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Abstract: Sulfur, an element that belongs to group 16 (chalcogens) of the periodic table, is an excellent
promoter of nucleation substrates for graphite in cast iron. In ductile iron, sulfur favors a higher
nodule count, which inhibits the risk of carbides and of microporosity. It is reasonable to expect that
other elements from group 16, such as selenium or tellurium, play similar roles in the nucleation
of graphite. The objective of this paper was to investigate the effect of selenium on the process
of graphite formation. Thermal analysis cups were poured to evaluate the nodule count and size
distribution. Some of the cups were not inoculated, while others were inoculated with a Ce-bearing
inoculant, or with the Ce inoculant and additions of Se. Cross-shaped castings were also poured to
quantify the microporosity regions by tomography. It appears that selenium additions modify the
number and size of graphite particles, as well as the volume of microshrinkage. Direct correlations
between these three parameters were found. Advanced Extensive Field Emission Gun Scanning
Electron Microscope (FEG-SEM) techniques were used to identify the nature of the main nucleation
compounds. Selenides, combined with Mg and rare earths, were observed to serve as nuclei for
graphite. Their presence was justified by thermodynamics calculations.

Keywords: microporosity; sulfur; selenium; inoculant; nuclei

1. Introduction

It is well known that sulfur, an element that belongs to group 16 (chalcogens), plays
a major role in the nucleation process of spheroidal graphite (SG) cast iron, usually in
combination with other active minor elements, such as aluminum, calcium, cerium, or
barium, introduced through the inoculation and/or spheroidization processes [1–4]. Many
theories support the assumption of the heterogeneous nucleation on oxy-sulfides, Mg-Ca
sulfides, or complex Mg-Ca-RE sulfides, as the main nuclei for spheroidal and compacted
graphite [5–10]. These sulfides are among the most stable nonmetallic compounds. Similar
observations were also made in gray cast irons [11,12].

A high sulfur content inhibits graphite spheroidization and increases dross formation.
Alternatively, a low S level decreases the number of graphite particles and increases
chilling. The harmful, or beneficial, effects of sulfur are related to the amount present
before magnesium treatment, directly affecting graphite shape and nodularity. A minimum
sulfur level of at least 0.005 to 0.008% is required after the spheroidization treatment to
promote suitable nuclei for graphite precipitation and to reduce the risk of carbides. In SG
irons, small amounts of iron sulfide can be added late in the process in order to achieve
this critical content without any adverse effects on graphite nodularity.

Riposan et al. [13] showed that it was possible to use controlled sulfur additions
during the postinoculation process to produce compacted graphite cast iron without
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titanium additions. Sulfur was added as granular or powdery iron pyrites (FeS2), producing
inconsistent results because their fine mesh size A consistent control was achieved when
briquetted iron pyrites were used. According to Suárez et al. [14,15], the late addition of
small amounts of sulfur, in the form of pyrite granules (FeS2) in high-silicon and high-
carbon equivalent ductile irons, resulted in higher ferrite volume fractions, as well as
larger nodule counts, promoting the formation of potent substrates for the nucleation of
graphite. However, late sulfur additions can be detrimental to graphite morphology, setting
a threshold level of about 0.006% S, with a fast degradation of nodularity for levels above
0.008% S. On the other hand, Nakae and Igarashi [16] proposed that the range from 0.010
to dwas the most desirable S content to produce SG iron castings in order to increase the
SG nodule number. These researchers argued that spherical Mg-Ca sulfides were the main
nuclei for SG, if the S content of the base melt was higher than 0.005%, while rectangular
Mg-Si Al nitrides dominated when the S content was less than 0.0022% (Table 1).

Table 1. Influence of %S in the base iron on the nuclei of SG for Mg-treated iron, adapt from [16].

