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Abstract: A comprehensive transient model is developed to study the effect of electrode rotation on
the evolution of metal pool profiles and the solidification quality of ESR ingots. Magnetohydrody-
namic flow, heat transfer, solidification, and electrode melting are considered simultaneously in the
model. The growth of the ESR ingot is predicted using the dynamic layering method. The numerical
results show that the productivity reaches a maximum of 15.97% at the rotating speed of 40 rpm
without increasing power. With the increasing rotating speed, the maximum temperature of the
melt decreases, and the temperature distribution becomes more uniform. Compared with the static
one, the pool profiles are flattened by −1.19%, −8.52%, and 12.44% at the rotating speeds of 20, 40,
and 60 rpm, respectively. The metal pool profile was improved remarkably, but only at the higher
speed (i.e., 60 rpm). The effect of rotating speed on the metal pool profile depends on the competition
between the melting rate and slag temperature. Meanwhile, the local solidification time and the
secondary dendrite arm spacing are slightly improved at lower rotating speeds but are significantly
worse at higher rotating speeds.

Keywords: electroslag remelting; rotating electrode; metal pool profile; heat transfer; magnetohydro-
dynamic flow

1. Introduction

Electroslag remelting (ESR) is an essential secondary refining process for producing
high-quality steels, which are widely used in aerospace, energy, and other vital fields. An
alternating current (AC) is passed between the consumable electrode and baseplate, elec-
trically heating the high-resistivity slag to melt the electrode. The molten electrode metal
passes through the slag layer drop by drop to be refined, promoting the removal of harm-
ful elements and inclusions [1–4]. Meanwhile, the bottom-up solidification significantly
improves the uniformity and denseness of ingots [5,6].

However, the process suffers from a deep V-shaped metal pool profile, which is prone
to severe segregation defects and subsequently poor performance of the ESR ingots [7].
This profile results from the heat accumulation in the ingot center, closely related to the
concentrated dripping of metal droplets. It was reported that increasing melting rate,
or decreasing filling ratio or slag thickness leads to an increase in pool depth [8–10].
In addition, the conventional ESR has the limitation of high energy consumption and
low output.

Chumanov et al. [11] innovatively suggested the employment of electrode rotation
to solve the above problems. As depicted in Figure 1, unlike the general method, the
electrode in this new way not only moves vertically but also rotates at a specific angular
speed [12]. The imposed centrifugal force, opposite to the electromagnetic force, results in
an outward movement of molten metal and, consequently, the droplet detachment from the
periphery of electrode tip. The electrode agitation and dispersed droplets change the flow
pattern in the slag layer, strengthening the convective heat exchange between the slag and
electrode, and between the slag and mold. On the one hand, the rotation accelerates the
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electrode melting rate, i.e., increasing productivity. Chumanov et al. [13] concluded that,
even without increasing the input power, the productivity using a rotating electrode could
be improved by more than 25%. On the other hand, it makes the temperature in the slag
pool and metal pool more uniform, and thus prone to a more shallow and flat metal pool
profile. Demirci et al. [14] melted different steel grades using an ESR unit with a rotating
electrode at RWTH Aachen University. By comparing the heat with a static electrode, they
found that the maximum reduction of pool depth was reached by up to 86%, at 50 rpm,
for structural steel (ST37) but only 40%, at 20 rpm, for tool steel (H13). Chang et al. [15]
designed an ESR unit with a rotating mold, and higher densities and purities of their
ESR ingots were achieved by regulating the rotating speed. Using numerical methods,
Huang et al. [16] were able to get insight into the complex phenomena involved in the ESR
process with a rotating electrode. They pointed out that there is an optimal rotating speed
for maximizing productivity.
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Figure 1. Process schematics of general ESR (a) and ESR with a rotating electrode (b) [16].

Unfortunately, the role of electrode rotation in improving metal pool profiles in the
ESR process has not been clarified. In this paper, the authors are motivated to develop
a transient 3D comprehensive model that considers magnetohydrodynamic flow, heat
transfer, solidification, electrode melting, and electrode rotation. The growth of an ESR
ingot is predicted using the dynamic layering method. The effect of electrode rotation on
the evolution of metal pool profile and the solidification quality is discussed in detail. This
study aims to provide a theoretical basis for improving the solidification quality of ESR
ingots and the broader application of ESR technology with a rotating electrode.

