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Abstract: Aluminium alloy 5083 was subjected to Laser Shock Peening both with (LSP) and without
protective coating (LPwC) at multiple pulse densities. A second LPwC treatment was conducted
fully submersed under water, in addition to the standard laminar water flow condition. The results
show that compressive residual stresses were generated in all cases, although their character varied
depending on the peening strategy and method of confinement. In all cases, higher pulse density
lead to an increase in compressive stresses with a saturation point of −325 MPa at 1089 p/cm2 for
the LPwC treatments. Corrosion fatigue testing of sensitized samples then showed 59% and 69%
improvement in fatigue strength after the LSP and LPwC treatments, respectively.

Keywords: LSP; LPwC; residual stress; corrosion fatigue; aluminium alloy; sensitization; intergranu-
lar corrosion

1. Introduction

Aluminium Alloy 5083 is a strong lightweight material known for its exceptional per-
formance in extreme environments such as seawater, and exposure to industrial chemicals.
Due to its excellent corrosion resistance, it is commonly used in the marine industry for
the construction of hulls and other ship-related structures [1]. Its characteristic strength is
derived from an increased amount of magnesium atoms, which act as obstacles to disloca-
tion movement in the crystal lattice [2]. However, when exposed to elevated temperatures
(>50 ◦C) the alloy undergoes a process known as sensitization [1,3,4] and becomes sus-
ceptible to intergranular corrosion (IGC) [5–7]. External stresses represented by static or
cyclic structural loading during the ship operation can then, in combination with IGC,
lead to intergranular stress corrosion cracking (IGSCC) or corrosion fatigue (CF). While
significant attention has been paid to investigating IGSCC behaviour [8,9], only a limited
number of studies have investigated the effects of CF on AA5083 in aggressive marine
environments [10–12], where fatigue loading is introduced by wind and wave motion,
ship machinery vibrations, thermal expansion, and contraction and operational loading
events [13,14].

In this paper, we focus on improving CF resistance of AA5083 through the generation
of beneficial compressive residual stresses by means of Laser Shock Peening (LSP). This
has already been shown to positively influence corrosion behaviour of other metallic
alloys [15–18]. In the typical LSP setup, a protective overlay or coating, in the form of
vinyl or aluminium tape, is used to protect the sample surface from heat effects that
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occur during laser absorption and can generate tensile stresses. A laminar flow of water
across the surface is used as a means of pressure confinement. However, application of
the tape underwater is not possible. Therefore, the effects of LSP without the protective
coating (LPwC) were also investigated, following the works of Sano et al. [19,20], including
fully submersed underwater peening, to facilitate its possible application in real marine
environments.

2. Materials and Methods
2.1. Material

For the residual stress (RS) measurements, a 6.35 mm thick plate of AA5083-H116 was
sectioned using electric discharge machining into 40 mm × 40 mm square coupons and
polished to 600 grit with silicon carbide paper. The chemical composition of the alloys
is shown in Table 1. The coupons were peened, in their received condition, without any
additional heat treatment.

Table 1. Chemical composition of AA5083-H116.

Alloy Element Mg Si Mn Fe Other (Zn, Cr, Ti, Cu) Al

Composition in wt% 4.0–4.9 0.4 0.4–1.0 0.4 0.65 balance

The corrosion fatigue samples were in the form of 60 mm × 12 mm × 4 mm blocks
sectioned from a 25.4 mm thick rolled plate. The samples were polished to 600 grit and then
were sensitized at 100 ◦C for 60 days prior to the LSP treatment and subsequent corrosion
fatigue (CF) testing. The sensitized material was determined to be IGC susceptible follow-
ing the ASTM G67 standard [21] where the degree of sensitization (DoS) was determined
to be 5 mg/cm2 and 44.6 mg/cm2 for the as-received material and the sensitized material,
respectively.

