2 exhibits the microstructure of substrates in samples BA-2 and NA-2. The
microstructures of both samples are analogous, consisting of mostly lath bainite (LB) and
martensite/austenite islands (M/A).

To clarify the influence of boriding time on prior austenite grain size (PAGS), the prior
austenite grains and boundaries of samples BA-1, BA-2, BA-6 and BA-8 are exhibited in
Figure 3. The PAGS were calculated based on the diagonal method used in the literature [24].
The average value of two diagonals, drawn randomly in each grain, is calculated as grain
size, as shown in Figure 3a. The average PAGS can be obtained by multiple measurements,
as listed in Table 2. It can be seen from Table 2 that the austenite grains grow up at a very
slow speed as the boriding time increases at 1223 K. Hence, boriding time at 1223 K has no
significant influence on PAGS.
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Figure 3. SEM images to measure the prior austenite grains of boro-austempered samples with
varied boriding time: (a) 1 h; (b) 2 h; (c) 6 h; (d) 8 h.

Table 2. Average PAGS and coating thickness of different boro-austempered samples.

Samples BA-0.5 BA-1 BA-2 BA-6 BA-8

Average PAGS (µm) / 31.1 ± 8.4 30.4 ± 7.8 34.0 ± 8.9 34.0 ± 9.2
Coating thickness (µm) 3.4 ± 0.8 6.9 ± 1.1 28.6 ± 1.4 48.4 ± 2.1 62.9 ± 3.7

Figure 4 presents the cross-sectional morphology of produced layers in boro-austempered
samples. The produced layers after etching with 4% nital can be easily distinguished
from substrate microstructure. It is observed that the produced layers are smooth and
homogeneous with comb-like or needle-like morphologies. The depth of the compound
layer of samples treated by different boriding times was measured by plotting random
lines at the borided layers. The average values are given in Table 2. It can be seen that
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the thickness of the compound layers increases from 3.4 to 62.9 µm with the increase of
boriding time.
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According to the classical kinetic theory [25], the squared thickness of an as-produced
layer as a function of the treated time at a given temperature can be described as Equation (1),
and the fitting curve is given in Figure 5.

d2 = K·t (1)

where K is a constant, representing the growth rate of produced coating at a given temper-
ature. It is shown that the growth rate of the produced coating (the slope of the curve) is
0.125 µm2/s.

Due to the limited thickness of the produced layers at short borided durations, sample
BA-8 was used to characterize the crystallographic growth direction of borides and the
distributions of alloying elements from surface to substrate. Figure 6 displays the EBSD
images of the borided coating of sample BA-8. The dual-phase coating of FeB and Fe2B
was obtained and a bcc structure formed between adjacent columnar Fe2B grains, as
displayed in Figure 6c. In addition, the disorientation at positions (1) and (2) indicates
that the boundaries between the bcc structure and Fe2B grains as well as Fe2B and FeB
grains are low-angle boundaries, which is beneficial to the strength. The misorientation at
position (3) reveals the typical high-angle boundary of adjacent Fe2B grains, which may
be related to the intrinsic “toughness” of Fe2B. Moreover, it is known that internal stress
is introduced by the formation of Fe2B and FeB [26]. The kernel average misorientation
(KAM) map (Figure 6a) shows that the internal stress induced during the growth of Fe2B
and FeB is almost eliminated. It is reported that the FeB first formed at the surface during
boriding, and then the Fe2B formed as matched to the crystallographic growth direction of
FeB [26]. As confirmed by the inverse pole figures (IPF) in Figure 6b,d,e, the preferential
crystallographic growth directions of Fe2B and FeB are [001] and [010], respectively, which
belongs to the (100) plane.
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The map scanning along the depth of the produced layer from the surface of sample
BA-8 is revealed in Figure 7, conducted on an EPMA-8050G electron probe micro analyzer.
It is observed that there is a large amount of boron (B) content in the coating and fewer
carbon (C) atoms, and the boride contains no silicon (Si) content. Si hinders the growth
of borided layers, and C impedes the diffusion of B atoms. Carbon atoms prefer to gather
at the interface between the layers and substrate, as reported in the author’s previous
study [19]. Moreover, Figure 7c shows that the boron concentration near the surface is
higher than in other regions. It is known that FeB contains a higher boron content than
Fe2B [26]. Hence, the coating near the surface is supposed to be FeB, and the coating near
the substrate is Fe2B.
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3.2. Evaluation of Adhesion Strength and Hardness Profiles