2. Model Description
2.1. Governing Equations

Details of the present model can be found in reference [4,16], so only a brief description,
with the associated modeling considerations, is given here. The conservation equations
are solved using the finite volume method (FVM). The 3D-calculated domain includes the
molten slag layer, liquid metal pool, and solidified ingot.

1. VOF approach. The volume of fluid (VOF) approach is adopted to solve the redistribution
of the metal and slag phases and accurately track the slag/metal interface [17]. The local
volume fractions determine the properties such as density and electrical conductivity.

2. Fluid flow. The continuity and Navier–Stokes equations are used to calculate the
two-phase flow. The renormalization group (RNG) k-ε model describes the weakly
turbulent flow inside the mold [18]. The buoyancy force is considered by Boussinesq
approximation [19].

3. Heat transfer and solidification. The conservation equation, in terms of enthalpy, is
employed to solve the heat transfer process in the ESR system [20,21]. The mushy
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zone is treated as a porous medium, where the porosity decreases from one to zero as
the metal solidifies.

4. Electromagnetism. For sinusoidal AC, the induced magnetic field can be expressed in
complex notation, of which the amplitude is dependent on the position of AC [22].
With Maxwell’s equations and proper boundary conditions, the time-averaged elec-
tromagnetic force and Joule heating density could be calculated [23].

5. All the governing equations are given in Table 1.

Table 1. Governing equations in this model [16].

Governing Equations Symbols

(1) VOF approach

∂α
∂t +∇ ·

(→
v α
)
= 0 (1)

φ = φmαm + φs(1− αm) (2)

magnetic flux density (
→
B)

specific heat (cp)
primary dendrite arm spacing (d1)

buoyancy force (
→
F b)

Lorentz force (
→
F e)

surface tension (
→
F st)

damping force (
→
F damp)

liquid fraction ( fl)
gravitational acceleration (

→
g )

magnetic field intensity (
→
H)

complex amplitude (
_
H)

enthalpy (H)
sensible enthalpy (h)

current density (
→
J )

effective thermal conductivity (ke f f )
latent heat of fusion (L)

normal vector (
→
n )

pressure (p)
Joule heating (QJ)
temperature (T)

reference temperature(Tre f )
time (t)

velocity (
→
v )

volume fraction (α)
thermal expansion coefficient (β)

property (φ)
electrical conductivity (σ)

density (ρ)
magnetic diffusivity (η)
effective viscosity (µe f f )
turbulent viscosity (µt)

surface tension coefficient (σij)
curvature (κ)

(2) fluid flow
ρ
∂t +∇ ·

(
ρ
→
v
)
= 0 (3)

∂
(

ρ
→
v
)

∂t +∇ ·
(

ρ
→
v
→
v
)
= −∇p + µe f f∇2→v +

→
F e +

→
F b +

→
F st +

→
F damp (4)

→
F e =

→
J ×

→
B (5)

→
F b = ρ

→
g β(T − Tre f ) (6)

→
F st = σij

2ρκ∇α
ρi+ρj

→
n (7)

→
F damp = (1− fl)

f 3
l
· 180µ

d2
1

→
v (8)

(3) heat transfer and solidification

∂
∂t (ρH) +∇ ·

(→
v ρH

)
= ∇ ·

(
ke f f∇T

)
+ QJ (9)

H = h + fl L (10)

h = hre f +
∫ T

Tre f
cpdT (11)

QJ =
→
J ·
→
J

σ (12)

(4) electromagnetic field
→
H =

_
Hejwt with j2 = −1 (13)

∂
→
H

∂t = η∇2
→
H (14)

2.2. Melting Rate Calculation

The electrode melting rate is closely related to heat conduction between the slag and
electrode. This heat conduction is estimated by the effective thermal conductivity and local
temperature gradient:

qslag = ke f f
Tslag − Tsolidus

δ
(15)

where Tslag is the slag temperature underneath the electrode. Tsolidus is the solidus temper-
ature of electrode metal. δ represents the thickness of liquid metal film between the slag
and solid electrode, typically taking an average of 3 mm [24,25].
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Part of the heat flux provided by the slag is used to melt the electrode, i.e., the latent
heat. The rest raises the internal temperature of the solid electrode, i.e., sensible heat [26].