%S in Base Iron Nucleus Shape dia. (µm) Main Compounds Other Compounds

0.0022 rectangular 0.5–1.0 (Mg,Si,Al) N MgS, MgO, (Ca Mg) S
0.0052 spherical 0.5–1.0 (Mg,Ca) S MgO, (Mg,Si,Al) N
0.013 spherical 0.5–1.0 (Mg,Ca) S MgO, (Mg,Si,Al) ON
0.050 spherical 1.0–2.0 (Mg,Ca) S MgO, (La,Ce,Nd) S
0.072 spherical 1.5–5.0 (Mg,Ca) S MgO, (La,Ce,Nd) S
0.083 spherical/faceted 1.5–5.0 (Mg,Ca,Mn) S MgO, (La,Ce,Nd) S

It is also expected that other elements in the periodic table from the same group, such
as selenium or tellurium, play direct roles in the nucleation of graphite. Although the
three elements belong to the same group, 16, they present important differences in terms of
density, crystal structure, melting point, thermal conductivity, and specific heat (Table 2).
Thus, it is reasonable to assume that their behavior will be different in the process of the
formation of graphite.

Table 2. Properties of some elements from group 16 of the periodic table.

Properties Sulfur Selenium Tellurium

Density (kg/m3) 1960 4790 6240
Structure orthorhombic hexagonal hexagonal

Melting Point (K) 388.36 494 722.66
Boling Point (K) 717.87 957.8 1261

Specific Heat (J/Kg·K) 710 320 202
Thermal Conductivity (W/k·m) 0.269 2.04 2.35

The influence of tellurium on the formation of spheroidal graphite iron will be ana-
lyzed in future papers. This study will focus solely on the role of selenium. Most domestic
selenium is produced as commercial-grade metal, averaging a minimum of 99.5% selenium,
and is available in various forms. The global consumption of selenium during 2004 was
stipulated at about 2700 metric tons, estimating the global end-use demand as follows:
glass, 35%; chemicals and pigments, 24%; metallurgy, 23%; electronics, 10%; and other
uses, 8% [17]. More than one-half of the metallurgical selenium was used as an additive
(in amounts up to 1%) in cast iron, copper, lead, and steel alloys, improving the strength,
ductility, casting, and forming properties, and even the resistance to corrosion in the case
of magnesium-manganese alloys with additions of 0.3–0.5% Se [18].

In high-alloy steel castings, Se minimizes pinhole porosity. For stainless steels, the
addition of selenium to the liquid produces selenide compounds, with some of the metallic
elements appearing as inclusions in the steel matrix and improving the machinability.
Kurka et al. [19] found Se in MnS-type inclusions that had a significant impact on their
formability. A selenium content from 0.04 to 0.08% seems to affect the character, mor-
phology, and dispersion of the nonmetallic inclusions, decreasing ductility and increasing
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sensitivity to brittle fracture. Selenium compounds (selenides) are very unstable and,
therefore, are mostly formed in solid steel on the surfaces of inclusions. When the steel
solidifies, Se refines the grain structure, acting as a weak deoxidizer that contributes to bet-
ter mechanical properties. In addition, the addition of small quantities of Se into the ladle
may promote the formation of a finer and more equiaxed structure, with less directional
differences in the properties [20].

There is not much evidence in the literature about the influence of selenium in the
formation of graphite in cast irons. It is assumed that selenium is a surface-active element
and, as such, it modifies the shape of graphite particles (from tiny flakes to nodules),
which directly affects the mechanical properties. This theory was disputed by Horie [21],
who analyzed the negative effects of tellurium and selenium on the formation of SG, and
demonstrated that, by increasing the addition of both elements, the residual magnesium
content decreased, and the shape of graphite changed successively from spheroidal to
vermicular, undercooled, and then flaky.

The purpose of this article is to investigate the role of selenium on the formation of
spheroidal graphite, studying its influence on the cooling curves, nodule count, and size
distribution, as well as on the apparition of microshrinkage. The work will also address
the impact of Se on the nucleation process through the precipitation of a new type of
nonmetallic inclusions (selenides).