The indentation method was utilized to characterize the adhesion strength and surface
brittleness of as-prepared layers on the bainitic steel. The indentation test was conducted
on the Rockwell-C hardness machine (Laizhou Hengyi Testing Instrument Co., Ltd. Yan-
tai, China), and the indentation morphology of sample BA-8 was observed by OM, as
presented in Figure 8a. According to the level of cracking and coating delamination, the
indentation rating is classified from HF1 to HF6 in the VDI-3198 standard [27], as pre-
sented in Figure 8b. Only indentations classified as HF1 and HF2 correspond to superior
adhesion [28,29]. Based on the standard, the indentation rating of the as-prepared layer
was evaluated to be HF2, indicating the superior adhesion strength of the produced layer
with the bainite matrix. It is known that the disadvantage of mere boriding is the large
brittleness and ease of flaking off with deformation, especially with a longer boriding
duration [28]. Hence, tempering processes are normally conducted to reduce the brittleness
and raise the adhesive strength between the borided layer and the matrix. In the boro-
austempering process, the subsequent isothermal holding at 623 K for one hour for bainitic
precipitation acts equivalent to the tempering process of borided layers. Consequently, the
brittleness of borided layers evidently decreased, and the adhesion strength of the pro-
duced layer on bainitic steels increased. This is one of the advantages of boro-austempering
processing routes.
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Figure 9 reveals the hardness profiles from the outermost produced layer to the
substrate. Due to the limited thickness of produced layers, the hardness of samples BA-6
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and BA-8 were measured, and the load was designed to be 50 gf with a dwelling time of
10 s. It is interesting to observe that an extremely hard surface layer with Vickers hardness
values over 1500 HV is synthesized on the treated samples by the boro-austempering
processing route. The hardness of the compound layers is about 3.5-fold of the bainitic
substrate. Türkmen et al. [30] reported that the hardness of borided layers was in the range
of 1200~2000 HV. Toktaş et al. [31] obtained the hardness of 1300~1700 HV of borided
layers. Mariani et al. [21] demonstrated that the microhardness of borided layers on ductile
cast irons was 1400~1700 HV. Similar results were also revealed by Oliveira et al. [18]. In
this study, the attained hardness of borided layers on bainitic steels was consistent with
those found in the above-mentioned literature.
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3.3. Corrosion Behavior

Polarization curves at the stabilized open circuit potential were used to detect the
corrosion kinetics of samples in 10% NaOH, 0.5 mol/L HCl and 3.5% NaCl solutions for
simulating alkaline, acidic and neutral environments, respectively. Figure 10 exhibits the
potentiodynamic polarization curves of boro-austempered sample BA-2 and its comparable
sample NA-2, respectively. The related values of free corrosion current density (Icorr) and
free corrosion potential (Ecorr) of samples BA-2 and NA-2 in different corrosive mediums
can be extracted from polarization curves, as listed in Table 3. The values of Ecorr in
different corrosive mediums of sample BA-2 are larger, and the Icorr data are smaller
compared to those of sample NA-2, testifying that the boro-austempered sample yields
better corrosive performance in alkaline, acidic, and neutral environments. The improved
corrosion resistance by boro-austempering treatments is mainly ascribed to the formation of
FeB and Fe2B. It was well accepted that a dense and uniform borided layer formed during
the boriding process. This is conducive to suppressing the entry of corrosive medium.
On the other hand, the bonding force between FeB and Fe2B phases is much greater than
the matrix’s, which is beneficial to resisting the corrosive damage. In addition, it can be
observed that the anodic curves of samples in 10% NaOH fluctuate, which is related to the
activation–passivation transition on the surface of the sample [32].
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Table 3. The Icorr and Ecorr of samples BA-2 and NA-2 in different corrosive mediums.

Samples 10% NaOH 0.5 mol/L HCl 3.5% NaCl
Icorr (A/cm2) Ecorr (V) Icorr (A/cm2) Ecorr (V) Icorr (A/cm2) Ecorr (V)

BA-2 2.54 × 10−6 −0.895 5.50 × 10−5 −0.193 2.13 × 10−6 −0.466
NA-2 3.93 × 10−6 −0.899 1.49 × 10−4 −0.230 3.04 × 10−6 −0.491

Because of the excellent corrosion behaviors of boro-austempered samples [19], the sur-
face of the boro-austempered sample (BA-2) in the present study was artificially scratched
by an electric marker to expose the matrix, working as an active anode around the harder
produced layer before in situ SVET tests. According to the corrosive medium used during
SVET tests in the literature [23,33], the 0.5% NaCl solution was also chosen in the present
study. Figure 11 gives the current density maps of the BA-2 sample at various immersion
times in 0.5% NaCl solution. It is directly observed that anodic activity is detected at
the beginning of immersion (Figure 11a). In addition, the scratched area exhibits a rela-
tively higher current density as compared to circumambient as-prepared layers during
the immersed period. Moreover, the anodic current density successively increases from
47.8 mA/cm2 after 0.5 h exposure, and finally to 139 mA/cm2 after 3.5 h exposure, while
the corroded area gradually contracts during immersion in 0.5% NaCl solution. Therefore,
the corrosion reaction is supposed to proceed predominantly along the depth direction
instead of horizontal propagation. The above phenomenon demonstrates the excellent
corrosion performance of the fabricated layers on bainitic steels.
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3.4. Wear Behaviors