qslag = qLatent + qSensible (16)

qLatent =

.
mL
πr2 (17)

qSensible = −km
∂T
∂z

∣∣∣∣
Z=0,e

(18)

where
.

m is the electrode melting rate. r denotes the radius of the electrode.
For the sake of calculation, only the axial heat conduction in the solid electrode is

considered. The conservation equation in terms of temperature is used to describe this
conduction, and the advection term can be calculated by the electrode melting rate:

∂
(
ρcpT

)
∂t

− ∂

∂t

(
ρcp

.
m

ρAe

)
=

∂

∂z

(
km

∂T
∂z

)
(19)

An iterative program is compiled to predict the axial temperature distribution in the
solid electrode and the electrode melting rate [16]:

(a) The initial value of the ratio of sensible heat to latent heat is assumed to be 10.
(b) Combining Equations (15)–(17),

.
m can be deduced.

(c) Using Equation (19) and
.

m from step (b), the temperature profile in the solid electrode
can be calculated.

(d) qSensible is updated using Equation (18), and then qLatent is updated using Equa-
tions (15) and (16).

(e) The ratio is updated and used as the initial value for the next iteration.
(f) Repeat steps (b) through (e) until the ratio changes less than 0.01% in one iteration.

2.3. Evaluation of Solidification Quality

The solidification quality of an ingot is primarily dependent on the local solidification
time (LST), which is defined as the residence time of the metal between the liquidus and
solidus isotherms [2]. The shorter the LST, the better the solidification quality of ingot.
From the perspective of microstructural predictions, LST is more valuable than metal pool
profile but cannot be obtained experimentally [27]. In this study, the LST distribution of ESR
ingot can be easily obtained by simulating the growth of the ingot with the dynamic mesh
method. The time for the metal in any grid to reach the liquidus and solidus temperatures
in sequence can be recorded:

LST = tsolidus − tliquidus (20)

Secondary dendrite arm spacing (SDAS) is an essential indicator of the microscopic
segregation of ingots. Reducing the SDAS can effectively suppress the solute segregation
of ingot. It can be deduced by [28]:

d2 = bR−n and R =
Tliquidus − Tsolidus

LST
(21)

where d2 is the SDAS. R is local cooling rate. b and n are the constants determined by the
alloy composition, taken as 710 and 0.39, respectively [28].

3. Process Parameters and Numerical Details

For the ESR modeling, H13 tool steel and 50% wt CaF2-25% wt CaO-25% wt Al2O3
slag were selected. The material properties and process parameters are gathered in
Table 2 [19,29,30]. The physical properties of metals, such as viscosities, were calculated
by the JMatPro software (Version 7.0, Sente Software Ltd., Guildford, Surrey, UK). Four
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calculation cases were considered in the present work: (i) ESR with a static electrode; (ii–iv)
ESR with an electrode rotating at 20, 40, and 60 rpm, respectively.

Table 2. Physical properties and process parameters.

Physical Properties Metal Slag

density, kg·m−3 7850 2600
viscosity, Pa·s 0.00441–6.384 0.0175–0.0768

specific heat, J·kg−1·K−1 752 1255
thermal conductivity, W·m−1·K−1 30.52 10.5

electric conductivity, Ω−1·m−1 7.14 × 105 ln σ = −6769/T + 8.818
liquidus/solidus temperature, K 1730/1636 -

latent heat of fusion, kJ·kg−1 270 -
thermal expansion coefficient, K−1 2 × 10−4 1 × 10−4