2.2. Laser Shock Peening with and without Coating

The LSP process uses high-energy nanosecond laser pulses to generate deep compres-
sive residual stresses in metallic materials. The sample surface is usually covered with a
protective coating in the form of black vinyl tape or paint, which absorbs the focused laser
pulses (Figure 1). The subsequent rapidly expanding plasma is confined against the sample
surface by a thin water layer (1–2 mm thick), and a strong shock wave with a magnitude of
several GPa [22], is formed. If the pressure exceeds the yield strength of the material, the
surface is plastically deformed and compressive stresses are generated. With the protective
coating applied, LSP can be considered a cold working process since the heat associated
with the laser absorption is screened from the sample surface and only plastic deformation
takes place. In Laser Peening without Coating (LPwC), the surface is directly affected by
heat, which can substantially affect the residual stresses in the near surface layer.

Figure 1. LSP mechanism.

In this study, three basic peening setups were investigated–one with coating (LSP) and
two without coating (LPwC). In all three cases, the peening was applied using a Powerlite
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Plus Nd:YAG laser system (Powerlie DLS Plus, Continuum, Milpitas, CA, USA) operating
at 1064 nm with 10 Hz repetition rate with an option to switch to 532 nm using second
harmonic generation (SHG). The sliced pulses [23] were 22 ns in duration (FWHM) and
had a circular top-hat beam profile. The first setup utilized protective coating in the form
of a 100 µm black vinyl tape and a laminar film (~1 mm) of flowing water, while using
the 1064 nm infrared (IR) laser wavelength (LSP IR)(Continuum, Milpitas, CA, USA). The
setup is depicted in Figure 2a. Pulses of 3 J were focused to a 2.6 mm circular laser spot
with a resulting power density of 2.6 GW/cm2. The peening was delivered in the form
of layers, each consisting of 4 sequences with the tape replaced between each sequence.
The laser spot overlap within one sequence was 0% and the sequences were shifted with
respect to the first sequence by half the spot size in X, Y, and XY directions, consecutively,
so that a uniform 50% overlap was achieved eventually. The peening strategy for one
sequence is show in Figure 3a. Both cases, with 1 layer (LSP IR 1L) and 2 layers applied
(LSP IR 2L), were investigated. For the CF samples, only the LSP IR 2L condition was
applied. The treated area for all the RS and CF samples was 20 mm × 20 mm and 10 mm
× 12 mm, respectively. Furthermore, all CF samples were treated on both sides to prevent
bending, and the laser scanning was perpendicular to the long edge of the sample. The
LSP IR samples after peening, both RS and CF, are shown in Figure 4a. Plastic deformation
in the treated area can be clearly observed while the surface remains heat unaffected.

Figure 2. (a) LSP and (b) LPwC underwater setup.

Figure 3. Peening strategies used: (a) LSP sequencing when protective coating is used and (b) LPwC
single pass for the whole patch in the absence of coating.



Metals 2021, 11, 1635 4 of 10

Figure 4. AA5083 samples for residual stress (left) and corrosion fatigue (right) testing after treatment:
(a) LSP IR, (b) LPwC IR, (c) LPwC SHG.

The second peening setup was the same as in Figure 2a. The IR wavelength was
used, but the protective coating was removed (LPwC IR). With the tape absent, the patch
was peened in a single pass using overlapping laser pulses (Figure 3b) with varied pulse
density, specifically 204, 400, 1089 and 2500 p/cm2. The pulse energy was 1 J with a laser
spot size of 1.5 mm. The power density was again 2.6 GW/cm2. The CF samples were
peened with 1089 p/cm2. The samples after peening are shown in Figure 4b. The thermally
affected area now shows a distinct look after the melting during the laser pulse absorption

The third setup also involved peening without coating, but the samples were treated
under water in a water tank (Figure 2b). In this case, the second harmonic of the laser at
532 nm was used (LPwC SHG) (Continuum, Milpitas, CA, USA) due to attenuation of the
IR wavelength in water. The pulse energy was once again 1 J with laser spot size of 1.5 mm,
power density of 2.6 GW/cm2 and varied pulse density of 204, 400, 1089 and 2500 p/cm2.
The CF samples were peened with 1089 p/cm2. The LPwC SHG samples are shown in
Figure 4c with the melted area clearly visible.