Friction tests of different samples were conducted on a BMT-I multifunctional surface
performance comprehensive tester. The friction coefficients of samples were continuously
recorded during the whole process, as presented in Figure 12. It can be observed that
the average friction coefficient of the untreated sample (NA-2) is about 0.75, while the
average friction coefficients of the boro-austempered samples (BA-2 and BA-8) are around
0.60. Carrera-Espinoza et al. [34] and Almeida et al. [35] reported that the friction co-
efficients of produced layers by only boriding were smaller than the samples without
boriding. Hence, the changing trend of the friction coefficient of as-prepared layers after
the boro-austempering process is similar to that in boriding only. Generally, the wear rate
is positively correlated with the friction coefficient, which means the larger the friction
coefficient, the larger the wear rate. Hence, the larger friction coefficient of sample NA-2 re-
sulted in larger wear loss under the same wear condition. Therefore, the wear performance
of bainitic steels is significantly enhanced by boro-austempering treatment.
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Figure 13 displays the morphologies of wear tracks in samples BA-2 and NA-2. It
is observed that there are abrasion grooves along the sliding direction in both BA-2 and
NA-2, and both samples exhibit the integrity of wear track regardless of different friction
coefficients. In addition, there are some peeling areas in the boro-austempered sample (BA-
2), as shown in Figure 13c,d. This may be attributed to a different wear mechanism from
pure abrasion of the sample without boriding (NA-2). Gutierrez-Noda et al. [36] claimed
that it was the delamination wear mechanism for borided samples. It is reasonable to
speculate that the delamination wear mechanism is also applicative for boro-austempered
samples. Moreover, the wear track depth and width in both samples were measured by
an ultra-depth, three-dimensional microscope. The average wear track width and depth
of the non-borided sample are 718 ± 15 and 12.43 ± 3.23 µm, respectively, while the
average wear track width and depth of the boro-austempered sample are 408 ± 7 and
2.88 ± 1.07 µm, respectively. It should be emphasized that the wear track of the untreated
sample is approximately 1.7 times wider and 4.3 times deeper than the boro-austempered
sample. Since the subsequent isothermal holding at 623 K for one hour for bainitic pre-
cipitation acts equivalently as the tempering process of borided layers, the brittleness of
the produced layer is significantly reduced. Meanwhile, the intrinsic higher-hardness of
the borided layer further improves the wear resistance, and consequently, the shallow and
narrow wear tracks occupy the surface of boro-austempered steels.
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Figure 13. Morphologies of wear tracks of samples: (a) and (b) NA-2; (c) and (d) BA-2.

Wear tests were conducted on an ML-100 wear resistance machine. Figures 14 and 15
present the wear loss of samples BA-2 and NA-2 at different wear durations and the wear
morphologies of the samples, respectively. The wear loss of the comparable sample NA-2
(450 mg) is 2.2 times the boro-austempered sample BA-2 (204 mg), demonstrating that the
as-prepared layer on the surface significantly improves the wear resistance of the bainitic
steel. In addition, for the boro-austempered sample (BA-2) in Figure 14b, the wear rate
(the slope of the wear loss curve) increases after a 720 m sliding distance, meaning that the
as-prepared layer begins to desquamate. This may be related to the thinner layers (28.6 µm)
of sample BA-2. Regarding the wear morphologies of samples in Figure 15, the parallel
scratches denoting two-body wear are observed in two samples. However, it is apparent
that the parallel scratches in sample NA-2 are more intense and deeper than those of the
boro-austempered sample (BA-2), which is consistent with the results of wear loss.
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4. Conclusions

The effects of boro-austempering treatments on growth kinetics in borided layers,
microstructure, and properties in medium-carbon bainitic steel were investigated. The
main conclusions obtained are as follows. The corrosion resistance of steels in 10% NaOH
solution, 0.5 mol/L HCl solution, and 3.5% NaCl were apparently improved via boro-
austempering treatment. In addition, the surface friction coefficient reduced by 20% after
boro-austempering, and the wear resistance of the as-prepared layer improved up to
2.2 times compared to the bainitic substrates. The produced layer on the bainite matrix
exhibited superior adhesion strength. Moreover, the boundaries between the bcc structure
and Fe2B grains as well as between Fe2B and FeB grains were low-angle boundaries.
The preferential crystallographic growth directions of Fe2B and FeB are [001] and [010],
respectively, which belongs to the (100) plane. Furthermore, there were large amounts
of boron content in the coating and fewer carbon atoms, and the boride contained no Si
element. Si hindered the growth of borided layers, and C impeded the diffusion of B atoms.
Finally, the thickness of compound layers ranged from 3.4 to 62.9 µm in the boriding time,
and the kinetics equation d2 = 0.125·t for the as-prepared layers on the tested steel at 1223 K
was obtained.
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