Process parameters Value

electrode radius, mm 60
mold radius, mm 100
slag weight, kg 6.5

current, kA 3.2
frequency, Hz 50

rotating speed of electrode, rpm 0/20/40/60

The mesh model with the required magnetic boundary conditions is displayed in
Figure 2. The radial current was assumed to be zero at the electrode tip and baseplate, while
a radial magnetic flux was imposed at the mold wall and top surface. Consequently, an
alternating current is formed between the electrode tip and baseplate. Due to the insulation
hypothesis between the mold and melt, no current was allowed to enter the mold [31]. The
temperature at the electrode tip was superheated to 30 K over the liquidus of the electrode
material. Since there were solidified slag skin and air gaps between the ingot and the
mold, the thermal convection with equivalent heat transfer coefficients (400–800 W/m2·K)
was applied at the mold wall and baseplate [32]. The rotation of electrode is achieved by
imposing an angular velocity on the electrode tip. The top surface was set to be zero shear
stress, while no-slip boundary was applied at the mold’s walls and bottom.
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The governing equations were discretized by the commercial package ANSYS Fluent
(Version 12.0, ANSYS Inc., Canonsburg, PA, USA), and the complicated phenomena were
solved simultaneously. The in-house user-defined functions (UDF) were implemented,
modeling considerations for electromagnetism, electrode melting rate, LST, and SDAS. The
second-order upwind scheme was adopted. The 3D mesh used in the simulation initially
consists of 3.09× 105 computational cells and grew to 1.30× 106 computational cells by the
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end. The growth of the ingot was considered by the dynamic layering method. The time
step was 0.001 s with a minimum of 20 iterations and an associated convergence criteria
(10−6) to ensure numerical accuracy. Therefore, each calculation case ran for 2200–2600 s
of CPU time using parallel calculations on a multi-CPU cluster (24 cores, Intel Xeon Gold
5220R @ 2.20 GHz, Shenyang, Liaoning, China). Each transient case required about 20 days
of wall-clock time.

4. Results and Discussions
4.1. Model Validation

Experiments using a 200-kg scale ESR furnace (Northeastern University, Liaoyang,
Liaoning, China) with a static electrode were conducted under argon protection to validate
the integrated model. The identical process parameters and materials were adopted both
in the experiment and calculations. The constant power melting regime was employed.
The whole ESR experiment, including the arcing and feeding stages, lasted about 2 h.

Due to the sealed reactor, it is difficult to measure the internal data of the high-
temperature melts. According to Section 2.2, the electrode melting rate can characterize the
combining effect of melt flow and heat transfer on the electrode and, thus, can be used to
validate the model’s accuracy. This rate can be real-time estimated by the electrode position
using the PLC programming in the experiment. Figure 3 plots the comparison of electrode
melting rate between the measured and predicted results. As depicted, the fluctuation
of melting rate is inevitable, due to the periodical formation and detachment of droplets.
More instabilities in the experiment, such as the variation of electrode immersion depth,
caused a much more noticeable fluctuation of the measured rate. The averaged values of
the measured and predicted melting rates are 0.0231 and 0.0238 kg/s, respectively. This
discrepancy is mainly attributed to uncertainties in the material properties and boundary
conditions. The excellent agreement between both results ensures the reliability and
accuracy of the model.
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The averaged melting rates are 0.0238, 0.0247, 0.0276, and 0.0261 kg/s in the cases
rotating at 0, 20, 40, and 60 rpm, respectively. Compared to the static one, the productivities
are enhanced by 3.78%, 15.97%, and 9.66% at the rotating speeds of 20, 40, and 60 rpm,
respectively. Obviously, the productivity reaches a maximum when the rotating speed
is 40 rpm. This trend is influenced by the combination of slag temperature and effective
thermal conductivity, which usually vary in opposite patterns [16]. Furthermore, a no-
ticeable reduction in the amplitude of electrode melting rate is observed as the rotating
speed increases. It indicates that the rotation of electrode could also improve the stability
of ESR process.
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4.2. Magnetohydrodynamic Flow

Figure 4 displays the predicted distributions of Joule heating density and current paths
in the mold with different rotating speeds. The overwhelming majority of the Joule heating
is generated in the slag pool. Due to the very high electrical conductivity difference between
the slag and metal, the current tends to flow through the metal droplets. Consequently,
higher Joule heating density was located at the slag underneath the periphery of the
electrode and droplet tip. As the rotating speed increased, the region of high Joule heating
density migrated outward, but the total amount of Joule heating remained almost the
same. In the static condition, the Lorentz force, which is perpendicular to the direction
of the current and points inward, promotes the inward convergence of molten metal at
the electrode tip. However, the Lorentz force was countered by the centrifugal force in the
opposite direction under rotation. As the rotating speed increased, the effect of the Lorentz
force on the formation and dripping of droplets grew increasingly smaller.
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height is 150 mm.