2.3. Residual Stress and 3-Point Bend Testing

The stress measurements were conducted on an X-ray diffractometer (XRD) (Proto,
Taylor, MI, USA) Proto LXRD instrument using the sin2ψ method using Cr Kα (2.2897 nm)
radiation at 2θ = 139◦. The stresses were measured in two perpendicular directions, scan-
ning (σS) and transversal (σT) with respect to the laser peening scanning, and advancing
directions, respectively. To measure residual stresses through depth, layers of the material
were progressively removed using an electro polisher with 87.5:12.5 vol% CH3OH:H2SO4
electrolytic solution. The thickness of material removed was measured with a precise
micrometre. Smaller measurement steps were taken close to the material surface and strain,
and depth corrections were applied using the evaluation software.

Corrosion fatigue tests were performed on Electromagnetic pulsator Testronic (Rumul,
Neuhausen am Rheinfall, Switzerland) for high cycle fatigue testing. The 3-point bend test
was load controlled and took place at room temperature at 45 Hz with R value 0.1. The
supports were 20 mm apart and the specimen was submerged in 3.5% NaCl solution. The
LSP treated face corresponded to the TS plane of the original plate with the loading being in
the long-transverse direction. The terminating condition was either when 107 cycles were
reached, or when the frequency dropped by 20 Hz due to lowered toughness, signified by
a crack that developed and started to propagate. The testing setup is shown in Figure 5.
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Figure 5. Corrosion fatigue 3-point bend testing setup.

3. Results and Discussion
3.1. Residual Stresses

Figure 6 shows in-depth residual stress measurement results in all three peening
setups. Multiple pulse densities are investigated for LPwC as well as number of layers in
the LSP treatment. Additionally, the data measured is compared to the baseline material,
i.e., material where no laser peening was applied. The standard deviation of any of the
XRD measurements did not exceed ± 18 MPa. The LSP IR condition is represented on the
top row of Figure 6. The left and right columns show stresses measured in the scanning
and transversal directions, respectively. In comparison with the baseline, the LSP treatment
with protective tape, clearly generates significant compressive residual stresses, around
−200 MPa on the surface, and maximum compressive stresses reached at a depth of about
200 µm. More laser pulse impacts represented by the 2L plot cause a constant increase of
about 50 MPa in the compressive stresses. The stresses induced in both σS and σT directions
are very similar and no significant variations are observed. The compression depth in
both directions is about 1.5–1.6 mm, which is higher than in the LPwC cases. This can
be explained by the use of a larger spot size as, according to the literature, shock waves
generated by laser impacts with larger spot size attenuate slower and thus deeper residual
stresses are produced [24,25]. The middle row graphs in Figure 6 represent the LPwC
IR condition. Unlike the LSP IR plots, there is a clear distinction between σS and σT. In
scanning direction, the residual stresses peak almost immediately at a pulse density as low
as 204 p/cm2. The maximum compressive stress reached is −150 MPa and the compression
depth is about 1.5 mm regardless of the pulse density. In the transversal direction, the
stress curve changes as higher pulse densities are applied. A maximum compression of
about −325 MPa was achieved corresponding to pulse density of 1089 p/cm2. The ultimate
tensile strength of the material is 317 MPa which means a saturation point was reached.
The compression depth reached was in the range of 1.2 mm to 1.4 mm with the highest
depth corresponding to 204 p/cm2 and lowest to 2500 p/cm2. The stress plots for the
LPwC SHG condition are displayed at the bottom row of Figure 6. The results are similar to
the LPwC IR case, showing the same distinction between the σS and σT measurements. The
maximum compressive stresses reached in the scanning direction were about −180 MPa
with very fast saturation. The compression depth ranged between 1.1 mm and 1.4 mm.
The σT measurements show the same trends as their LPwC IR counterpart with saturation
reached at −325 MPa at 1089 p/cm2. The plots show, however, that the saturation point is
reached faster in the LPwC IR case which is evident from the higher stress values of the
204 p/cm2 and 400 p/cm2 plots. The peaks in the LPwC SHG case are also sharper and
the subsequent drop-off is faster. The depths reached are once again between 1.1 mm and
1.4 mm depending on the pulse density. Similar resultant stress anisotropy with LPwC
treatment was observed in other studies [26–31]. Correa et al. [31] explain the phenomenon
in the context of interacting stress fields created by laser pulses overlapping in zigzag
scanning patterns. As a result, the residual stresses are higher in the advancing transversal
direction as opposed to the scanning direction. Furthermore, the stress anisotropy only
occurs when the pulse overlap occurs within one laser pass. This is evidenced here in
the top row of Figure 6 where despite the final overlap being 50% in the LSP IR case, the
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overlap within each separate sequence was 0% and as a result, no residual stress anisotropy
was detected. On the contrary, high stress anisotropy was found in both LPwC IR and
LPwC SHG where high laser pulse overlap was achieved within a single laser pass.