2. Materials and Methods

The iron was produced in a foundry in a 12-ton 7000 Kw induction furnace. The
charge materials included: 5400 kg of steel scrap (0.01% C, 0.02% Si, 0.4% Mn, 0.02% P,
0.01% S, and 0.02% Cu), and 6600 kg of returns (3.76% C, 2.45% Si, 0.22% Mn, 0.04% P,
0.005% S, 0.07% Cu, and 0.022% Ti). The silicon level was adjusted by the addition of
FeSi75 ferrosilicon (75.09% Si, 1.49% Al, and 0.77% Ca). The carbon level was corrected
with synthetic graphite (54 kg). The melt was treated by the sandwich-method with Fe-Si-
Mg alloy (45% Si, 5.5% Mg, 2% Ca, 2.28% RE) to spheroidize the graphite. The chemical
compositions of the experimental heats are presented in Table 3. In addition to the elements
listed in the table, the melt contained 0.06% Cr, 0.004% Sn, 0.006% Al, 0.010% Ce, and
0.004% La.

Table 3. Chemical compositions (% mass) of experimental cast irons.

Heat C Si P S Mg Mn Cu Ti

1 3.55 2.39 0.014 0.003 0.034 0.55 0.14 0.020
2 3.54 2.42 0.016 0.005 0.032 0.4 0.19 0.022
3 3.58 2.40 0.015 0.005 0.032 0.4 0.21 0.021

A series of standard thermal analysis (TA) cups, and cross-shaped castings (Figure 1),
were poured from the melts, some not inoculated, while others were inoculated with
a Ce-bearing inoculant (1.83% Ce, 0.95% Al, 0.91% Ca), or with the Ce inoculant with
the addition of Se. Both selenium and the inoculant were added in a 1.3 kg hand-ladle
before pouring the samples. Additions were 0.2% for Ce-inoculant (2.6 g/cup and 5 g for
cross-shaped castings), and 0.0092% for selenium (0.12 g). The selenium was added as
pure Se (99.9%). The elemental form is generally preferred for incorporation in ingots or
castings because it melts faster [20]. A recovery of 66.6% was expected, the rest being lost
by fume or slag. The TA cups were used to generate cooling curve information, as well
as for microstructure analysis and for comparison with the nucleation in the cross-shaped
castings used for the porosity measurements.
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Figure 1. Cross shaped casting layout (dimensions in mm).

The cooling curves of the TA cups were recorded by Thermolan® system (V2, Veigalan
Estudio 2010, S.L.U., Durango, Spain), and the cooling rates (first derivatives of the cooling
curves) were calculated. An example of the output data is presented in Figure 2 for the
noninoculated sample, and for the Ce-inoculant and the Se + Ce-inoculant. Information on
undercooling, eutectic minimum temperature, recalescence, and the maximum cooling rate
at the end of solidification (CRmax) were extracted from these curves. It can be seen that
inoculation significantly increases the maximum cooling rate. Further discussion between
the correlation between the porosity and CRmax will be provided later in this paper.
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Figure 2. Cooling curves (a) and their first derivatives (b) from Heat 2 showing the effect of inocula-
tion in increasing the maximum cooling rate, CRmax, at the end of solidification.

After cooling to room temperature, the cups were sectioned and prepared (ground and
polished) for metallographic examination. A total of 10 different fields were taken for each
sample in order to analyze the morphology of the spheroidal graphite by optical microscopy.
Image processing was performed by means of the Image J software to determine the nodule
count. The minimum size considered when counting graphite particles was a surface
of 25 µm2, which gives a diameter of 3.36 µm.
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In order to identify the possible nucleation sites, an Ultra PLUS Carl Zeiss SMT (ZEISS,
Thornwood, NY, USA) (0.8 mm resolution at 30 kV) in the STEM mode was used, in
combination with an X-Max 20 Oxford Instruments EDX detector ( Oxford Instruments,
Abrington, UK) with a resolution of 127 eV/ mm2. The most advanced FEG-SEM tech-
niques, such as spectrums, mappings, and line scans, were applied to analyze the main
elements present in the inclusions, and to estimate the type of compounds that can act as
nuclei for graphite.