Figure 5 displays the predicted flow fields in the mold with different rotating speeds.
In the static condition, the slag flows downward in the center under the action of falling
droplets but flows upward at the outer sides. As the electrode rotates, the droplets detach
at the periphery of electrode tip rather than at the center, resulting in a vortex direction
reversed from that in the static condition. Most significantly, the electrode rotation drives
the melt, creating an intense swirling flow in the slag layer and liquid metal pool, which
weakens with decreasing altitude. The volume-averaged turbulent kinetic energy increased
from 4.77 × 10−4 m−2·s−2 to 1.68 × 10−3 m−2·s−2 with the rise in rotating speed from 0 to
60 rpm, indicating that the rotation of the electrode enforces turbulence and, eventually,
enhances heat convection in the melt.
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4.3. Evolution of Metal Pool Profile

The predicted temperature distributions in the mold with different rotating speeds are
shown in Figure 6. As depicted in Figure 6a, in the static case, the hotter region locates at
the outer side of the upper slag layer. Joule heating is the only source for ESR systems. A lot
of heat is carried away by the water-cooled mold, and a pronounced temperature gradient
can be observed in the slag closest to the mold. Some heat is used to heat and melt the solid
electrode, while the droplets carry some to the liquid metal pool. The high-temperature
slag layer always covers the metal pool, and thus a liquid region, wherein the solidification
has not occurred, is observed at the top of metal pool. The temperature decreased layer by
layer from the top to bottom of the solidified ingot. At the beginning of the ESR process,
the heat loss is primarily carried out through the baseplate. Thus, a U-shaped metal pool
profile is formed. With the growth of the ingot, the cooling intensity of the baseplate
becomes much weaker than that of the mold, resulting in a deeper V-shaped metal pool.

As the electrode rotated at 20 rpm, as shown in Figure 6b, the temperature of the lower
part of the slag layer increased slightly. When the rotating speed increased to 40 rpm, as
depicted in Figure 6c, the temperature distribution in the slag layer became more uniform.
The flow structure with a rotating electrode enhances the thermal convection and diffusion
from the outer side to the center of slag layer. When the rotating speed increased to 60 rpm,
a significant reduction of slag temperature was observed (see Figure 6d). Consequently,
the metal pool profile becomes flatter.
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Figure 7 plots the time variation of the maximum temperature of the melt with
different rotating speeds. The time-averaged values in the cases rotating at 0, 20, 40, and
60 rpm are 1999.0, 1977.8, 1910.0, and 1866.0 K, respectively. Without increasing the power
input, more heat is used to melt the electrode or carried away by the cooling water as
the electrode rotates. Thus, the maximum temperature is inversely proportional to the
rotating speed of electrode. The standard deviation of maximum temperature decreases
from 18.89 to 3.92, with the rotating speed rising from 0 to 60 rpm, meaning the thermal
environment in the mold becomes more stable with increasing rotating speed.
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To evaluate the metal pool profile, the dimensionless number ‘M’ is introduced here,
which expresses the ratio of the height of metal being solidified to the radius of the mold. As
depicted in Figure 8a, the numbers exhibit an increasing trend with the growth of solidified
ingot. At the end of the ESR process, the numbers tend to stabilize, which indicates a
balanced state being reached between the heating and solidifying rates. In the early stage of
the ESR process, the number decreases with the increasing rotating speed, that is, the metal
pool profile is improved. However, the numbers eventually increase to 0.587, 0.594, 0.637,
and 0.514, with the electrode rotating at 0, 20, 40, and 60 rpm, respectively. Compared with
the static counterpart, the pool profiles are flattened by −1.19%, −8.52%, and 12.44% at
the rotating speeds of 20, 40, and 60 rpm, respectively. The metal pool profile is improved
remarkably only at 60 rpm.
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Generally, an increase of slag temperature caused by varying process parameters
(e.g., increasing the power input) means a faster melting rate, and consequently a deeper
metal pool profile in a typical ESR process [8]. However, lower slag temperature and faster
melting rates may co-occur as the rotating speed increases. Therefore, in the cases of an
identical applied current, the effect of rotating speed on the metal pool profile depends on
the competition between the melting rate and slag temperature. As the electrode rotates at
a lower speed (i.e., 20 and 40 rpm), the melting rate plays a dominant role and contributes
to a deepened metal pool profile. Especially at the rotating speed of 40 rpm, the melting
rate far exceeds the solidifying rate, which leads to a pronounced increase of the metal
pool depth (see Figure 8b). As the electrode rotates at a higher speed (i.e., 60 rpm), the slag
temperature dominates the competition, and a flatter metal pool profile can be obtained.