Figure 6. XRD residual stress measurements of selected peening setups (rows) in scanning σS and
transversal σT direction (columns).

Special attention is paid to the surface residual stresses where, based on the litera-
ture [32], the biggest difference between the treatment with and without tape should be
found. With the LSP IR treatment involving protective tape the surface stresses are rather
straightforward, about −175 MPa for 1L and −200 MPa for 2L in both directions. Without
the tape, the results start to vary based on the environment. The surface stress values for
LPwC IR and LPwC SHG are separately plotted against pulse density in Figure 7. The
LPwC IR data in Figure 7a shows that despite the heat effects present in the treatment, the
stresses moved towards compression both in σS and σT measurements when compared
to the baseline. The stresses peak rather fast around 400 p/cm2 and then level off. The
difference between σS and σT is about 60–80 MPa and is kept constant over the whole data
range. The surface stress measurement in LPwC SHG (Figure 7b) shows a similar trend,
but everything is shifted in the tensile direction. The underwater peening at the lowest
pulse density causes an abrupt shift of roughly 150 MPa towards tensile stresses in both
scanning and transversal direction, creating tensile residual stresses of 105 MPa and 37 MPa
as opposed to baseline values of −55 MPa and −109 MPa, respectively. The stresses then
start to move toward compression as the pulse density rises. Compared to the LPwC IR
data, however, it does not level off and keeps dropping at a low rate within the data range.
While the initial baseline value in σT is regained at 2500 p/cm2, the data suggests that the
baseline value will not be reached in the σS plot. As the laser energy should be absorbed
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readily, regardless of wavelength by the plasma layer that forms near instantaneously
compared to the nanosecond scale pulse duration, the difference in laser wavelengths is
expected to be largely inconsequential, assuming that energy delivered per pulse remains
constant. The differences between the LPwC IR and LPwC SHG conditions are therefore
more likely to arise from changes in the confinement and resulting interactions between
the plasma and the metal surface. Further analysis, however, is required and is currently
beyond the scope of this study. Sano and other authors suggest that compressive residual
surface stresses can be achieved under water when lower pulse energies (<250 mJ) with
very high pulse densities (~10000 p/cm2) are used [15,19,33].

Figure 7. Surface residual stresses in LPwC treatments as a function of laser pulse density: (a) LPwC
IR and (b) LPwC SHG.

3.2. Corrosion Fatigue

Based on the residual stress measurements, the best performing conditions for each
peening setup were selected for the CF testing. These were the LSP IR 2L where higher
compression was measured and LPwC IR 1089 p/cm2 and LPwC SHG 1089 p/cm2 where
saturation in compressive stresses was reached. The results of the 3-point bend test are
shown in Figure 8. Data points with arrows mark samples that did not break during
the test and were halted after 107 cycles. The baseline material that was not treated by
laser peening, without and with sensitization, is represented by the black and red plots,
respectively. The sensitized sample displays the S–N curve shifted down which shows a
clear negative effect of IGC on the CF of AA5083. The fatigue strength at 107 cycles of the
non-sensitized baseline material was 127 MPa which is 44 MPa higher than the sensitized
baseline sample. Both the LSP and LPwC treatments had a positive impact on the fatigue,
bringing the S–N curves back up and possibly improving the original non-sensitized
fatigue strength. Better improvements were achieved with the LPwC IR and LPwC SHG
treatments where the fatigue strength improved by 63% and 69%, respectively. The LSP
IR showed the least improvement out of the treatments tested, but still reached a slightly
higher fatigue resistance than the non-sensitized sample. Fatigue strength improved by
59% when compared to the control sensitized samples. However, due to relatively low
amount of samples tested for each condition, this detailed comparison should be regarded
with caution.