The formation of Se-compounds was verified by the commercial software, Fact-
Sage6.41, whose theoretical basis is the equilibrium and phase transformations for the
minimization of the Gibbs free energy. Two different calculation modules, “Equilib” and
“Reaction”, were used to determine the precipitation of possible compounds. The “Equilib”
module determines the chemical composition of compounds when the elements react
partially or totally to reach a state of chemical equilibrium under the chosen composition
and temperature conditions (Figure 3). The “Reaction” module determines the change
in the extensive thermodynamic properties, such as enthalpy, entropy, or specific heat to
simple species or chemical reactions. It is seen that MgSe and La2Se2 are stable solids at
temperatures of 1500 ◦C, and that Ce2C3 forms at 1200 ◦C. It is reasonable to assume that
these compounds can act as nuclei.
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Figure 3. Stability of selenides according to FactSage, between 300 and 1500 ◦C, assuming the initial
chemical composition listed in the figure.

X-ray computer tomography was used to evaluate porosity. This method has been
proven to be accurate on SG iron samples by Borgs and Stets [22], who compared the
tomography and the metallographic sections. In this work, tomographic inspection was
performed on a YXLON equipment Mod. Y.CT Compact 450 kV and 1.5 mA (YXLON In-
ternational X-Ray GmbH, Hamburg, Germany). The cross-shaped castings were sectioned
perpendicular to the vertical axis, and the sections were analyzed. The distance between
the sectioning planes was 1 mm, with a pixel size of 0.17 mm. A total of 83 sections per
sample were produced. As an example, 4 of the 83 cuts on the sample with 1.8 Ce inoculant
are shown in Figure 4.
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volume of internal defect: 101.82 mm3.

After the radiation of the sample, one file per plane was generated and then rebuilt
into a 3D model using VG Studio Max 2.0. By means of this software, the total volume
of the sample was calculated. By applying techniques based on contrast and grey levels
analysis, the volume of defect is identified and evaluated.

3. Results and Discussion
3.1. Correlation between Cooling Curve Parameters, Nodule Count and Porosity

The experimental results are summarized in Table 4. It can be seen that, as expected,
the nodule count increased considerably because of Ce inoculation. The Ce-Se combination
was the most efficient, producing the highest number of nodules in all three heats.

Table 4. Experimental results showing the effect of inoculant and Se additions on formation of microshrinkage and cooling
curve parameters.

Heat Inoc. Nod/mm2 TL
◦C TEmin

◦C ∆Trecal
◦C TS ◦C CRmax

◦C/s Microshrinkage
mm3

1
1.8 Ce 255 1146.8 1141.3 5.6 1118.6 3.80 11.22

1.8 Ce + Se 377 1149 1147.4 2.9 1125 3.88 22.26

2
none 140 1135.9 1134.1 3.5 1104.6 2.44 148.46
1.8 Ce 270 1148.2 1142.5 5.7 1125.1 - 2.85

1.8 Ce + Se 333 1152.2 1144.5 7.8 1127.3 3.38 0

3
none 216 1139.7 1135.5 4.1 1106.1 2.58 272.82
1.8 Ce 368 1148.5 1141.3 7.2 1125.4 3.32 101.82

1.8 Ce + Se 386 1149.6 1143.1 6.5 1124.5 3.06 6.50

This improvement in nodule count translates, in most cases, to an important reduction
in the size of the microshrinkage. As shown in Figures 5 and 6a, as the nodule count
increases, the amount of porosity decreases. The addition of Se appears to emphasize
this tendency, except for Heat 1, where the samples inoculated with 1.8 Ce + Se present
a microporosity of about a factor of two more than those inoculated only with Ce. This
difference can be attributed to the bad behavior of the feeder, or to a poor performance of
Se. Because of the low value of sulfur in this sample (0.003% S vs. 0.005% S in the other
ones), which has already been shown as an excellent promoter of potent substrates for the
nucleation of graphite [5,8,10], graphite expansion may become insufficient to compensate
the solidification shrinkage, increasing the risk of microporosity formation.
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Figure 6. Correlation between various measured parameters and microshrinkage; the variable on
the abscise reflects the sequential left-to-right change not inoculated-inoculated-inoculated + Se:
(a) correlation between microshrinkage and nodule count; (b) correlation between nodule count and
cooling rate; (c) correlation between microshrinkage and the maximum cooling rate; (d) correlation
between microshrinkage and minimum eutectic temperature.