4.4. Solidification Quality

Figure 9 shows the predicted distributions of LST in the solidified ingot with different
rotating speeds. As depicted, the LST increases layer by layer from the ingot surface close
to the cooling boundary to the center far from the cooling boundary. The maximum LST
always locates underneath the bottom of liquid metal pool in the stable remelting stage.
With the increasing rotating speed, the LST at the outer side of the solidified ingot decreases.
Yet, the LST at the center of ingot increased dramatically when the rotating speed increased
to 60 rpm. This can be explained by the variation of the thickness of the mushy zone. The
maximum thicknesses were 19.9, 17.4, 20.4, and 26.4 at the rotating speeds of 0, 20, 40,
and 60 rpm, respectively. Therefore, it takes a longer time for metal to transition from the
liquidus isotherm to the solidus isotherm at the rotating speed of 60 rpm.
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As depicted in Figure 10, the SDAS in the solidified ingot exhibits a similar distribu-
tion with the LST due to the positive correlation between them (see Equation (21)). The
maximum SDAS in the ingot center are 200.3, 198.8, 199.8, and 256.1 at the rotating speeds
of 0, 20, 40, and 60 rpm, respectively. Compared to the static one, the SDAS is slightly
improved at lower rotating speeds (i.e., 20 and 40 rpm) but is significantly worse at a
higher rotating speed (i.e., 60 rpm). Figure 11 plots the predicted radial distribution of
SDAS at different horizontal sections. It can be deduced that, in the cases of an identical
applied current, the electrode rotation plays a positive role in improving the solidification
quality of the outer side of ESR ingot. Still, the excessive rotating speed deteriorates the
solidification quality of the center of ESR ingot. Therefore, the authors suggest that the
increase of rotating speed should be accompanied by a reduction of power input to ensure a
faster melting rate, a significant decrease in slag temperature, and, consequently, a quicker
solidifying rate and a smaller SDAS.
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5. Conclusions

A comprehensive transient model was developed to study the effect of electrode
rotation on the evolution of metal pool profiles and the solidification quality of ESR ingots.
The growth of an ESR ingot is predicted using the dynamic layering method.

1. The averaged melting rates were predicted as 0.0238, 0.0247, 0.0276, and 0.0261 kg/s
in the cases of rotation at 0, 20, 40, and 60 rpm, respectively. Productivity reached a
maximum of 15.97% at the rotating speed of 40 rpm, without increasing power.

2. As the electrode rotated, the droplets detached at the periphery of the electrode tip
rather than at the center, resulting in a flow structure reversed from that in the static
case. The electrode rotation drove the melt, creating a strong swirling flow in the slag
layer and liquid metal pool, which weakened with decreasing altitude.

3. With rotating speeds ranging from 0 to 60 rpm, the maximum temperature of the melt
decreased from 1999.0 to 1866.0 K. Meanwhile, the temperature distribution in the
slag layer became more uniform, and the thermal environment more stable.

4. The metal pool profile was improved with increasing rotating speed in the early stage.
At the end stage, compared with the static case, the pool profiles were flattened by
−1.19%, −8.52%, and 12.44% at the rotating speeds of 20, 40, and 60 rpm, respectively.
Only at a higher speed was the metal pool profile is improved, and remarkably. The
effect of rotating speed on the metal pool profile depends on the competition between
the melting rate and slag temperature.

5. The LST and SDAS increased layer by layer from the surface to the center of ESR
ingot. Compared to the static case, the SDAS was slightly improved at lower rotating
speeds (i.e., 20 and 40 rpm) but was significantly worse at a higher rotating speed
(i.e., 60 rpm).

The authors believe that the increase of rotating speed accompanied by a reduction of
power input is an effective way to simultaneously improve metal pool profiles and reduce
LST and SDAS.
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