SEM images of cracked samples are shown in Figure 9. In all cases, the fatigue crack
was initiated in the central part of the loaded section, specifically at one of the sample
edges, and the crack propagation was perpendicular to the tensile loading vector. The crack
propagation mechanism of transgranular cracking was the same for all tested conditions,
which can be observed in the bottom part of Figure 9. The highest corrosion damage was
observed on the fracture plane of the sensitized baseline sample (Figure 9b) with pitting
as the dominant corrosion mechanism. Laser peened samples showed significantly lower
pitting damage.
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Figure 8. S–N curves of LSP treated sensitized AA5083 after 3-point bend test in 3.5% NaCl solution.
Plots for non-sensitized samples (baseline) is provided for comparison.

Figure 9. SEM images of cracked samples (top) and detail of the fracture surface (bottom) after 3-point bend testing:
(a) baseline, (b) sensitized baseline, (c) sensitized LSP IR, (d) sensitized LPwC IR and (e) sensitized LPwC SHG.

The CF improvement is attributed to the compressive residual stresses imparted by
the LSP and LPwC treatments. Higher fatigue life of the LPwC samples could be explained
by the residual stress anisotropy. The LPwC fatigue samples had the transversal axis
oriented parallel to the stress loading, which means higher compression was achieved.
Other authors also report positive impact of the enhanced oxide layer created during the
LPwC process, which improved corrosion resistance of various aluminium alloys [34,35].

4. Conclusions

Laser shock peening with (LSP) and without (LPwC) protective coating was applied
to 5083-H116 aluminium alloy to investigate its effect on residual stresses and corrosion
fatigue. The following conclusions can be made:

1. Both LSP and LPwC imparts deep compressive residual stresses into the studied
material. The magnitude of the stresses rises with the number of laser pulse impacts
until a saturation point is reached. Slightly deeper stresses were obtained with LSP
treatment where larger spot size was used.

2. Residual stress anisotropy was observed in cases of LPwC treatments, where larger
compressive stresses up to a point of material saturation, were measured in the laser
advancing direction with respect to the peening pattern. The anisotropy is explained
by stress field interaction during pulse overlapping, and is completely absent in the
LSP case, where 0% pulse overlap within individual sequences was used.

3. Comparable compressive residual stresses were found on surface of both LSP and
LPwC conditions with thin water film confinement. In both cases, the surface stress
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magnitude was mostly independent on the number of laser impacts. In cases where
LPwC was performed under water, tensile surface stresses were measured which
turned into compressive in the transversal direction for higher pulse densities.

4. Sensitization has a negative impact on corrosion fatigue of the material which mani-
fests as a 35% drop in fatigue strength. LSP and LPwC treatment restored and even
possibly improved the original fatigue resistance of the non-sensitized samples. The
improvement over the sensitized material appears to be over 60%, especially with
the LPwC underwater treatment, although more data points would be required for
higher statistical certainty.

This study demonstrates that LSP can reliably generate deep compressive residual
stresses in the magnesium enhanced aluminium alloy, both with and without protective
coating, which leads to significant improvement in corrosion fatigue.
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25. Kalentics, N.; Boillat, E.; Peyre, P.; Ćirić-Kostić, S.; Bogojević, N.; Logé, R.E. Tailoring residual stress profile of selective laser
melted parts by laser shock peening. Addit. Manuf. 2017, 16, 90–97. [CrossRef]

26. Hirano, K.; Sugihashi, A.; Imai, H.; Hamada, N. Mechanism of anisotropic stress generation in laser peening process. Int. Congr.
Appl. Lasers Electro-Opt. 2006, 2006, P511. [CrossRef]