A good correlation is also seen between the nodule count and CRmax. However, the
use of CRmax in differentiating between Ce-inoculated and (Ce + Se)-inoculated is not
conclusive as we only have one data point. Similarly, while CRmax exhibits a clear increase
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with inoculation (Figure 6b), it appears to be a less precise predictor of the differences in
microshrinkage between the inoculated irons (Figure 6c). This is due, at least in part, to the
inaccuracies resulting from Se assimilation in the melt during inoculation in the hand ladle.
To reach a definitive conclusion on this issue, more research data are required.

Finally, as shown in Figure 6d, a higher TEmin indicates a lower microshrinkage.

3.2. Size Distribution of Graphite

Ten images per sample were analyzed to characterize the size distribution of spheroidal
graphite. An example of measured graphite nodule histograms for cups with and without
inoculation (Ce-inoculant) is shown in Figure 7. The experiments indicate that the nucle-
ation of SG can follow a monotonic trend (only one maximum on the size distribution
curve) or can exhibit several nucleation waves (several maxima). Chisamera et al. [23]
have shown that complex FeSi inoculants with Ca, Ce, S, and O extend graphite nucleation
through the end of eutectic solidification. A bimodal volume size distribution of graphite
nodules (a set of small nodules coexisting with a near normally distributed set of large
nodules) was observed by Lekakh et al. [24] and suggest a link between the second nucle-
ation wave and lower microporosity. While none of the TA cups in this research produced
a second nucleation wave (two maxima) in the size distribution curves, a clear difference
was observed in the microstructures and distribution curves for the inoculated irons as
compared with the noninoculated. The lack of inoculation produces a more uniform distri-
bution spread over different sizes of graphite, in addition to the bad shape parameters of
spheroidal graphite (low roundness and high aspect ratio), and lower nodule count.
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Figure 7. Unetched micrographs and graphite size distribution for samples from Heat 3 non inocu-
lated (a) and inoculated with Ce-inoculant (b).

The addition of Se considerably modifies the size distribution of graphite, moving the
formation of graphite to the left, generating finer graphite. Indeed, as shown in Figure 8,
the addition of Ce-inoculant (1.8 Ce) produces a distribution with 55% of the nodules in
the range of a 5–20 µm diameter, vs. 66% for the sample where (Ce + Se)-inoculant was
added. This finer graphite generation, assumed to form at the end of solidification [25],
could better counteract the austenite contraction in the last stages of solidification, and may
be responsible for the decrease in the microshrinkage formation (Figure 5).
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3.3. Thermodynamics Calculations

According to the previous results, it appears that selenium contributes favorably to
the formation of graphite. It is expected that this element forms different nonmetallic
inclusions that can act as nuclei for graphite.
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The possible precipitation and stability of these compounds was analyzed through
an Ellingham’s diagram (Figure 9) based on the calculations from the FactSage database
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(V6.4, GTT Technologies, 52134, Herzogenrath, Germany). This diagram, which shows the
dependence of the stability for compounds as a function of temperature [26], reveals the
formation of several thermodynamically stable Se compounds (selenides), such as CaSe,
LaSe, and MgSe (it is somehow surprising that no Ce selenide was detected). Ca-selenides
seem to be the most stable of all the selenides. However, sulfides exhibit, in most cases,
lower standard free energy formation (∆G0). Thus, it is expected that Mg, Ca, or RE prefer
to combine with sulfur rather than with selenium. Depending on the content of Se and S,
selenides can coexist with their corresponding sulfides. In the case of Ca, for example, the
melting point for CaS is 2526 ◦C vs. 1408 ◦C for CaSe, so both can appear together if the
temperatures are not very high.

3.4. Nature of Nuclei

An exhaustive SEM analysis of the type of nonmetallic inclusions that can act as
nucleation sites for graphite shows that the main nuclei in the inoculated irons were
made by rounded sulfides and polygonal Mg-Si-Al nitrides, as is summarized in Table 5.
Both types of inclusions can appear alone (Figure 10a), or in the same graphite aggregate
(Figure 10b).

Table 5. Main inclusions detected in the graphite acting as nuclei.

Heat Inoc. No. Nuclei Oxides Sulfides (MgSiAl) N Ti (CN) Graph. with RE Graph. with Se

1
1.8 Ce 20 4% 40% 33% 25% 25% 0%

1.8 Ce + Se 20 0% 57% 30% 13% 50% 60%

2
1.8 Ce 20 7% 46% 36% 11% 35% 0%

1.8 Ce + Se 20 3% 47% 29% 21% 50% 50%
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Figure 10. Different nonmetallic inclusions acting as nucleation sites for the graphite: (a) a complex Mg-Si-Al nitride; (b) a
combination of (MgSiAl) N + (MgCaRE) S; (c) a small Ti (CN) growing on a big Mg-Ca sulfide.

Some oxides were also found. The formation of cubic Ti carbides is determined by
the content of Ti in the base melt (>0.020% Ti) [3,27,28]. They are never found isolated and
need another inclusion (complex nitride or sulfide) to nucleate (Figure 10c).

The presence of RE is relevant, particularly in samples with the addition of Se, where
they are always detected as sulfides (Figure 10b), or selenides (Figure 11), which verifies
the great affinity between S and Se and RE (mainly La and Ce). Their presence seems to
be linked to the Mg treatment(45%Si, 5.5%Mg, 2%Ca, 2%RE) used for the spheroidization
process. The detection of Se acting as a nucleation site for graphite in samples inoculated
with 1.8 Ce + Se, which are characterized by a higher nodule count, is evident (>50% cases);
thus, the important role that this element plays in the formation of graphite is clear. The
theoretical formation of these Se compounds was justified previously by thermodynamic
calculations.
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Figure 11. SEM images of a graphite nucleating on a selenide, and corresponding WDX/SEM spectrums, at different
positions: position 1 − (Mg,Ca) S; position 2 − (Mg,Se,Ca,Ce,La) S.

These selenides can act as direct nucleation sites for graphite (Figure 11), or as nuclei
for other nonmetallic inclusions (usually a complex of Mg-Si-Al-N). An example is illus-
trated in Figure 12, where an analysis, using X-ray concentration graphs, reveals that Mg,
Si, Al, and N show composition peaks at the same position. Then, S, Se, and Ca present a
clear coincidental maximum. Thus, the nucleus of this graphite seems to be formed by a
big polygonal Mg-Si-Al nitride (≥10 µm) that has nucleated on two small Ca sulfides and
selenides, demonstrating the coexistence of both compounds, as discussed earlier.
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4. Conclusions

Correlations between the microshrinkage (shrinkage porosity) and some metallo-
graphic and thermal analysis parameters of spheroidal graphite irons with 4.3% carbon
were evaluated on thermal analysis cups and cross-shaped castings poured from an indus-
trial batch of Mg-treated iron. A commercial inoculant, rich in Ce and some additions of
pure Se, was added in the hand-ladle before pouring the samples. The influence of these
additions on the process of the formation of graphite was also studied.

As expected, the inoculation process considerably improved all the parameters of
the cooling curves, as well as the nodule count, drastically decreasing the apparition of
microporosity. It was found that the addition of selenium increases the eutectic minimum
temperature and the solidus temperature, as well as the number of nodule spheroids.
Selenium modifies the size distribution of graphite, producing finer graphite that seems
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to nucleate at the end of solidification, reducing substantially, in most cases, the volume
of microshrinkage. This behavior is explained by the formation of some Se compounds
(selenides) that can act as excellent nuclei for graphite. Thermodynamics calculations and
a complete SEM analysis supported this assertion.
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