27. Hfaiedh, N.; Peyre, P.; Song, H.; Popa, I.; Ji, V.; Vignal, V. Finite element analysis of laser shock peening of 2050-T8 aluminum
alloy. Int. J. Fatigue 2015, 70, 480–489. [CrossRef]

28. Peyre, P.; Hfaiedh, N.; Song, H.; Ji, V.; Vignal, V.; Seiler, W.; Branly, S. Laser shock processing with two different laser sources on
2050-T8 aluminum alloy. Int. J. Struct. Integr. 2011. [CrossRef]

29. Dorman, M.; Toparli, M.B.; Smyth, N.; Cini, A.; Fitzpatrick, M.E.; Irving, P.E. Effect of laser shock peening on residual stress and
fatigue life of clad 2024 aluminium sheet containing scribe defects. Mater. Sci. Eng. A 2012, 548, 142–151. [CrossRef]

30. Maawad, E.; Sano, Y.; Wagner, L.; Brokmeier, H.G.; Genzel, C. Investigation of laser shock peening effects on residual stress state
and fatigue performance of titanium alloys. Mater. Sci. Eng. A 2012, 536, 82–91. [CrossRef]

31. Correa, C.; Peral, D.; Porro, J.A.; Díaz, M.; de Lara, L.R.; García-Beltrán, A.; Ocaña, J.L. Random-type scanning patterns in laser
shock peening without absorbing coating in 2024-T351 Al alloy: A solution to reduce residual stress anisotropy. Opt. Laser Technol.
2015, 73, 179–187. [CrossRef]

32. Peyre, P.; Berthe, L.; Scherpereel, X.; Fabbro, R. Laser-shock processing of aluminium-coated 55C1 steel in water-confinement
regime, characterization and application to high-cycle fatigue behaviour. J. Mater. Sci. 1998, 33, 1421–1429. [CrossRef]

33. Kalainathan, S.; Sathyajith, S.; Swaroop, S. Effect of laser shot peening without coating on the surface properties and corrosion
behavior of 316L steel. Opt. Lasers Eng. 2012, 50, 1740–1745. [CrossRef]

34. Trdan, U.; Grum, J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of
cyclic polarisation and ElS methods. Corros. Sci. 2012, 59, 324–333. [CrossRef]

35. Trdan, U.; Grum, J. SEM/EDS characterization of laser shock peening effect on localized corrosion of Al alloy in a near natural
chloride environment. Corros. Sci. 2014, 82, 328–338. [CrossRef]

http://doi.org/10.1007/s11661-001-1036-3
http://doi.org/10.1016/j.surfcoat.2014.06.026
http://doi.org/10.1115/1.1651098
http://doi.org/10.1016/0951-8339(88)90009-3
http://doi.org/10.1007/s007730200012
http://doi.org/10.1016/j.msea.2005.11.017
http://doi.org/10.1361/105994900770345520
http://doi.org/10.1016/j.msea.2015.08.084
http://doi.org/10.1016/j.surfcoat.2010.03.015
http://doi.org/10.2961/jlmn.2006.03.0002
http://doi.org/10.1016/j.matdes.2011.10.053
http://doi.org/10.2351/1.521861
http://doi.org/10.1117/12.497617
http://doi.org/10.1016/j.ijfatigue.2007.01.033
http://doi.org/10.1016/j.addma.2017.05.008
http://doi.org/10.2351/1.5060925
http://doi.org/10.1016/j.ijfatigue.2014.05.015
http://doi.org/10.1108/17579861111108644
http://doi.org/10.1016/j.msea.2012.04.002
http://doi.org/10.1016/j.msea.2011.12.072
http://doi.org/10.1016/j.optlastec.2015.04.027
http://doi.org/10.1023/A:1004331205389
http://doi.org/10.1016/j.optlaseng.2012.07.007
http://doi.org/10.1016/j.corsci.2012.03.019
http://doi.org/10.1016/j.corsci.2014.01.032

	Introduction 
	Materials and Methods 
	Material 
	Laser Shock Peening with and without Coating 
	Residual Stress and 3-Point Bend Testing 

	Results and Discussion 
	Residual Stresses 
	Corrosion Fatigue 

	Conclusions 
	References

